Knowledge (XXG)

Embryoid body

Source 📝

168:
hanging drops is labor-intensive and not easily amenable to scalable cultures. Additionally, the media can not be easily exchanged within the traditional hanging drop format, necessitating the transfer of hanging drops into bulk suspension cultures after 2–3 days of formation, whereby individual EBs tend to agglomerate. Recently, new technologies have been developed to enable media exchange within a modified hanging drop format. In addition, technologies have also been developed to physically separate cells by forced aggregation of ESCs within individual wells or confined on adhesive substrates, which enables increased throughput, controlled formation of EBs. Ultimately, the methods used for EB formation may impact the heterogeneity of EB populations, in terms of aggregation kinetics, EB size and yield, as well as differentiation trajectories.
324:
cell uptake rates. Therefore, the delivery of morphogens to EBs results in increased heterogeneity and decreased efficiency of differentiated cell populations compared to monolayer cultures. One method of addressing transport limitations within EBs has been through polymeric delivery of morphogens from within the EB structure. Additionally, EBs can be cultured as individual microtissues and subsequently assembled into larger structures for tissue engineering applications. Although the complexity resulting from the three-dimensional adhesions and signaling may recapitulate more native tissue structures, it also creates challenges for understanding the relative contributions of mechanical, chemical, and physical signals to the resulting cell phenotypes and morphogenesis.
39: 160:(ROCK) pathway, including the small molecules Y-27632 and 2,4 disubstituted thiazole (Thiazovivin/Tzv). Alternatively, to avoid dissociation into single cells, EBs can be formed from hESCs by manual separation of adherent colonies (or regions of colonies) and subsequently cultured in suspension. Formation of EBs in suspension is amenable to the formation of large quantities of EBs, but provides little control over the size of the resulting aggregates, often leading to large, irregularly shaped EBs. As an alternative, the 200:. In response to the ECM deposition, EBs often form a cystic cavity, whereby the cells in contact with the basement membrane remain viable and those at the interior undergo apoptosis, resulting in a fluid-filled cavity surrounded by cells. Subsequent differentiation proceeds to form derivatives of the three germ lineages. In the absence of supplements, the “default” differentiation of ESCs is largely toward ectoderm, and subsequent 40: 41: 43: 31: 151:, which is highly expressed on undifferentiated ESCs. When cultured as single cells in the absence of anti-differentiation factors, ESCs spontaneously aggregate to form EBs. Such spontaneous formation is often accomplished in bulk suspension cultures whereby the dish is coated with non-adhesive materials, such as 2911:
Turner, David Andrew; Glodowski, Cherise R.; Luz, Alonso-Crisostomo; Baillie-Johnson, Peter; Hayward, Penny C.; Collignon, Jérôme; Gustavsen, Carsten; Serup, Palle; Schröter, Christian (2016-05-13). "Interactions between Nodal and Wnt signalling Drive Robust Symmetry Breaking and Axial Organisation
323:
limitations occur within EBs, creating gradients of morphogens, metabolites, and nutrients. It has been estimated that oxygen transport is limited in cell aggregates larger than approximately 300 μm in diameter; however, the development of such gradients are also impacted by molecule size and
310:
In contrast to the differentiation of ESCs in monolayer cultures, whereby the addition of soluble morphogens and the extracellular microenvironment can be precisely and homogeneously controlled, the three-dimensional structure of EBs poses challenges to directed differentiation. For example, the
167:
Formation of EBs can also be more precisely controlled by the inoculation of known cell densities within single drops (10-20 μL) suspended from the lid of a Petri dish, known as hanging drops. While this method enables control of EB size by altering the number of cells per drop, the formation of
2886:
Turner, David; Alonso-Crisostomo, Luz; Girgin, Mehmet; Baillie-Johnson, Peter; Glodowski, Cherise R.; Hayward, Penelope C.; Collignon, Jérôme; Gustavsen, Carsten; Serup, Palle (2017-01-31). "Gastruloids develop the three body axes in the absence of extraembryonic tissues and spatially localised
73:
EBs are differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. They mimic the characteristics seen in early-stage embryos. They are often used as a model system to conduct research on various aspects of developmental biology. They can also
117:
In contrast to monolayer cultures, however, the spheroid structures that are formed when ESCs aggregate enables the non-adherent culture of EBs in suspension, making EB cultures inherently scalable, which is useful for bioprocessing approaches, whereby large yields of cells can be produced for
134:
which yields microtissues that are similar to native tissue structures. Such microtissues are promising to directly or indirectly repair damaged or diseased tissue in regenerative medicine applications, as well as for in vitro testing in the pharmaceutical industry and as a model of embryonic
1484:
Ludwig, T. E.; Levenstein, M. E.; Jones, J. M.; Berggren, W. T.; Mitchen, E. R.; Frane, J. L.; Crandall, L. J.; Daigh, C. A.; Conard, K. R.; Piekarczyk, M. S.; Llanas, R. A.; Thomson, J. A. (2006). "Derivation of human embryonic stem cells in defined conditions".
287:(TGFβ) families (Lefty 1, Nodal), as well as repressors of the same molecules (Dkk-1, Sfrp1, Sfrp5). Due to the similarities between embryogenesis and ESC differentiation, many of the same growth factors are central to directed differentiation approaches. 1432:
Williams, R. L.; Hilton, D. J.; Pease, S.; Willson, T. A.; Stewart, C. L.; Gearing, D. P.; Wagner, E. F.; Metcalf, D.; Nicola, N. A.; Gough, N. M. (1988). "Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells".
865:
Yu, J.; Vodyanik, M. A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J. L.; Tian, S.; Nie, J.; Jonsdottir, G. A.; Ruotti, V.; Stewart, R.; Slukvin, I. I.; Thomson, J. A. (2007). "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells".
219:
As a result of the three-dimensional EB structure, complex morphogenesis occurs during EB differentiation, including the appearance of both epithelial- and mesenchymal-like cell populations, as well as the appearance of markers associated with the
155:
or hydrophilic polymers, to promote the preferential adhesion between single cells, rather than to the culture substrate. As hESC undergo apoptosis when cultured as single cells, EB formation often necessitates the use of inhibitors of the
42: 1528:
Watanabe, K.; Ueno, M.; Kamiya, D.; Nishiyama, A.; Matsumura, M.; Wataya, T.; Takahashi, J. B.; Nishikawa, S.; Nishikawa, S. I.; Muguruma, K.; Sasai, Y. (2007). "A ROCK inhibitor permits survival of dissociated human embryonic stem cells".
270:
is formed and the embryo develops a transient structure known as the primitive streak. Much of the spatial patterning that occurs during the formation and migration of the primitive streak results from the secretion of
1355:
Yoon, B. S.; Yoo, S. J.; Lee, J. E.; You, S.; Lee, H. T.; Yoon, H. S. (2006). "Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment".
2757:
Finley, K. R.; Tennessen, J.; Shawlot, W. (2003). "The mouse secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development".
1018:
Doetschman, T. C.; Eistetter, H.; Katz, M.; Schmidt, W.; Kemler, R. (1985). "The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium".
2590:
Bauwens, C. L.; Song, H.; Thavandiran, N.; Ungrin, M.; Massé, S. P.; Nanthakumar, K.; Seguin, C.; Zandstra, P. W. (2011). "Geometric Control of Cardiomyogenic Induction in Human Pluripotent Stem Cells".
254:
Much of the research central to embryonic stem cell differentiation and morphogenesis is derived from studies in developmental biology and mammalian embryogenesis. For example, immediately after the
228:. Tissue-like structures are often exhibited within EBs, including the appearance of blood islands reminiscent of early blood vessel structures in the developing embryo, as well as the patterning of 2057:
Esner, M.; Pachernik, J.; Hampl, A.; Dvorak, P. (2002). "Targeted disruption of fibroblast growth factor receptor-1 blocks maturation of visceral endoderm and cavitation in mouse embryoid bodies".
