Knowledge (XXG)

Engel's theorem

Source đź“ť

1337: 550: 1250: 1925: 144: 943: 2033: 1458: 2339: 2408: 1538: 719: 412: 285:. It is a consequence of the theorem, also called Engel's theorem, which says that if a Lie algebra of matrices consists of nilpotent matrices, then the matrices can all be simultaneously brought to a 606: 2583: 2499: 2069: 1168: 3049: 1255: 2109: 1407: 279: 3165: 2688: 2156: 206: 1957: 1867: 1098: 1015: 2875: 795: 2369: 2186: 1835: 1568: 1128: 446: 83: 2941: 362: 301:
of "solvable" with "nilpotent", and "upper triangular" with "strictly upper triangular", is false; this already fails for the one-dimensional Lie subalgebra of scalar matrices).
1188: 3005: 2899: 2780: 2736: 2607: 2460: 2432: 2270: 2246: 1805: 1781: 1753: 1729: 1699: 1671: 1643: 1482: 1066: 1039: 971: 829: 661: 630: 234: 49: 2646: 458: 3229: 3205: 1615: 762: 2970: 1193: 3453: 2218: 3089: 2756: 2712: 1977: 3458: 1872: 94: 86: 842: 3434: 3388: 3347: 804:. (This statement is trivially equivalent to Statement 2 since it allows one to inductively construct a flag with the required property.) 1986: 1980: 1412: 3309: 2275: 1497: 678: 371: 555: 305: 2511: 3319: 2374: 3331: 2038: 1332:{\displaystyle {\mathfrak {g}}={\mathfrak {g}}_{0}\supset {\mathfrak {g}}_{1}\supset \cdots \supset {\mathfrak {g}}_{n}=0} 1137: 3014: 3426:Ăśber Die Zusammensetzung Der Endlichen Continuierlichen Transformationsgruppen, Insbesondre Der Gruppen Vom Range Null 2465: 2078: 3323: 1342: 239: 3094: 2651: 2114: 286: 152: 1930: 1840: 1071: 980: 2785: 767: 2344: 2161: 1810: 1543: 1103: 421: 209: 58: 2904: 331: 832: 52: 20: 1173: 316:, p. 176). Engel's student K.A. Umlauf gave a complete proof in his 1891 dissertation, reprinted as ( 2986: 2880: 2761: 2717: 2588: 2441: 2413: 2251: 2227: 1786: 1762: 1734: 1710: 1680: 1652: 1624: 1463: 1047: 1020: 952: 836: 810: 642: 611: 215: 30: 545:{\displaystyle V=V_{0}\supset V_{1}\supset \cdots \supset V_{n}=0,\,\operatorname {codim} V_{i}=i} 2616: 1677:, which concerns a solvable algebra.) The basic case is trivial and we assume the dimension of 3430: 3384: 3361: 3343: 3305: 3214: 3174: 1807:, which exists by finite-dimensionality. We claim it is an ideal of codimension one. For each 3379:, Sources and Studies in the History of Mathematics and Physical Sciences, Berlin, New York: 1245:{\displaystyle \operatorname {ad} ({\mathfrak {g}})\subset {\mathfrak {gl}}({\mathfrak {g}})} 3335: 3245: 3240: 1674: 1585: 732: 298: 3398: 3357: 3394: 3380: 3353: 2946: 1673:
and consists of a few steps. (Note the structure of the proof is very similar to that for
309: 1017:. Then Engel's theorem implies the following theorem (also called Engel's theorem): when 3374: 2191: 3074: 2741: 2697: 1962: 3447: 3424: 3297: 1920:{\displaystyle {\mathfrak {g}}/{\mathfrak {h}}\to {\mathfrak {g}}/{\mathfrak {h}}} 139:{\displaystyle \operatorname {ad} (X)\colon {\mathfrak {g}}\to {\mathfrak {g}},} 289:
form. Note that if we merely have a Lie algebra of matrices which is nilpotent
3339: 3365: 364:
be the Lie algebra of the endomorphisms of a finite-dimensional vector space
1484:
is nilpotent. (The converse follows straightforwardly from the definition.)
938:{\displaystyle C^{0}{\mathfrak {g}}={\mathfrak {g}},C^{i}{\mathfrak {g}}=} 414:
a subalgebra. Then Engel's theorem states the following are equivalent:
2983:: Finish up the proof by finding a nonzero vector that gets killed by 3334:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 1983:). Thus, by inductive hypothesis applied to the Lie subalgebra of 636:
Note that no assumption on the underlying base field is required.
2028:{\displaystyle {\mathfrak {gl}}({\mathfrak {g}}/{\mathfrak {h}})} 1453:{\displaystyle C^{i}{\mathfrak {g}}\subset {\mathfrak {g}}_{i}} 2334:{\displaystyle =\operatorname {ad} (X)(Y)\in {\mathfrak {h}}} 3429:, Inaugural-Dissertation, Leipzig (in German), Nabu Press, 1574:
has positive dimension, then there exists a nonzero vector
1533:{\displaystyle {\mathfrak {g}}\subset {\mathfrak {gl}}(V)} 714:{\displaystyle {\mathfrak {g}}\subset {\mathfrak {gl}}(V)} 407:{\displaystyle {\mathfrak {g}}\subset {\mathfrak {gl}}(V)} 601:{\displaystyle {\mathfrak {g}}\cdot V_{i}\subset V_{i+1}} 2578:{\displaystyle W=\{v\in V|X(v)=0,X\in {\mathfrak {h}}\}} 2403:{\displaystyle {\mathfrak {h}}'\subset {\mathfrak {g}}} 3416:
Introduction to Lie Algebras and Representation Theory
2462:
is an ideal of codimension one. Hence, by maximality,
3217: 3177: 3097: 3077: 3017: 2989: 2949: 2907: 2883: 2788: 2764: 2744: 2720: 2700: 2654: 2619: 2591: 2514: 2468: 2444: 2416: 2377: 2347: 2278: 2254: 2230: 2194: 2164: 2117: 2081: 2041: 1989: 1965: 1933: 1875: 1843: 1813: 1789: 1765: 1737: 1713: 1683: 1655: 1627: 1588: 1546: 1500: 1466: 1415: 1345: 1258: 1196: 1176: 1140: 1106: 1074: 1050: 1023: 983: 955: 845: 813: 770: 735: 681: 645: 614: 558: 461: 424: 374: 334: 242: 218: 155: 97: 61: 33: 2064:{\displaystyle \operatorname {ad} ({\mathfrak {h}})} 1163:{\displaystyle \operatorname {ad} ({\mathfrak {g}})} 3091:is a nilpotent endomorphism (by hypothesis) and so 3223: 3199: 3159: 3083: 3043: 2999: 2964: 2935: 2893: 2869: 2774: 2750: 2730: 2706: 2682: 2640: 2601: 2577: 2493: 2454: 2426: 2402: 2363: 2333: 2264: 2240: 2212: 2180: 2150: 2103: 2063: 2027: 1971: 1951: 1919: 1861: 1829: 1799: 1775: 1747: 1723: 1693: 1665: 1637: 1609: 1562: 1532: 1476: 1452: 1401: 1331: 1244: 1182: 1162: 1122: 1092: 1060: 1033: 1009: 965: 937: 823: 789: 756: 713: 655: 624: 600: 544: 440: 406: 356: 273: 228: 200: 138: 77: 43: 3044:{\displaystyle {\mathfrak {g}}={\mathfrak {h}}+L} 671:For each nonzero finite-dimensional vector space 632:are simultaneously strictly upper-triangulizable. 2494:{\displaystyle {\mathfrak {h}}'={\mathfrak {g}}} 1927:and (2) this induced map is nilpotent (in fact, 2104:{\displaystyle {\mathfrak {g}}/{\mathfrak {h}}} 1649:The proof is by induction on the dimension of 1402:{\displaystyle \subset {\mathfrak {g}}_{i+1}} 304:The theorem is named after the mathematician 27:states that a finite-dimensional Lie algebra 8: 3280: 3268: 2572: 2521: 1492:We prove the following form of the theorem: 1170:consists of nilpotent operators, then by 1. 308:, who sketched a proof of it in a letter to 274:{\displaystyle \operatorname {ad} (X)^{k}=0} 3207:is a required vector as the vector lies in 3160:{\displaystyle Y^{k}(v)\neq 0,Y^{k+1}(v)=0} 2683:{\displaystyle X\in {\mathfrak {g}},v\in W} 2151:{\displaystyle \operatorname {ad} (X)(v)=0} 839:of it vanishes in a finite step; i.e., for 3055:is a one-dimensional vector subspace. Let 800:This is the form of the theorem proven in 201:{\displaystyle \operatorname {ad} (X)(Y)=} 3216: 3182: 3176: 3130: 3102: 3096: 3076: 3029: 3028: 3019: 3018: 3016: 2991: 2990: 2988: 2948: 2927: 2926: 2906: 2885: 2884: 2882: 2787: 2766: 2765: 2763: 2743: 2722: 