90:
stage of embryos from mouse (mESC), primate, and human (hESC) sources. Additionally, EBs can be formed from embryonic stem cells derived through alternative techniques, including somatic cell
2399:"Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell–derived mesoderm and blood progenitors in a defined, serum-free media" 2644:
Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. (2011). "Self-organizing optic-cup morphogenesis in three-dimensional culture".
118:
potential clinical applications. Additionally, although EBs largely exhibit heterogeneous patterns of differentiated cell types, ESCs are capable of responding to similar cues that direct
224:(EMT). Additionally, the inductive effects resulting from signaling between cell populations in EBs results in spatially and temporally defined changes, which promote complex 2722:
Burdsal, C. A.; Damsky, C. H.; Pedersen, R. A. (1993). "The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak".
2993:
Brink, Susanne C. van den; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A.; Arias, Alfonso Martinez (2014-11-15).
3487:"Monolayer and Spheroid Culture of Human Liver Hepatocellular Carcinoma Cell Line Cells Demonstrate Distinct Global Gene Expression Patterns and Functional Phenotypes" 3211:
Sachlos, E.; Auguste, D. T. (2008). "Embryoid body morphology influences diffusive transport of inductive biochemicals: A strategy for stem cell differentiation".
1940:
Sargent, C. Y.; Berguig, G. Y.; McDevitt, T. C. (2009). "Cardiomyogenic Differentiation of Embryoid Bodies is Promoted by Rotary Orbital Suspension Culture".
3052:"Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells" 184:. EB differentiation begins with the specification of the exterior cells toward the primitive endoderm phenotype. The cells at the exterior then deposit 3246:
Van Winkle, A. P.; Gates, I. D.; Kallos, M. S. (2012). "Mass Transfer Limitations in Embryoid Bodies during Human Embryonic Stem Cell Differentiation".
1883:"Reproducible, Ultra High-Throughput Formation of Multicellular Organization from Single Cell Suspension-Derived Human Embryonic Stem Cell Aggregates" 3050:
Turner, David A.; Hayward, Penelope C.; Baillie-Johnson, Peter; Rué, Pau; Broome, Rebecca; Faunes, Fernando; Arias, Alfonso Martinez (2014-11-15).
917:
Park, I. H.; Arora, N.; Huo, H.; Maherali, N.; Ahfeldt, T.; Shimamura, A.; Lensch, M. W.; Cowan, C.; Hochedlinger, K.; Daley, G. Q. (2008).
2225:"Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation" 48: 2937: 2135:"Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body" 2938:"Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour 2338: 1824:"Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11" 221: 1317:
Larue, L.; Antos, C.; Butz, S.; Huber, O.; Delmas, V.; Dominis, M.; Kemler, R. (1996). "A role for cadherins in tissue formation".
240:. More recently, complex structures, including optic cup-like structures were created in vitro resulting from EB differentiation. 164:
forces imparted in mixed culture platforms increase the homogeneity of EB sizes when ESCs are inoculated within bulk suspensions.
2936:
Baillie-Johnson, Peter; Brink, Susanne Carina van den; Balayo, Tina; Turner, David Andrew; Arias, Alfonso Martinez (2015-11-24).
3162:
Carpenedo, R. L.; Bratt-Leal, A. S. M.; Marklein, R. A.; Seaman, S. A.; Bowen, N. J.; McDonald, J. F.; McDevitt, T. C. (2009).
284: 3164:"Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules" 1282:
Kurosawa, H. (2007). "Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells".
536:
Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. (1998).
95: 2695:
Bielinska, M.; Narita, N.; Wilson, D. B. (1999). "Distinct roles for visceral endoderm during embryonic mouse development".
369:"Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells" 258:
stage of development (from which ESCs are derived), the embryo undergoes differentiation, whereby cell specification of the
2086:"Monoclonal antibodies to laminin reveal the heterogeneity of basement membranes in the developing and adult mouse tissues" 2440:"Wnt, Activin, and BMP Signaling Regulate Distinct Stages in the Developmental Pathway from Embryonic Stem Cells to Blood" 311:
visceral endoderm population which forms the exterior of EBs, creates an exterior “shell” consisting of tightly connected
157: 2543:"Synthesis and Organization of Hyaluronan and Versican by Embryonic Stem Cells Undergoing Embryoid Body Differentiation" 2018:"Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation" 1574:"Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules" 299: 2362:
Wiles, M. V.; Keller, G. (1991). "Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture".
1977:"Control of Human Embryonic Stem Cell Colony and Aggregate Size Heterogeneity Influences Differentiation Trajectories" 1185:
Nair, R.; Shukla, S.; McDevitt, T. C. (2008). "Acellular matrices derived from differentiating embryonic stem cells".
2795:"Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development" 2541:
Shukla, S.; Nair, R.; Rolle, M. W.; Braun, K. R.; Chan, C. K.; Johnson, P. Y.; Wight, T. N.; McDevitt, T. C. (2009).
1975:
Bauwens, C. L. L.; Peerani, R.; Niebruegge, S.; Woodhouse, K. A.; Kumacheva, E.; Husain, M.; Zandstra, P. W. (2008).
966:
Itskovitz-Eldor, J.; Schuldiner, M.; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M.; Soreq, H.; Benvenisty, N. (2000).
755:(2006). "Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors". 1745:
Park, J.; Cho, C. H.; Parashurama, N.; Li, Y.; Berthiaume, F. O.; Toner, M.; Tilles, A. W.; Yarmush, M. L. (2007).
648: 968:"Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers" 2995:"Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells" 1094:"Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development" 177: 180:
protocols, EB formation is often used as a method for initiating spontaneous differentiation toward the three
477:
Thomson, J. A.; Kalishman, J.; Golos, T. G.; Durning, M.; Harris, C. P.; Becker, R. A.; Hearn, J. P. (1995).
1784:
Mohr, J. C.; De Pablo, J. J.; Palecek, S. P. (2006). "3-D microwell culture of human embryonic stem cells".
1633:"Rotary Suspension Culture Enhances the Efficiency, Yield, and Homogeneity of Embryoid Body Differentiation" 426:
Evans, M. J.; Kaufman, M. H. (1981). "Establishment in culture of pluripotential cells from mouse embryos".
3291:"Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation" 702:
Munsie, M. J.; Michalska, A. E.; O'Brien, C. M.; Trounson, A. O.; Pera, M. F.; Mountford, P. S. (2000).
343: 280: 1881:
Ungrin, M. D.; Joshi, C.; Nica, A.; Bauwens, C. L.; Zandstra, P. W. (2008). Callaerts, Patrick (ed.).
208:
as well as defined growth factor additives, have been developed to promote the differentiation toward
2913: 2888: 2653: 1894: 1835: 1693: 1585: 1442: 1393:"Establishment and Maintenance of Human Embryonic Stem Cells on STO, a Permanently Growing Cell Line" 875: 715: 660: 598: 549: 490: 435: 380: 316: 185: 83: 102:
formats, ESCs within embryoid bodies undergo differentiation and cell specification along the three
3539: 3338:
Purpura, K. A.; Bratt-Leal, A. S. M.; Hammersmith, K. A.; McDevitt, T. C.; Zandstra, P. W. (2012).
1822:
Hwang, Y. -S.; Chung, B. G.; Ortmann, D.; Hattori, N.; Moeller, H. -C.; Khademhosseini, A. (2009).
320: 276: 232:
extensions (indicative of neuron organization) and spontaneous contractile activity (indicative of
2321:
Ying, Q. L.; Smith, A. G. (2003). "Defined Conditions for Neural Commitment and Differentiation".