2721: 2719: 2699: 2662: 2661: 2653: 2618: 2593: 2592: 2590: 2566: 2565: 2533: 2513: 2485: 2484: 2471: 2470: 2467: 2446: 2445: 2443: 2418: 2417: 2415: 2394: 2393: 2380: 2379: 2376: 2355: 2354: 2346: 2325: 2324: 2277: 2256: 2255: 2253: 2232: 2231: 2229: 2193: 2172: 2171: 2163: 2116: 2095: 2094: 2089: 2083: 2082: 2080: 2052: 2051: 2040: 2016: 2015: 2010: 2004: 2003: 1991: 1990: 1988: 1964: 1932: 1911: 1910: 1905: 1899: 1898: 1889: 1888: 1883: 1877: 1876: 1874: 1842: 1821: 1820: 1812: 1791: 1790: 1788: 1767: 1766: 1764: 1739: 1738: 1736: 1715: 1714: 1712: 1685: 1684: 1682: 1657: 1656: 1654: 1629: 1628: 1626: 1587: 1554: 1553: 1545: 1512: 1511: 1502: 1501: 1499: 1468: 1467: 1465: 1444: 1438: 1437: 1427: 1426: 1420: 1414: 1387: 1381: 1380: 1367: 1361: 1360: 1350: 1349: 1344: 1317: 1311: 1310: 1294: 1288: 1287: 1277: 1271: 1270: 1260: 1259: 1257: 1233: 1232: 1220: 1219: 1207: 1206: 1195: 1175: 1151: 1150: 1139: 1114: 1113: 1105: 1073: 1052: 1051: 1049: 1025: 1024: 1022: 995: 994: 988: 982: 957: 956: 954: 926: 925: 913: 900: 899: 887: 886: 880: 867: 866: 857: 856: 850: 844: 815: 814: 812: 778: 777: 769: 734: 693: 692: 683: 682: 680: 647: 646: 644: 616: 615: 613: 586: 573: 560: 559: 557: 530: 519: 504: 485: 472: 460: 432: 431: 423: 386: 385: 376: 375: 373: 336: 335: 333: 259: 241: 220: 219: 217: 154: 127: 126: 117: 116: 96: 69: 68: 60: 35: 34: 32: 3261: 313: 1952:{\displaystyle \operatorname {ad} (X)} 1862:{\displaystyle \operatorname {ad} (X)} 1093:{\displaystyle \operatorname {ad} (X)} 1010:{\displaystyle C^{k}{\mathfrak {g}}=0} 639:We note that Statement 2. for various 317: 297:follow (i.e. the naĂŻve replacement in 3454:Representation theory of Lie algebras 3376:Emergence of the theory of Lie groups 3328:Representation theory. A first course 2870:{\displaystyle X(Y(v))=Y(X(v))+(v)=0} 1759:This is the most difficult step. Let 790:{\displaystyle X\in {\mathfrak {g}}.} 7: 2364:{\displaystyle X\in {\mathfrak {h}}} 2181:{\displaystyle X\in {\mathfrak {h}}} 1981:Jordan decomposition in Lie algebras 1830:{\displaystyle X\in {\mathfrak {h}}} 1783:be a maximal (proper) subalgebra of 1563:{\displaystyle X\in {\mathfrak {g}}} 1540:is a Lie subalgebra such that every 1123:{\displaystyle X\in {\mathfrak {g}}} 441:{\displaystyle X\in {\mathfrak {g}}} 78:{\displaystyle X\in {\mathfrak {g}}} 16:Theorem in Lie representation theory 3030: 3020: 2992: 2936:{\displaystyle \in {\mathfrak {h}}} 2928: 2886: 2767: 2723: 2663: 2594: 2567: 2486: 2472: 2447: 2419: 2395: 2381: 2356: 2326: 2257: 2233: 2173: 2096: 2084: 2053: 2017: 2005: 1995: 1992: 1912: 1900: 1890: 1878: 1822: 1792: 1768: 1740: 1716: 1686: 1658: 1630: 1570:is a nilpotent endomorphism and if 1555: 1516: 1513: 1503: 1469: 1439: 1428: 1382: 1362: 1351: 1312: 1289: 1272: 1261: 1234: 1224: 1221: 1208: 1152: 1115: 1053: 1026: 996: 958: 927: 901: 888: 868: 858: 816: 779: 697: 694: 684: 648: 617: 561: 433: 390: 387: 377: 357:{\displaystyle {\mathfrak {gl}}(V)} 340: 337: 221: 128: 118: 70: 36: 14: 3459:Theorems in representation theory 2071:, there exists a nonzero vector 1183:{\displaystyle \Leftrightarrow } 721:, there exists a nonzero vector 3000:{\displaystyle {\mathfrak {g}}} 2894:{\displaystyle {\mathfrak {h}}} 2775:{\displaystyle {\mathfrak {h}}} 2731:{\displaystyle {\mathfrak {g}}} 2602:{\displaystyle {\mathfrak {g}}} 2455:{\displaystyle {\mathfrak {h}}} 2427:{\displaystyle {\mathfrak {h}}} 2265:{\displaystyle {\mathfrak {h}}} 2241:{\displaystyle {\mathfrak {g}}} 1837:, it is easy to check that (1) 1800:{\displaystyle {\mathfrak {g}}} 1776:{\displaystyle {\mathfrak {h}}} 1748:{\displaystyle {\mathfrak {g}}} 1724:{\displaystyle {\mathfrak {h}}} 1694:{\displaystyle {\mathfrak {g}}} 1666:{\displaystyle {\mathfrak {g}}} 1638:{\displaystyle {\mathfrak {g}}} 1477:{\displaystyle {\mathfrak {g}}} 1061:{\displaystyle {\mathfrak {g}}} 1034:{\displaystyle {\mathfrak {g}}} 966:{\displaystyle {\mathfrak {g}}} 824:{\displaystyle {\mathfrak {g}}} 667:is equivalent to the statement 656:{\displaystyle {\mathfrak {g}}} 625:{\displaystyle {\mathfrak {g}}} 448:is a nilpotent endomorphism on 229:{\displaystyle {\mathfrak {g}}} 44:{\displaystyle {\mathfrak {g}}} 3194: 3188: 3148: 3142: 3114: 3108: 2959: 2953: 2920: 2908: 2858: 2852: 2849: 2837: 2831: 2828: 2822: 2816: 2807: 2804: 2798: 2792: 2629: 2623: 2547: 2541: 2534: 2318: 2312: 2309: 2303: 2291: 2279: 2207: 2201: 2139: 2133: 2130: 2124: 2058: 2048: 2022: 2000: 1946: 1940: 1895: 1869:induces a linear endomorphism 1856: 1850: 1598: 1592: 1527: 1521: 1373: 1346: 1239: 1229: 1213: 1203: 1177: 1157: 1147: 1087: 1081: 932: 896: 745: 739: 708: 702: 401: 395: 351: 345: 256: 249: 195: 183: 177: 171: 168: 162: 123: 110: 104: 1: 3423:Umlauf, Karl Arthur (2010) , 3332:Graduate Texts in Mathematics 2438:is a Lie subalgebra in which 3302:Introduction to Lie Algebras 1068:is nilpotent if and only if 293:, then this conclusion does 3407:The Structure of Lie Groups 23:, a branch of mathematics, 3475: 3304:(1st ed.). Springer. 1190:2. applied to the algebra 807:In general, a Lie algebra 801: 3340:10.1007/978-1-4612-0979-9 2641:{\displaystyle X(v)\in W} 287:strictly upper triangular 3373:Hawkins, Thomas (2000), 3281:Fulton & Harris 1991 3269:Fulton & Harris 1991 3224:{\displaystyle \square } 3200:{\displaystyle Y^{k}(v)} 2501:. This proves the claim. 2371:. But then the subspace 608:; i.e., the elements of 55:if and only if for each 3405:Hochschild, G. (1965). 3300:; Wildon, Mark (2006). 3059:be a nonzero vector in 3414:Humphreys, J. (1972). 3225: 3201: 3161: 3085: 3045: 3001: 2966: 2937: 2895: 2871: 2776: 2752: 2732: 2708: 2684: 2642: 2603: 2579: 2495: 2456: 2428: 2404: 2365: 2335: 2266: 2242: 2214: 2182: 2152: 2105: 2065: 2029: 1973: 1953: 1921: 1863: 1831: 1801: 1777: 1749: 1731:of codimension one in 1725: 1695: 1667: 1639: 1611: 1610:{\displaystyle X(v)=0} 1564: 1534: 1478: 1454: 1403: 1333: 1252:, there exists a flag 1246: 1184: 1164: 1124: 1100:is nilpotent for each 1094: 1062: 1041:has finite dimension, 1035: 1011: 967: 939: 825: 791: 758: 757:{\displaystyle X(v)=0} 715: 657: 626: 602: 546: 442: 408: 358: 275: 230: 210:nilpotent endomorphism 202: 140: 79: 45: 3226: 3202: 3162: 3086: 3046: 3002: 2967: 2938: 2896: 2872: 2777: 2753: 2733: 2709: 2685: 2643: 2604: 2580: 2496: 2457: 2429: 2405: 2366: 2336: 2267: 2243: 2215: 2188:. That is to say, if 2183: 2153: 2106: 2066: 2030: 1974: 1954: 1922: 1864: 1832: 1802: 