3271: 2824: 2677: 2626: 1727: 1662: 1554: 1510: 1466: 899: 847: 790: 704:"Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei" 684: 459: 205: 34:
Phase image of EBs in suspension culture. Individual EBs are composed of approximately 1000 mESCs
3289:
Bratt-Leal, A. S. M.; Carpenedo, R. L.; Ungrin, M. D.; Zandstra, P. W.; McDevitt, T. C. (2011).
2223:
Smyth, N.; Vatansever, H. S.; Murray, P.; Meyer, M.; Frie, C.; Paulsson, M.; Edgar, D. (1999).
812:(2007). "Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors". 3516: 3467: 3418: 3369: 3320: 3263: 3228: 3193: 3141: 3089: 3071: 3032: 3014: 2975: 2957: 2865: 2844:"Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3" 2816: 2775: 2739: 2704: 2669: 2618: 2572: 2523: 2469: 2420: 2379: 2344: 2334: 2303: 2254: 2205: 2184:"Signals for death and survival: A two-step mechanism for cavitation in the vertebrate embryo" 2164: 2115: 2066: 2039: 1998: 1957: 1922: 1863: 1801: 1766: 1719: 1654: 1613: 1546: 1502: 1458: 1414: 1373: 1334: 1299: 1261: 1212: 1167: 1138:"Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation" 1115: 1069: 1028: 997: 948: 891: 839: 782: 733: 676: 626: 567: 518: 451: 408: 294:
which show remarkable parallels to embryonic development such as symmetry-breaking, localised
197: 111: 3387:
Bratt-Leal, A. S. M.; Kepple, K. L.; Carpenedo, R. L.; Cooke, M. T.; McDevitt, T. C. (2011).
1391:
Park, J. H.; Kim, S. J.; Oh, E. J.; Moon, S. Y.; Roh, S. I.; Kim, C. G.; Yoon, H. S. (2003).
3506: 3498: 3457: 3449: 3408: 3400: 3359: 3351: 3310: 3302: 3255: 3220: 3183: 3175: 3131: 3123: 3079: 3063: 3022: 3006: 2965: 2949: 2855: 2806: 2767: 2731: 2661: 2608: 2600: 2562: 2554: 2513: 2505: 2459: 2451: 2410: 2371: 2326: 2293: 2285: 2244: 2236: 2195: 2154: 2146: 2133:
Li, X.; Chen, Y.; Schéele, S.; Arman, E.; Haffner-Krausz, R.; Ekblom, P.; Lonai, P. (2001).
2105: 2097: 2029: 1988: 1949: 1912: 1902: 1853: 1843: 1793: 1758: 1709: 1701: 1644: 1603: 1593: 1538: 1494: 1450: 1404: 1365: 1326: 1291: 1251: 1243: 1202: 1194: 1157: 1149: 1105: 1059: 987: 979: 938: 930: 883: 829: 821: 772: 764: 723: 668: 616: 606: 557: 508: 498: 443: 398: 388: 189: 91: 3436:
Akins, R. E.; Rockwood, D.; Robinson, K. G.; Sandusky, D.; Rabolt, J.; Pizarro, C. (2010).
809: 752: 259: 2657: 1898: 1839: 1697: 1589: 1446: 879: 719: 664: 602: 553: 494: 439: 384: 3511: 3486: 3462: 3437: 3413: 3388: 3364: 3355: 3339: 3315: 3306: 3290: 3224: 3188: 3179: 3163: 3136: 3111: 3084: 3051: 3027: 2994: 2970: 2567: 2542: 2518: 2493: 2464: 2439: 2298: 2273: 2249: 2224: 2159: 2134: 2110: 2085: 1917: 1882: 1858: 1823: 1797: 1714: 1681: 1680:
Tung, Y. C.; Hsiao, A. Y.; Allen, S. G.; Torisawa, Y. S.; Ho, M.; Takayama, S. (2011).
1608: 1573: 1256: 1231: 1162: 1137: 992: 967: 943: 918: 621: 586: 333: 161: 127: 52: 3340:"Systematic engineering of 3D pluripotent stem cell niches to guide blood development" 2771: 2330: 728: 703: 403: 368: 122:. Therefore, the three-dimensional structure, including the establishment of complex 3533: 3389:"Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates" 2200: 2183: 1682:"High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array" 1369: 1046:
Dang, S. M.; Gerecht-Nir, S.; Chen, J.; Itskovitz-Eldor, J.; Zandstra, P. W. (2004).
513: 478: 249: 233: 225: 144: 131: 123: 119: 70:. These include embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) 3275: 2828: 2630: 2274:"Regulation of programmed cell death by basement membranes in embryonic development" 1731: 1666: 1514: 903: 2681: 1746: 1558: 1470: 851: 794: 688: 463: 348: 201: 99: 1409: 1392: 587:"Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs" 562: 537: 2415: 2398: 1907: 2860: 2843: 2494:"Wnt Signaling Mediates Self-Organization and Axis Formation in Embryoid Bodies" 1993: 1976: 1649: 1632: 302:(anteroposterior, dorsoventral and Left-Right) and gastrulation-like movements. 74:
contribute to research focused on tissue engineering and regenerative medicine.
3112:"The Multiparametric Effects of Hydrodynamic Environments on Stem Cell Culture" 2509: 2455: 1110: 1093: 1064: 1047: 934: 825: 768: 591:
Proceedings of the National Academy of Sciences of the United States of America
483:
Proceedings of the National Academy of Sciences of the United States of America
373:
Proceedings of the National Academy of Sciences of the United States of America
17: 3502: 3453: 3127: 2604: 2492:
Ten Berge, D.; Koole, W.; Fuerer, C.; Fish, M.; Eroglu, E.; Nusse, R. (2008).
1953: 644: 338: 312: 291: 255: 181: 148: 103: 87: 67: 3075: 3018: 2961: 808:
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.;
2558: 1848: 1598: 1572:
Xu, Y.; Zhu, X.; Hahm, H. S.; Wei, W.; Hao, E.; Hayek, A.; Ding, S. (2010).
1330: 887: 503: 393: 295: 3520: 3471: 3422: 3373: 3324: 3267: 3232: 3197: 3145: 3093: 3036: 2979: 2869: 2820: 2779: 2708: 2673: 2622: 2576: 2527: 2473: 2424: 2348: 2307: 2289: 2168: 2070: 2043: 2034: 2017: 2002: 1961: 1926: 1867: 1805: 1770: 1723: 1658: 1617: 1550: 1506: 1418: 1377: 1303: 1265: 1216: 1171: 1119: 1073: 1001: 952: 895: 843: 786: 737: 630: 2743: 2735: 2383: 2375: 2258: 2240: 2209: 2150: 2119: 1747:"Microfabrication-based modulation of embryonic stem cell differentiation" 1462: 1338: 1032: 680: 611: 571: 522: 455: 412: 2101: 651:(1997). "Viable offspring derived from fetal and adult mammalian cells". 272: 267: 263: 213: 209: 107: 2665: 1295: 1198: 3404: 3067: 3010: 2811: 2794: 1705: 983: 777: 290:
In addition, advancements of EB culture resulted in the development of
237: 229: 193: 3259: 2613: 1247: 1207: 834: 236:
differentiation) when EBs are plated onto adhesive substrates such as
1762: 1454: 1153: 672: 447: 1542: 1498: 30: 2918: 2893: 2016:
Chen, Y.; Li, X.; Eswarakumar, V. P.; Seger, R.; Lonai, P. (2000).