1778: 1750: 1726: 1696: 1668: 1640: 1612: 1565: 1535: 1479: 1455: 1404: 1334: 1247: 1185: 1165: 1125: 1095: 1063: 1036: 1012: 968: 940: 826: 792: 759: 716: 658: 627: 603: 547: 443: 409: 359: 276: 231: 203: 141: 80: 53:nilpotent Lie algebra 46: 21:representation theory 3215: 3175: 3095: 3075: 3067:a nonzero vector in 3015: 2987: 2965:{\displaystyle Y(v)} 2947: 2905: 2881: 2786: 2762: 2742: 2718: 2698: 2652: 2617: 2589: 2512: 2466: 2442: 2414: 2375: 2345: 2276: 2252: 2228: 2192: 2162: 2115: 2079: 2039: 1987: 1963: 1931: 1873: 1841: 1811: 1787: 1763: 1735: 1711: 1681: 1653: 1625: 1586: 1544: 1498: 1464: 1413: 1343: 1256: 1194: 1174: 1138: 1104: 1072: 1048: 1021: 981: 953: 843: 837:lower central series 811: 768: 733: 679: 643: 612: 556: 459: 455:There exists a flag 422: 372: 332: 312:dated 20 July 1890 ( 240: 216: 153: 95: 59: 31: 2901:is an ideal and so 3221: 3197: 3157: 3081: 3041: 2997: 2962: 2933: 2891: 2867: 2772: 2748: 2728: 2704: 2680: 2638: 2599: 2575: 2491: 2452: 2424: 2400: 2361: 2331: 2262: 2238: 2213:{\displaystyle v=} 2210: 2178: 2148: 2101: 2061: 2025: 1979:is nilpotent; see 1969: 1949: 1917: 1859: 1827: 1797: 1773: 1745: 1721: 1691: 1663: 1635: 1607: 1560: 1530: 1474: 1450: 1399: 1329: 1242: 1180: 1160: 1120: 1090: 1058: 1031: 1007: 963: 935: 821: 787: 754: 711: 653: 622: 598: 542: 438: 404: 354: 271: 226: 198: 136: 75: 41: 3436:978-1-141-58889-3 3390:978-0-387-98963-1 3349:978-0-387-97495-8 3271:, Exercise 9.10.. 3084:{\displaystyle Y} 2751:{\displaystyle X} 2707:{\displaystyle Y} 1972:{\displaystyle X} 675:and a subalgebra 3466: 3439: 3419: 3410: 3401: 3369: 3315: 3284: 3278: 3272: 3266: 3246:Heisenberg group 3230: 3228: 3227: 3222: 3206: 3204: 3203: 3198: 3187: 3186: 3166: 3164: 3163: 3158: 3141: 3140: 3107: 3106: 3090: 3088: 3087: 3082: 3050: 3048: 3047: 3042: 3034: 3033: 3024: 3023: 3006: 3004: 3003: 2998: 2996: 2995: 2971: 2969: 2968: 2963: 2942: 2940: 2939: 2934: 2932: 2931: 2900: 2898: 2897: 2892: 2890: 2889: 2876: 2874: 2873: 2868: 2781: 2779: 2778: 2773: 2771: 2770: 2757: 2755: 2754: 2749: 2737: 2735: 2734: 2729: 2727: 2726: 2713: 2711: 2710: 2705: 2689: 2687: 2686: 2681: 2667: 2666: 2647: 2645: 2644: 2639: 2608: 2606: 2605: 2600: 2598: 2597: 2584: 2582: 2581: 2576: 2571: 2570: 2537: 2500: 2498: 2497: 2492: 2490: 2489: 2480: 2476: 2475: 2461: 2459: 2458: 2453: 2451: 2450: 2433: 2431: 2430: 2425: 2423: 2422: 2409: 2407: 2406: 2401: 2399: 2398: 2389: 2385: 2384: 2370: 2368: 2367: 2362: 2360: 2359: 2340: 2338: 2337: 2332: 2330: 2329: 2271: 2269: 2268: 2263: 2261: 2260: 2247: 2245: 2244: 2239: 2237: 2236: 2219: 2217: 2216: 2211: 2187: 2185: 2184: 2179: 2177: 2176: 2157: 2155: 2154: 2149: 2110: 2108: 2107: 2102: 2100: 2099: 2093: 2088: 2087: 2070: 2068: 2067: 2062: 2057: 2056: 2034: 2032: 2031: 2026: 2021: 2020: 2014: 2009: 2008: 1999: 1998: 1978: 1976: 1975: 1970: 1959:is nilpotent as 1958: 1956: 1955: 1950: 1926: 1924: 1923: 1918: 1916: 1915: 1909: 1904: 1903: 1894: 1893: 1887: 1882: 1881: 1868: 1866: 1865: 1860: 1836: 1834: 1833: 1828: 1826: 1825: 1806: 1804: 1803: 1798: 1796: 1795: 1782: 1780: 1779: 1774: 1772: 1771: 1754: 1752: 1751: 1746: 1744: 1743: 1730: 1728: 1727: 1722: 1720: 1719: 1707:: Find an ideal 1700: 