319:. Due to such physical restrictions, in combination with EB size, 279:
by various cell populations, including the growth factors from the
2953: 1048:"Controlled, Scalable Embryonic Stem Cell Differentiation Culture" 37: 29: 3438:"Three-Dimensional Culture Alters Primary Cardiac Cell Phenotype" 204:. However, alternative media compositions, including the use of 82:
The pluripotent cell types that comprise embryoid bodies include
1136:
Bratt-Leal, A. S. M.; Carpenedo, R. L.; McDevitt, T. C. (2009).
152: 2793:
Kemp, C.; Willems, E.; Abdo, S.; Lambiv, L.; Leyns, L. (2005).
130:
within the EB microenvironment, enables differentiation and
2438:
Nostro, M. C.; Cheng, X.; Keller, G. M.; Gadue, P. (2008).
2325:. Methods in Enzymology. Vol. 365. pp. 327–341. 2084:
Wan, Y. J.; Wu, T. C.; Chung, A. E.; Damjanov, I. (1984).
1631:
Carpenedo, R. L.; Sargent, C. Y.; McDevitt, T. C. (2007).
538:"Embryonic stem cell lines derived from human blastocysts" 66:) are three-dimensional aggregates formed by pluripotent 3110:
Kinney, M. A.; Sargent, C. Y.; McDevitt, T. C. (2011).
1232:"Stem cell paracrine actions and tissue regeneration" 27:
Three-dimensional aggregate of pluripotent stem cells
2397:Purpura, K. A.; Morin, J.; Zandstra, P. W. (2008). 2697:The International Journal of Developmental Biology 2059:The International Journal of Developmental Biology 1021:Journal of Embryology and Experimental Morphology 919:"Disease-Specific Induced Pluripotent Stem Cells" 479:"Isolation of a primate embryonic stem cell line" 266:. Later on in postimplantation development, the 47:An embryoid body whose cells differentiated into 1828:Proceedings of the National Academy of Sciences 1578:Proceedings of the National Academy of Sciences 1187:Journal of Biomedical Materials Research Part A 94:or the reprogramming of somatic cells to yield 262:results in the formation of the hypoblast and 196:, similar to the composition and structure of 3157: 3155: 2487: 2485: 2483: 1817: 1815: 1350: 1348: 1277: 1275: 1131: 1129: 1087: 1085: 1083: 1013: 1011: 8: 647:; Schnieke, A. E.; McWhir, J.; Kind, A. J.; 3105: 3103: 2547:Journal of Histochemistry and Cytochemistry 2842:Rivera-Pérez, J. A.; Magnuson, T. (2005). 3510: 3485:Chang, T. T.; Hughes-Fulford, M. (2009). 3461: 3412: 3363: 3314: 3187: 3135: 3083: 3026: 2969: 2917: 2892: 2859: 2810: 2612: 2566: 2517: 2463: 2414: 2297: 2248: 2199: 2158: 2109: 2033: 1992: 1916: 1906: 1857: 1847: 1713: 1648: 1607: 1597: 1408: 1255: 1230:Baraniak, P. R.; McDevitt, T. C. (2010). 1206: 1161: 1109: 1063: 991: 942: 833: 776: 727: 620: 610: 561: 512: 502: 402: 392: 1284:Journal of Bioscience and Bioengineering 147:of the Ca2+ dependent adhesion molecule 2912:in Gastruloids (Embryonic Organoids)". 2323:Differentiation of Embryonic Stem Cells 2182:Coucouvanis, E.; Martin, G. R. (1995). 359: 306:Challenges to directing differentiation 2931: 2929: 2906: 2904: 2881: 2879: 7: 244:Parallels with embryonic development 110:, and mesoderm – which comprise all 49:enhanced green fluorescence protein 3356:10.1016/j.biomaterials.2011.10.051 3307:10.1016/j.biomaterials.2010.08.113 3225:10.1016/j.biomaterials.2008.08.012 3180:10.1016/j.biomaterials.2009.01.007 3116:Tissue Engineering Part B: Reviews 1798:10.1016/j.biomaterials.2006.07.012 51:-expressing spontaneously beating 25: 2946:Journal of Visualized Experiments 1092:Murry, C. E.; Keller, G. (2008). 298:expression, the formation of the 292:embryonic organoids (Gastruloids) 222:epithelial-mesenchymal transition 1370:10.1111/j.1432-0436.2006.00063.x 585:Briggs, R.; King, T. J. (1952). 315:-like cells, as well as a dense 2272:Murray, P.; Edgar, D. (2000). 96:induced pluripotent stem cells 1: 2772:10.1016/s1567-133x(03)00091-7 2331:10.1016/s0076-6879(03)65023-8 1410:10.1095/biolreprod.103.017467 729:10.1016/s0960-9822(00)00648-5 563:10.1126/science.282.5391.1145 2416:10.1016/j.exphem.2008.04.003 2201:10.1016/0092-8674(95)90169-8 1908:10.1371/journal.pone.0001565 285:transforming growth factor β 2861:10.1016/j.ydbio.2005.09.012 2278:The Journal of Cell Biology 2229:The Journal of Cell Biology 2139:The Journal of Cell Biology 2090:The Journal of Cell Biology 1994:10.1634/stemcells.2008-0183 1650:10.1634/stemcells.2006-0523 3556: 2510:10.1016/j.stem.2008.09.013 2456:10.1016/j.stem.2007.10.011 1111:10.1016/j.cell.2008.02.008 1065:10.1634/stemcells.22-3-275 935:10.1016/j.cell.2008.07.041 826:10.1016/j.cell.2007.11.019 769:10.1016/j.cell.2006.07.024 247: 176:Within the context of ESC 172:Differentiation within EBs 3503:10.1089/ten.tea.2007.0434 3491:Tissue Engineering Part A 3454:10.1089/ten.tea.2009.0458 3442:Tissue Engineering Part A 3128:10.1089/ten.TEB.2011.0040 2605:10.1089/ten.TEA.2010.0563 2593:Tissue Engineering Part A 1954:10.1089/ten.tea.2008.0145 1942:Tissue Engineering Part A 2760:Gene Expression Patterns 98:(iPS). Similar to ESCs 86:(ESCs) derived from the 2559:10.1369/jhc.2009.954826 2403:Experimental Hematology 1849:10.1073/pnas.0905550106 1599:10.1073/pnas.1002024107 1397:Biology of Reproduction 1331:10.1242/dev.122.10.3185 888:10.1126/science.1151526 504:10.1073/pnas.92.17.7844 394:10.1073/pnas.78.12.7634 268:anterior-posterior axis 2799:Developmental Dynamics 2290:10.1083/jcb.150.5.1215 2035:10.1038/sj.onc.1203726 1142:Biotechnology Progress 367:Martin, G. R. (1981). 143:EBs are formed by the 56: 35: 2848:Developmental Biology 2736:10.1242/dev.118.3.829 2376:10.1242/dev.111.2.259 2241:10.1083/jcb.144.1.151 2151:10.1083/jcb.153.4.811 1236:Regenerative Medicine 612:10.1073/pnas.38.5.455 158:rho associated kinase 120:embryonic development 100:cultured in monolayer 46: 33: 3248:Cells Tissues Organs 2599:(15–16): 1901–1909. 2102:10.1083/jcb.98.3.971 1531:Nature Biotechnology 1487:Nature Biotechnology 186:extracellular matrix 84:embryonic stem cells 3393:Integrative Biology 2666:10.1038/nature09941 2658:2011Natur.472...51E 1899:2008PLoSO...3.1565U 1840:2009PNAS..10616978H 1834:(40): 16978–16983. 1698:2011Ana...136..473T 1590:2010PNAS..107.8129X 1447:1988Natur.336..684W 1296:10.1263/jbb.103.389 1199:10.1002/jbm.a.31851 880:2007Sci...318.1917Y 874:(5858): 1917–1920. 720:2000CBio...10..989M 665:1997Natur.385..810W 603:1952PNAS...38..455B 554:1998Sci...282.1145T 548:(5391): 1145–1147. 495:1995PNAS...92.7844T 440:1981Natur.292..154E 385:1981PNAS...78.7634M 3405:10.1039/c1ib00064k 3068:10.1242/dev.112979 3011:10.1242/dev.113001 2812:10.1002/dvdy.20408 1706:10.1039/c0an00609b 984:10.1007/BF03401776 972:Molecular Medicine 649:Campbell, K. H. S. 344:Induced stem cells 206:fetal bovine serum 188:(ECM), containing 145:homophilic binding 57: 36: 3399:(12): 1224–1232. 3260:10.1159/000330691 3219:(34): 4471–4480. 3174:(13): 2507–2515. 3062:(22): 4243–4253. 3005:(22): 4231–4242. 2028:(33): 3750–3756. 1792:(36): 6032–6042. 1584:(18): 8129–8134. 1441:(6200): 684–687. 1325:(10): 3185–3194. 1248:10.2217/rme.09.74 659:(6619): 810–813. 489:(17): 7844–7848. 434:(5819): 154–156. 379:(12): 7634–7638. 198:basement membrane 44: 16:(Redirected from 3547: 3525: 3524: 3514: 3482: 3476: 3475: 3465: 3433: 3427: 3426: 3416: 3384: 3378: 3377: 3367: 3350:(5): 1271–1280. 3335: 3329: 3328: 3318: 3286: 3280: 3279: 3243: 3237: 3236: 3208: 3202: 3201: 3191: 3159: 3150: 3149: 3139: 3107: 3098: 3097: 3087: 3047: 3041: 3040: 3030: 2990: 2984: 2983: 2973: 2933: 2924: 2923: 2921: 2908: 2899: 2898: 2896: 2883: 2874: 2873: 2863: 2839: 2833: 2832: 2814: 2805:(3): 1064–1075. 2790: 2784: 2783: 2754: 2748: 2747: 2719: 2713: 2712: 2692: 2686: 2685: 2641: 2635: 2634: 2616: 2587: 2581: 2580: 2570: 2538: 2532: 2531: 2521: 2489: 2478: 2477: 2467: 2435: 2429: 2428: 2418: 2409:(9): 1186–1198. 2394: 2388: 2387: 2359: 2353: 2352: 2318: 2312: 2311: 2301: 2284:(5): 1215–1221. 2269: 2263: 2262: 2252: 2220: 2214: 2213: 2203: 2179: 2173: 2172: 2162: 2130: 2124: 2123: 2113: 2081: 2075: 2074: 2054: 2048: 2047: 2037: 2013: 2007: 2006: 1996: 1987:(9): 2300–2310. 1972: 1966: 1965: 1937: 1931: 1930: 1920: 1910: 1878: 1872: 1871: 1861: 1851: 1819: 1810: 1809: 1781: 1775: 1774: 1763:10.1039/b704739h 1757:(8): 1018–1028. 1742: 1736: 1735: 1717: 1677: 1671: 1670: 1652: 1643:(9): 2224–2234. 1628: 1622: 1621: 1611: 1601: 1569: 1563: 1562: 1525: 1519: 1518: 1481: 1475: 1474: 1455:10.1038/336684a0 1429: 1423: 1422: 1412: 1403:(6): 2007–2014. 1388: 1382: 1381: 1352: 1343: 1342: 1314: 1308: 1307: 1279: 1270: 1269: 1259: 1227: 1221: 1220: 1210: 1193:(4): 1075–1085. 1182: 1176: 1175: 1165: 1154:10.1002/btpr.139 1133: 1124: 1123: 1113: 1089: 1078: 1077: 1067: 1043: 1037: 1036: 1015: 1006: 1005: 995: 963: 957: 956: 946: 914: 908: 907: 862: 856: 855: 837: 805: 799: 798: 780: 748: 742: 741: 731: 699: 693: 692: 673:10.1038/385810a0 641: 635: 634: 624: 614: 582: 576: 575: 565: 533: 527: 526: 516: 506: 474: 468: 467: 448:10.1038/292154a0 423: 417: 416: 406: 396: 364: 92:nuclear transfer 45: 21: 3555: 3554: 3550: 3549: 3548: 3546: 3545: 3544: 3530: 3529: 3528: 3484: 3483: 3479: 3435: 3434: 3430: 3386: 3385: 3381: 3337: 3336: 3332: 3288: 3287: 3283: 3245: 3244: 3240: 3210: 3209: 3205: 3161: 3160: 3153: 3109: 3108: 3101: 3049: 3048: 3044: 2992: 2991: 2987: 2948:(105): e53252. 2935: 2934: 2927: 2910: 2909: 2902: 2885: 2884: 2877: 2841: 2840: 2836: 2792: 2791: 2787: 2756: 2755: 2751: 2721: 2720: 2716: 2694: 2693: 2689: 2652:(7341): 51–56. 2643: 2642: 2638: 2589: 2588: 2584: 2540: 2539: 2535: 2491: 2490: 2481: 2437: 2436: 2432: 2396: 2395: 2391: 2361: 2360: 2356: 2341: 2320: 2319: 2315: 2271: 2270: 2266: 2222: 2221: 2217: 2181: 2180: 2176: 2132: 2131: 2127: 2083: 2082: 2078: 2056: 2055: 2051: 2015: 2014: 2010: 1974: 1973: 1969: 1939: 1938: 1934: 1880: 1879: 1875: 1821: 1820: 1813: 1783: 1782: 1778: 1744: 1743: 1739: 1679: 1678: 1674: 1630: 1629: 1625: 1571: 1570: 1566: 1543:10.1038/nbt1310 1527: 1526: 1522: 1499:10.1038/nbt1177 1483: 1482: 1478: 1431: 1430: 1426: 1390: 1389: 1385: 1358:Differentiation 1354: 1353: 1346: 1316: 1315: 1311: 1281: 1280: 1273: 1229: 1228: 1224: 1184: 1183: 1179: 1135: 1134: 1127: 1091: 1090: 1081: 1045: 1044: 1040: 1017: 1016: 1009: 965: 964: 960: 916: 915: 911: 864: 863: 859: 807: 806: 802: 751:Takahashi, K.; 750: 749: 745: 714:(16): 989–992. 708:Current Biology 701: 700: 696: 643: 642: 638: 584: 583: 579: 535: 534: 530: 476: 475: 471: 425: 424: 420: 366: 365: 361: 357: 330: 308: 260:inner cell mass 252: 246: 202:neural lineages 178:differentiation 174: 141: 80: 60:Embryoid bodies 38: 28: 23: 22: 18:Embryoid bodies 15: 12: 11: 5: 3553: 3551: 3543: 3542: 3532: 3531: 3527: 3526: 3497:(3): 559–567. 3477: 3448:(2): 629–641. 3428: 3379: 3330: 3281: 3238: 3203: 3151: 3122:(4): 249–262. 3099: 3042: 2985: 2925: 2919:10.1101/051722 2900: 2894:10.1101/104539 2875: 2854:(2): 363–371. 2834: 2785: 2766:(5): 681–684. 