1698: 1697: 1692: 1690: 1689: 1672: 1670: 1669: 1664: 1662: 1661: 1644: 1642: 1641: 1636: 1634: 1633: 1616: 1614: 1613: 1608: 1569: 1567: 1566: 1561: 1559: 1558: 1539: 1537: 1536: 1531: 1520: 1519: 1507: 1506: 1483: 1481: 1480: 1475: 1473: 1472: 1459: 1457: 1456: 1451: 1449: 1448: 1443: 1442: 1432: 1431: 1425: 1424: 1408: 1406: 1405: 1400: 1398: 1397: 1386: 1385: 1372: 1371: 1366: 1365: 1355: 1354: 1338: 1336: 1335: 1330: 1322: 1321: 1316: 1315: 1299: 1298: 1293: 1292: 1282: 1281: 1276: 1275: 1265: 1264: 1251: 1249: 1248: 1243: 1238: 1237: 1228: 1227: 1212: 1211: 1189: 1187: 1186: 1181: 1169: 1167: 1166: 1161: 1156: 1155: 1129: 1127: 1126: 1121: 1119: 1118: 1099: 1097: 1096: 1091: 1067: 1065: 1064: 1059: 1057: 1056: 1040: 1038: 1037: 1032: 1030: 1029: 1016: 1014: 1013: 1008: 1000: 999: 993: 992: 973:, there is some 972: 970: 969: 964: 962: 961: 949:+1)-th power of 944: 942: 941: 936: 931: 930: 924: 923: 905: 904: 892: 891: 885: 884: 872: 871: 862: 861: 855: 854: 830: 828: 827: 822: 820: 819: 796: 794: 793: 788: 783: 782: 763: 761: 760: 755: 720: 718: 717: 712: 701: 700: 688: 687: 662: 660: 659: 654: 652: 651: 631: 629: 628: 623: 621: 620: 607: 605: 604: 599: 597: 596: 578: 577: 565: 564: 551: 549: 548: 543: 535: 534: 509: 508: 490: 489: 477: 476: 447: 445: 444: 439: 437: 436: 413: 411: 410: 405: 394: 393: 381: 380: 363: 361: 360: 355: 344: 343: 291:as a Lie algebra 280: 278: 277: 272: 264: 263: 235: 233: 232: 227: 225: 224: 207: 205: 204: 199: 145: 143: 142: 137: 132: 131: 122: 121: 84: 82: 81: 76: 74: 73: 50: 48: 47: 42: 40: 39: 3474: 3473: 3469: 3468: 3467: 3465: 3464: 3463: 3444: 3443: 3442: 3437: 3422: 3413: 3404: 3391: 3381:Springer-Verlag 3372: 3350: 3320:Fulton, William 3318: 3312: 3296: 3292: 3287: 3283:, Theorem 9.9.. 3279: 3275: 3267: 3263: 3259: 3254: 3237: 3213: 3212: 3178: 3173: 3172: 3126: 3098: 3093: 3092: 3073: 3072: 3013: 3012: 2985: 2984: 2945: 2944: 2903: 2902: 2879: 2878: 2784: 2783: 2760: 2759: 2740: 2739: 2716: 2715: 2696: 2695: 2650: 2649: 2615: 2614: 2587: 2586: 2510: 2509: 2469: 2464: 2463: 2440: 2439: 2412: 2411: 2378: 2373: 2372: 2343: 2342: 2274: 2273: 2250: 2249: 2226: 2225: 2190: 2189: 2160: 2159: 2113: 2112: 2077: 2076: 2037: 2036: 1985: 1984: 1961: 1960: 1929: 1928: 1871: 1870: 1839: 1838: 1809: 1808: 1785: 1784: 1761: 1760: 1733: 1732: 1709: 1708: 1679: 1678: 1651: 1650: 1623: 1622: 1584: 1583: 1542: 1541: 1496: 1495: 1490: 1462: 1461: 1460:, this implies 1436: 1416: 1411: 1410: 1379: 1359: 1341: 1340: 1309: 1286: 1269: 1254: 1253: 1192: 1191: 1172: 1171: 1136: 1135: 1102: 1101: 1070: 1069: 1046: 1045: 1019: 1018: 984: 979: 978: 951: 950: 909: 876: 846: 841: 840: 809: 808: 766: 765: 731: 730: 677: 676: 641: 640: 610: 609: 582: 569: 554: 553: 526: 500: 481: 468: 457: 456: 420: 419: 370: 369: 330: 329: 326: 310:Wilhelm Killing 306:Friedrich Engel 255: 238: 237: 214: 213: 151: 150: 93: 92: 57: 56: 29: 28: 25:Engel's theorem 17: 12: 11: 5: 3472: 3470: 3462: 3461: 3456: 3446: 3445: 3441: 3440: 3435: 3420: 3411: 3402: 3389: 3370: 3348: 3316: 3310: 3298:Erdmann, Karin 3293: 3291: 3288: 3286: 3285: 3273: 3260: 3258: 3255: 3253: 3250: 3249: 3248: 3243: 3236: 3233: 3232: 3231: 3220: 3196: 3193: 3190: 3185: 3181: 