2749: 2730:(3): 829–844. 2714: 2703:(3): 183–205. 2687: 2636: 2582: 2553:(4): 345–358. 2533: 2504:(5): 508–518. 2498:Cell Stem Cell 2479: 2444:Cell Stem Cell 2430: 2389: 2370:(2): 259–267. 2354: 2339: 2313: 2264: 2235:(1): 151–160. 2215: 2194:(2): 279–287. 2174: 2145:(4): 811–822. 2125: 2096:(3): 971–979. 2076: 2065:(6): 817–825. 2049: 2008: 1967: 1948:(2): 331–342. 1932: 1873: 1811: 1776: 1737: 1692:(3): 473–478. 1672: 1623: 1564: 1537:(6): 681–686. 1520: 1493:(2): 185–187. 1476: 1424: 1383: 1364:(4): 149–159. 1344: 1309: 1290:(5): 389–398. 1271: 1242:(1): 121–143. 1222: 1177: 1125: 1104:(4): 661–680. 1079: 1058:(3): 275–282. 1038: 1007: 958: 929:(5): 877–886. 909: 857: 820:(5): 861–872. 800: 743: 694: 636: 597:(5): 455–463. 577: 528: 469: 418: 358: 356: 353: 352: 351: 346: 341: 336: 334:Brain organoid 329: 326: 307: 304: 300:embryonic axes 248:Main article: 245: 242: 173: 170: 140: 137: 126:and paracrine 124:cell adhesions 79: 76: 53:cardiomyocytes 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3552: 3541: 3538: 3537: 3535: 3522: 3518: 3513: 3508: 3504: 3500: 3496: 3492: 3488: 3481: 3478: 3473: 3469: 3464: 3459: 3455: 3451: 3447: 3443: 3439: 3432: 3429: 3424: 3420: 3415: 3410: 3406: 3402: 3398: 3394: 3390: 3383: 3380: 3375: 3371: 3366: 3361: 3357: 3353: 3349: 3345: 3341: 3334: 3331: 3326: 3322: 3317: 3312: 3308: 3304: 3300: 3296: 3292: 3285: 3282: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3242: 3239: 3234: 3230: 3226: 3222: 3218: 3214: 3207: 3204: 3199: 3195: 3190: 3185: 3181: 3177: 3173: 3169: 3165: 3158: 3156: 3152: 3147: 3143: 3138: 3133: 3129: 3125: 3121: 3117: 3113: 3106: 3104: 3100: 3095: 3091: 3086: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3046: 3043: 3038: 3034: 3029: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2989: 2986: 2981: 2977: 2972: 2967: 2963: 2959: 2955: 2954:10.3791/53252 2951: 2947: 2943: 2941: 2932: 2930: 2926: 2920: 2915: 2907: 2905: 2901: 2895: 2890: 2887:signalling". 2882: 2880: 2876: 2871: 2867: 2862: 2857: 2853: 2849: 2845: 2838: 2835: 2830: 2826: 2822: 2818: 2813: 2808: 2804: 2800: 2796: 2789: 2786: 2781: 2777: 2773: 2769: 2765: 2761: 2753: 2750: 2745: 2741: 2737: 2733: 2729: 2725: 2718: 2715: 2710: 2706: 2702: 2698: 2691: 2688: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2655: 2651: 2647: 2640: 2637: 2632: 2628: 2624: 2620: 2615: 2610: 2606: 2602: 2598: 2594: 2586: 2583: 2578: 2574: 2569: 2564: 2560: 2556: 2552: 2548: 2544: 2537: 2534: 2529: 2525: 2520: 2515: 2511: 2507: 2503: 2499: 2495: 2488: 2486: 2484: 2480: 2475: 2471: 2466: 2461: 2457: 2453: 2449: 2445: 2441: 2434: 2431: 2426: 2422: 2417: 2412: 2408: 2404: 2400: 2393: 2390: 2385: 2381: 2377: 2373: 2369: 2365: 2358: 2355: 2350: 2346: 2342: 2340:9780121822682 2336: 2332: 2328: 2324: 2317: 2314: 2309: 2305: 2300: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2265: 2260: 2256: 2251: 2246: 2242: 2238: 2234: 2230: 2226: 2219: 2216: 2211: 2207: 2202: 2197: 2193: 2189: 2185: 2178: 2175: 2170: 2166: 2161: 2156: 2152: 2148: 2144: 2140: 2136: 2129: 2126: 2121: 2117: 2112: 2107: 2103: 2099: 2095: 2091: 2087: 2080: 2077: 2072: 2068: 2064: 2060: 2053: 2050: 2045: 2041: 2036: 2031: 2027: 2023: 2019: 2012: 2009: 2004: 2000: 1995: 1990: 1986: 1982: 1978: 1971: 1968: 1963: 1959: 1955: 1951: 1947: 1943: 1936: 1933: 1928: 1924: 1919: 1914: 1909: 1904: 1900: 1896: 1892: 1888: 1884: 1877: 1874: 1869: 1865: 1860: 1855: 1850: 1845: 1841: 1837: 1833: 1829: 1825: 1818: 1816: 1812: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1777: 1772: 1768: 1764: 1760: 1756: 1752: 1751:Lab on a Chip 1748: 1741: 1738: 1733: 1729: 1725: 1721: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1676: 1673: 1668: 1664: 1660: 1656: 1651: 1646: 1642: 1638: 1634: 1627: 1624: 1619: 1615: 1610: 1605: 1600: 1595: 1591: 1587: 1583: 1579: 1575: 1568: 1565: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1524: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1480: 1477: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1428: 1425: 1420: 1416: 1411: 1406: 1402: 1398: 1394: 1387: 1384: 1379: 1375: 1371: 1367: 1363: 1359: 1351: 1349: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1278: 1276: 1272: 1267: 1263: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1223: 1218: 1214: 1209: 1204: 1200: 1196: 1192: 1188: 1181: 1178: 1173: 1169: 1164: 1159: 1155: 1151: 1147: 1143: 1139: 1132: 1130: 1126: 1121: 1117: 1112: 1107: 1103: 1099: 1095: 1088: 1086: 1084: 1080: 1075: 1071: 1066: 1061: 1057: 1053: 1049: 1042: 1039: 1034: 1030: 1026: 1022: 1014: 1012: 1008: 1003: 999: 994: 989: 985: 981: 977: 973: 969: 962: 959: 954: 950: 945: 940: 936: 932: 928: 924: 920: 913: 910: 905: 901: 897: 893: 889: 885: 881: 877: 873: 869: 861: 858: 853: 849: 845: 841: 836: 831: 827: 823: 819: 815: 811: 804: 801: 796: 792: 788: 784: 779: 774: 770: 766: 763:(4): 663–76. 762: 758: 754: 747: 744: 739: 735: 730: 725: 721: 717: 713: 709: 705: 698: 695: 690: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 646: 640: 637: 632: 628: 623: 618: 613: 608: 604: 600: 596: 592: 588: 581: 578: 573: 569: 564: 559: 555: 551: 547: 543: 539: 532: 529: 524: 520: 515: 510: 505: 500: 496: 492: 488: 484: 480: 473: 470: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 422: 419: 414: 410: 405: 400: 395: 390: 386: 382: 378: 374: 370: 363: 360: 354: 350: 347: 345: 342: 340: 337: 335: 332: 331: 327: 325: 322: 318: 314: 305: 303: 301: 297: 293: 288: 286: 282: 278: 274: 269: 265: 261: 257: 251: 250:embryogenesis 243: 241: 239: 235: 234:cardiomyocyte 231: 227: 226:morphogenesis 223: 217: 215: 211: 207: 203: 199: 195: 191: 187: 183: 182:germ lineages 179: 171: 169: 165: 163: 159: 154: 150: 146: 138: 136: 135:development. 133: 132:morphogenesis 129: 125: 121: 115: 113: 109: 105: 104:germ lineages 101: 97: 93: 89: 85: 77: 75: 71: 69: 65: 61: 54: 50: 32: 19: 3494: 3490: 3480: 3445: 3441: 3431: 3396: 3392: 3382: 3347: 3344:Biomaterials 3343: 3333: 3301:(1): 48–56. 3298: 3295:Biomaterials 3294: 3284: 3254:(1): 34–47. 3251: 3247: 3241: 3216: 3213:Biomaterials 3212: 3206: 3171: 3168:Biomaterials 3167: 3119: 3115: 3059: 3055: 3045: 3002: 2998: 2988: 2945: 2939: 2851: 2847: 2837: 2802: 2798: 2788: 2763: 2759: 2752: 2727: 2723: 2717: 2700: 2696: 2690: 2649: 2645: 2639: 2596: 2592: 2585: 2550: 2546: 2536: 2501: 2497: 2450:(1): 60–71. 2447: 2443: 2433: 2406: 2402: 2392: 2367: 2363: 2357: 2322: 2316: 2281: 2277: 2267: 2232: 2228: 2218: 2191: 2187: 2177: 2142: 2138: 2128: 2093: 2089: 2079: 2062: 2058: 2052: 2025: 2021: 2011: 1984: 1980: 1970: 1945: 1941: 1935: 1893:(2): e1565. 1890: 1886: 1876: 1831: 1827: 1789: 1786:Biomaterials 1785: 1779: 1754: 1750: 1740: 1689: 1685: 1675: 1640: 1636: 1626: 1581: 1577: 1567: 1534: 1530: 1523: 1490: 1486: 1479: 1438: 1434: 1427: 1400: 1396: 1386: 1361: 1357: 1322: 1318: 1312: 1287: 1283: 1239: 1235: 1225: 1190: 1186: 1180: 1148:(1): 43–51. 1145: 1141: 1101: 1097: 1055: 1051: 1041: 1024: 1020: 978:(2): 88–95. 975: 971: 961: 926: 922: 912: 871: 867: 860: 817: 813: 810:Yamanaka, S. 803: 760: 756: 753:Yamanaka, S. 746: 711: 707: 697: 656: 652: 639: 594: 590: 580: 545: 541: 531: 486: 482: 472: 431: 427: 421: 376: 372: 362: 349:Pluripotency 309: 289: 253: 218: 175: 166: 162:hydrodynamic 142: 116: 114:cell types. 106:– endoderm, 81: 72: 63: 59: 58: 3056:Development 2999:Development 2724:Development 2364:Development 1686:The Analyst 1319:Development 778:2433/159777 277:antagonists 190:collagen IV 3540:Stem cells 2614:1807/33799 1981:Stem Cells 1637:Stem Cells 1208:1853/37170 1052:Stem Cells 835:2433/49782 645:Wilmut, I. 355:References 339:Gastruloid 313:epithelial 256:blastocyst 216:lineages. 149:E-cadherin 88:blastocyst 78:Background 68:stem cells 3076:0950-1991 3019:0950-1991 2962:1940-087X 1027:: 27–45. 321:transport 296:brachyury 139:Formation 128:signaling 3534:Category 3521:18724832 3472:20001738 3423:22076329 3374:22079776 3325:20864164 3276:42754482 3268:22249133 3233:18793799 3198:19162317 3146:21491967 3094:25371361 3037:25371360 2980:26650833 2940:In Vitro 2870:16289026 2829:20596850 2821:15880404 2780:12972006 2709:10410899 2674:21475194 2631:22010083 2623:21417693 2577:20026669 2528:18983966 2474:18371422 2425:18550259 2349:14696356 2308:10974008 2169:11352941 2071:12382948 2044:10949929 2022:Oncogene 2003:18583540 1962:19193130 1927:18270562 1887:PLOS ONE 1868:19805103 1806:16884768 1771:17653344 1732:35415772 1724:20967331 1667:25461651 1659:17585171 1618:20406903 1551:17529971 1515:11484871 1507:16388305 1419:12930726 1378:16683985 1304:17609152 1266:20017699 1217:18260134 1172:19198003 1120:18295582 1074:15153605 1002:10859025 953:18691744 904:86129154 896:18029452 844:18035408 787:16904174 738:10985386 631:16589125 328:See also 273:agonists 264:epiblast 214:endoderm 210:mesoderm 108:ectoderm 3512:6468949 3463:2813151 3414:4633527 3365:4280365 3316:2987521 3189:2921510 3137:3142632 3085:4302903 3028:4302915 2971:4692741 2914:bioRxiv 2889:bioRxiv 2744:7521282 2682:4421136 2654:Bibcode 2568:2842597 2519:2683270 2465:2533280 2384:1893864 2299:2175256 2259:9885251 2250:2148127 2210:7585945 2160:2192393 2120:6365932 2111:2113154 1918:2215775 1895:Bibcode 1859:2761314 1836:Bibcode 1715:7454010 1694:Bibcode 1609:2889586 1586:Bibcode 1559:8213725 1471:4346252 1463:3143916 1443:Bibcode 1339:8898231 1257:2833273 1163:2693014 1033:3897439 993:1949933 944:2633781 876:Bibcode 868:Science 852:8531539 795:1565219 716:Bibcode 689:4260518 681:9039911 661:Bibcode 622:1063586 599:Bibcode 572:9804556 550:Bibcode 542:Science 523:7544005 491:Bibcode 464:4256553 456:7242681 436:Bibcode 413:6950406 381:Bibcode 238:gelatin 230:neurite 194:laminin 112:somatic 3519:  3509:  3470:  3460:  3421:  3411:  3372:  3362:  3323:  3313:  3274:  3266:  3231:  3196:  3186:  3144:  3134:  3092:  3082:  3074:  3035:  3025:  3017:  2978:  2968:  2960:  2916:  2891:  2868:  2827:  2819:  2778:  2742:  2707:  2680:  2672:  2646:Nature 2629:  2621:  2575:  2565:  2526:  2516:  2472:  2462:  2423:  2382:  2347:  2337:  2306:  2296:  2257:  2247:  2208:  2167:  2157:  2118:  2108:  2069:  2042:  2001:  1960:  1925:  1915:  1866:  1856:  1804:  1769:  1730:  1722:  1712:  1665:  1657:  1616:  1606:  1557:  1549:  1513:  1505:  1469:  1461:  1435:Nature 1417:  1376:  1337:  1302:  1264:  1254:  1215:  1170:  1160:  1118:  1072:  1031:  1000:  990:  951:  941:  902:  894:  850:  842:  793:  785:  736:  687:  679:  653:Nature 629:  619:  570:  521:  511:  462:  454:  428:Nature 411:  404:349323 401:  3272:S2CID 2825:S2CID 2678:S2CID 2627:S2CID 1728:S2CID 1663:S2CID 1555:S2CID 1511:S2CID 1467:S2CID 900:S2CID 848:S2CID 791:S2CID 685:S2CID 514:41242 460:S2CID 3517:PMID 3468:PMID 3419:PMID 3370:PMID 3321:PMID 