3156: 3153: 3150: 3147: 3144: 3139: 3136: 3133: 3129: 3125: 3122: 3119: 3116: 3113: 3110: 3105: 3101: 3080: 3040: 3037: 3032: 3027: 3022: 2994: 2978: 2977: 2961: 2958: 2955: 2952: 2930: 2925: 2922: 2919: 2916: 2913: 2910: 2888: 2866: 2863: 2860: 2857: 2854: 2851: 2848: 2845: 2842: 2839: 2836: 2833: 2830: 2827: 2824: 2821: 2818: 2815: 2812: 2809: 2806: 2803: 2800: 2797: 2794: 2791: 2769: 2747: 2725: 2703: 2679: 2676: 2673: 2670: 2665: 2660: 2657: 2637: 2634: 2631: 2628: 2625: 2622: 2596: 2574: 2569: 2564: 2561: 2558: 2555: 2552: 2549: 2546: 2543: 2540: 2536: 2532: 2529: 2526: 2523: 2520: 2517: 2503: 2502: 2488: 2483: 2479: 2474: 2449: 2421: 2397: 2392: 2388: 2383: 2358: 2353: 2350: 2328: 2323: 2320: 2317: 2314: 2311: 2308: 2305: 2302: 2299: 2296: 2293: 2290: 2287: 2284: 2281: 2259: 2235: 2209: 2206: 2203: 2200: 2197: 2175: 2170: 2167: 2147: 2144: 2141: 2138: 2135: 2132: 2129: 2126: 2123: 2120: 2098: 2092: 2086: 2060: 2055: 2050: 2047: 2044: 2024: 2019: 2013: 2007: 2002: 1997: 1994: 1968: 1948: 1945: 1942: 1939: 1936: 1914: 1908: 1902: 1897: 1892: 1886: 1880: 1858: 1855: 1852: 1849: 1846: 1824: 1819: 1816: 1794: 1770: 1742: 1718: 1688: 1660: 1632: 1606: 1603: 1600: 1597: 1594: 1591: 1557: 1552: 1549: 1529: 1526: 1523: 1518: 1515: 1510: 1505: 1489: 1486: 1471: 1447: 1441: 1435: 1430: 1423: 1419: 1396: 1393: 1390: 1384: 1378: 1375: 1370: 1364: 1358: 1353: 1348: 1328: 1325: 1320: 1314: 1308: 1305: 1302: 1297: 1291: 1285: 1280: 1274: 1268: 1263: 1241: 1236: 1231: 1226: 1223: 1218: 1215: 1210: 1205: 1202: 1199: 1179: 1159: 1154: 1149: 1146: 1143: 1132: 1131: 1117: 1112: 1109: 1089: 1086: 1083: 1080: 1077: 1055: 1028: 1006: 1003: 998: 991: 987: 960: 934: 929: 922: 919: 916: 912: 908: 903: 898: 895: 890: 883: 879: 875: 870: 865: 860: 853: 849: 831:is said to be 818: 798: 797: 786: 781: 776: 773: 753: 750: 747: 744: 741: 738: 710: 707: 704: 699: 696: 691: 686: 650: 634: 633: 619: 595: 592: 589: 585: 581: 576: 572: 568: 563: 541: 538: 533: 529: 525: 522: 518: 515: 512: 507: 503: 499: 496: 493: 488: 484: 480: 475: 471: 467: 464: 453: 435: 430: 427: 403: 400: 397: 392: 389: 384: 379: 353: 350: 347: 342: 339: 325: 322: 270: 267: 262: 258: 254: 251: 248: 245: 223: 197: 194: 191: 188: 185: 182: 179: 176: 173: 170: 167: 164: 161: 158: 147: 146: 135: 130: 125: 120: 115: 112: 109: 106: 103: 100: 72: 67: 64: 38: 15: 13: 10: 9: 6: 4: 3: 2: 3471: 3460: 3457: 3455: 3452: 3451: 3449: 3438: 3432: 3428: 3427: 3421: 3417: 3412: 3409:. Holden Day. 3408: 3403: 3400: 3396: 3392: 3386: 3382: 3378: 3377: 3371: 3367: 3363: 3359: 3355: 3351: 3345: 3341: 3337: 3333: 3329: 3325: 3321: 3317: 3313: 3311:1-84628-040-0 3307: 3303: 3299: 3295: 3294: 3289: 3282: 3277: 3274: 3270: 3265: 3262: 3256: 3251: 3247: 3244: 3242: 3241:Lie's theorem 3239: 3238: 3234: 3218: 3210: 3191: 3183: 3179: 3170: 3154: 3151: 3145: 3137: 3134: 3131: 3127: 3123: 3120: 3117: 3111: 3103: 3099: 3078: 3070: 3066: 3062: 3058: 3054: 3038: 3035: 3025: 3010: 3009: 3008: 2982: 2975: 2956: 2950: 2923: 2917: 2914: 2911: 2864: 2861: 2855: 2846: 2843: 2840: 2834: 2825: 2819: 2813: 2810: 2801: 2795: 2789: 2745: 2701: 2693: 2692: 2691: 2677: 2674: 2671: 2668: 2658: 2655: 2635: 2632: 2626: 2620: 2612: 2562: 2559: 2556: 2553: 2550: 2544: 2538: 2530: 2527: 2524: 2518: 2515: 2507: 2481: 2477: 2437: 2390: 2386: 2351: 2348: 2321: 2315: 2306: 2300: 2297: 2294: 2288: 2285: 2282: 2223: 2204: 2198: 2195: 2168: 2165: 2145: 2142: 2136: 2127: 2121: 2118: 2090: 2074: 2045: 2042: 2035:generated by 2011: 1982: 1966: 1943: 1937: 1934: 1906: 1884: 1853: 1847: 1844: 1817: 1814: 1758: 1757: 1756: 1706: 1702: 1701:is positive. 