3264:PMID 3229:PMID 3194:PMID 3142:PMID 3090:PMID 3072:ISSN 3033:PMID 3015:ISSN 2976:PMID 2958:ISSN 2866:PMID 2817:PMID 2776:PMID 2740:PMID 2705:PMID 2670:PMID 2619:PMID 2573:PMID 2524:PMID 2470:PMID 2421:PMID 2380:PMID 2345:PMID 2335:ISBN 2304:PMID 2255:PMID 2206:PMID 2188:Cell 2165:PMID 2116:PMID 2067:PMID 2040:PMID 1999:PMID 1958:PMID 1923:PMID 1864:PMID 1802:PMID 1767:PMID 1720:PMID 1655:PMID 1614:PMID 1547:PMID 1503:PMID 1459:PMID 1415:PMID 1374:PMID 1335:PMID 1300:PMID 1262:PMID 1213:PMID 1168:PMID 1116:PMID 1098:Cell 1070:PMID 1029:PMID 998:PMID 949:PMID 923:Cell 892:PMID 840:PMID 814:Cell 783:PMID 757:Cell 734:PMID 677:PMID 627:PMID 568:PMID 519:PMID 452:PMID 409:PMID 283:and 275:and 212:and 192:and 153:agar 3507:PMC 3499:doi 3458:PMC 3450:doi 3409:PMC 3401:doi 3360:PMC 3352:doi 3311:PMC 3303:doi 3256:doi 3252:196 3221:doi 3184:PMC 3176:doi 3132:PMC 3124:doi 3080:PMC 3064:doi 3060:141 3023:PMC 3007:doi 3003:141 2966:PMC 2950:doi 2856:doi 2852:288 2807:doi 2803:233 2768:doi 2732:doi 2728:118 2662:doi 2650:472 2609:hdl 2601:doi 2563:PMC 2555:doi 2514:PMC 2506:doi 2460:PMC 2452:doi 2411:doi 2372:doi 2368:111 2327:doi 2294:PMC 2286:doi 2282:150 2245:PMC 2237:doi 2233:144 2196:doi 2155:PMC 2147:doi 2143:153 2106:PMC 2098:doi 2030:doi 1989:doi 1950:doi 1913:PMC 1903:doi 1854:PMC 1844:doi 1832:106 1794:doi 1759:doi 1710:PMC 1702:doi 1690:136 1645:doi 1604:PMC 1594:doi 1582:107 1539:doi 1495:doi 1451:doi 1439:336 1405:doi 1366:doi 1327:doi 1323:122 1292:doi 1288:103 1252:PMC 1244:doi 1203:hdl 1195:doi 1191:87A 1158:PMC 1150:doi 1106:doi 1102:132 1060:doi 988:PMC 980:doi 939:PMC 931:doi 927:134 884:doi 872:318 830:hdl 822:doi 818:131 773:hdl 765:doi 761:126 724:doi 669:doi 657:385 617:PMC 607:doi 558:doi 546:282 509:PMC 499:doi 444:doi 432:292 399:PMC 389:doi 317:ECM 281:Wnt 64:EBs 3536:: 3515:. 3505:. 3495:15 3493:. 3489:. 3466:. 3456:. 3446:16 3444:. 3440:. 3417:. 3407:. 3395:. 3391:. 3368:. 3358:. 3348:33 3346:. 3342:. 3319:. 3309:. 3299:32 3297:. 3293:. 3270:. 3262:. 3250:. 3227:. 3217:29 3215:. 3192:. 3182:. 3172:30 3170:. 3166:. 3154:^ 3140:. 3130:. 3120:17 3118:. 3114:. 3102:^ 3088:. 3078:. 3070:. 3058:. 3054:. 3031:. 3021:. 3013:. 3001:. 2997:. 2974:. 2964:. 2956:. 2944:. 2928:^ 2903:^ 2878:^ 2864:. 2850:. 2846:. 2823:. 2815:. 2801:. 2797:. 2774:. 2762:. 2738:. 2726:. 2701:43 2699:. 2676:. 2668:. 2660:. 2648:. 2625:. 2617:. 2607:. 2597:17 2595:. 2571:. 2561:. 2551:58 2549:. 2545:. 2522:. 2512:. 2500:. 2496:. 2482:^ 2468:. 2458:. 2446:. 2442:. 2419:. 2407:36 2405:. 2401:. 2378:. 2366:. 2343:. 2333:. 2302:. 2292:. 2280:. 2276:. 2253:. 2243:. 2231:. 2227:. 2204:. 2192:83 2190:. 2186:. 2163:. 2153:. 2141:. 2137:. 2114:. 2104:. 2094:98 2092:. 2088:. 2063:46 2061:. 2038:. 2026:19 2024:. 2020:. 1997:. 1985:26 1983:. 1979:. 1956:. 1946:15 1944:. 1921:. 1911:. 1901:. 1889:. 1885:. 1862:. 1852:. 1842:. 1830:. 1826:. 1814:^ 1800:. 1790:27 1788:. 1765:. 1753:. 1749:. 1726:. 1718:. 1708:. 1700:. 1688:. 1684:. 1661:. 1653:. 1641:25 1639:. 1635:. 1612:. 1602:. 1592:. 1580:. 1576:. 1553:. 1545:. 1535:25 1533:. 1509:. 1501:. 1491:24 1489:. 1465:. 1457:. 1449:. 1437:. 1413:. 1401:69 1399:. 1395:. 1372:. 1362:74 1360:. 1347:^ 1333:. 1321:. 1298:. 1286:. 1274:^ 1260:. 1250:. 1238:. 1234:. 1211:. 1201:. 1189:. 1166:. 1156:. 1146:25 1144:. 1140:. 1128:^ 1114:. 1100:. 1096:. 1082:^ 1068:. 1056:22 1054:. 1050:. 1025:87 1023:. 1010:^ 996:. 986:. 974:. 970:. 947:. 937:. 925:. 921:. 898:. 890:. 882:. 870:. 846:. 838:. 828:. 816:. 789:. 781:. 771:. 759:. 732:. 722:. 712:10 710:. 706:. 683:. 675:. 667:. 655:. 625:. 615:. 605:. 595:38 593:. 589:. 566:. 556:. 544:. 540:. 517:. 507:. 497:. 487:92 485:. 481:. 458:. 450:. 442:. 430:. 407:. 397:. 387:. 377:78 375:. 371:. 3523:. 3501:: 3474:. 3452:: 3425:. 3403:: 3397:3 3376:. 3354:: 3327:. 3305:: 3278:. 3258:: 3235:. 3223:: 3200:. 3178:: 3148:. 3126:: 3096:. 3066:: 3039:. 3009:: 2982:. 2952:: 2942:" 2922:. 2897:. 2872:. 2858:: 2831:. 2809:: 2782:. 2770:: 2764:3 2746:. 2734:: 2711:. 2684:. 2664:: 2656:: 2633:. 2611:: 2603:: 2579:. 2557:: 2530:. 2508:: 2502:3 2476:. 2454:: 2448:2 2427:. 2413:: 2386:. 2374:: 2351:. 2329:: 2310:. 2288:: 2261:. 2239:: 2212:. 2198:: 2171:. 2149:: 2122:. 2100:: 2073:. 2046:. 2032:: 2005:. 1991:: 1964:. 1952:: 1929:. 1905:: 1897:: 1891:3 1870:. 1846:: 1838:: 1808:. 1796:: 1773:. 1761:: 1755:7 1734:. 1704:: 1696:: 1669:. 1647:: 1620:. 1596:: 1588:: 1561:. 1541:: 1517:. 1497:: 1473:. 1453:: 1445:: 1421:. 1407:: 1380:. 1368:: 1341:. 1329:: 1306:. 1294:: 1268:. 1246:: 1240:5 1219:. 1205:: 1197:: 1174:. 1152:: 1122:. 1108:: 1076:. 1062:: 1035:. 1004:. 982:: 976:6 955:. 933:: 906:. 886:: 878:: 854:. 832:: 824:: 797:. 775:: 767:: 740:. 726:: 718:: 691:. 671:: 663:: 633:. 609:: 601:: 574:. 560:: 552:: 525:. 501:: 493:: 466:. 446:: 438:: 415:. 391:: 383:: 62:( 55:. 20:)

Index

Embryoid bodies
text
enhanced green fluorescence protein
cardiomyocytes
stem cells
embryonic stem cells
blastocyst
nuclear transfer
induced pluripotent stem cells
cultured in monolayer
germ lineages
ectoderm
somatic
embryonic development
cell adhesions
signaling
morphogenesis
homophilic binding
E-cadherin
agar
rho associated kinase
hydrodynamic
differentiation
germ lineages
extracellular matrix
collagen IV
laminin
basement membrane
neural lineages
fetal bovine serum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.