1676: 1675:Lie's theorem 1647: 1646: 1618: 1604: 1601: 1595: 1589: 1579: 1575: 1571: 1550: 1547: 1524: 1508: 1487: 1485: 1445: 1433: 1421: 1417: 1394: 1391: 1388: 1376: 1368: 1356: 1326: 1323: 1318: 1306: 1303: 1300: 1295: 1283: 1278: 1266: 1216: 1200: 1197: 1144: 1141: 1110: 1107: 1084: 1078: 1075: 1044: 1043: 1042: 1004: 1001: 989: 985: 976: 948: 920: 917: 914: 910: 906: 893: 881: 877: 873: 863: 851: 847: 838: 834: 805: 803: 784: 774: 771: 751: 748: 742: 736: 728: 724: 705: 689: 674: 670: 669: 668: 666: 637: 593: 590: 587: 583: 579: 574: 570: 566: 539: 536: 531: 527: 523: 520: 516: 513: 510: 505: 501: 497: 494: 491: 486: 482: 478: 473: 469: 465: 462: 454: 451: 428: 425: 417: 416: 415: 398: 382: 367: 348: 323: 321: 319: 315: 311: 307: 302: 300: 299:Lie's theorem 296: 292: 288: 284: 268: 265: 260: 252: 246: 243: 211: 192: 189: 186: 180: 174: 165: 159: 156: 133: 113: 107: 101: 98: 91: 90: 89: 88: 65: 62: 54: 26: 22: 3425: 3415: 3406: 3375: 3327: 3301: 3276: 3264: 3208: 3168: 3068: 3064: 3060: 3056: 3052: 2980: 2979: 2973: 2694:Indeed, for 2610: 2505: 2504: 2435: 2221: 2072: 1704: 1703: 1648: 1620: 1581: 1577: 1573: 1493: 1491: 1133: 974: 946: 806: 799: 726: 722: 672: 664: 638: 635: 449: 365: 327: 314:Hawkins 2000 303: 294: 290: 282: 148: 24: 18: 3418:. Springer. 3324:Harris, Joe 3290:Works cited 3211:by Step 2. 2782:, we have: 2609:stabilizes 2410:spanned by 2248:but not in 1134:Indeed, if 318:Umlauf 2010 87:adjoint map 3448:Categories 2341:for every 2111:such that 1582:such that 1339:such that 977:such that 764:for every 729:such that 552:such that 324:Statements 3366:246650103 3257:Citations 3219:◻ 3167:for some 3118:≠ 2924:∈ 2675:∈ 2659:∈ 2648:for each 2633:∈ 2563:∈ 2528:∈ 2391:⊂ 2352:∈ 2322:∈ 2301:⁡ 2220:for some 2169:∈ 2158:for each 2122:⁡ 2046:⁡ 1938:⁡ 1896:→ 1848:⁡ 1818:∈ 1617:for each 1551:∈ 1509:⊂ 1434:⊂ 1377:⊂ 1307:⊃ 1304:⋯ 1301:⊃ 1284:⊃ 1217:⊂ 1201:⁡ 1178:⇔ 1145:⁡ 1111:∈ 1079:⁡ 918:− 833:nilpotent 775:∈ 690:⊂ 580:⊂ 567:⋅ 524:⁡ 498:⊃ 495:⋯ 492:⊃ 479:⊃ 429:∈ 383:⊂ 281:for some 247:⁡ 160:⁡ 149:given by 124:→ 114:: 102:⁡ 66:∈ 3326:(1991). 3235:See also 2943:. Thus, 2613:; i.e., 2478:′ 2387:′ 1409:. Since 236:; i.e., 3399:1771134 3358:1153249 3171:. Then 3071:. Now, 2585:. Then 2272:, then 835:if the 208:, is a 3433:  3397:  3387:  3364:  3356:  3346:  3308:  3051:where 3011:Write 2981:Step 3 2972:is in 2877:since 2508:: Let 2506:Step 2 1705:Step 1 802:#Proof 85:, the 3252:Notes 1488:Proof 521:codim 418:Each 51:is a 3431:ISBN 3385:ISBN 3362:OCLC 3344:ISBN 3306:ISBN 3063:and 2738:and 2434:and 663:and 368:and 328:Let 3336:doi 2758:in 2714:in 2224:in 2075:in 1621:in 1578:in 1494:if 945:= ( 725:in 320:). 295:not 212:on 19:In 3450:: 3395:MR 3393:, 3383:, 3360:. 3354:MR 3352:. 3342:. 3330:. 3322:; 3007:. 2690:. 2298:ad 2119:ad 2043:ad 1935:ad 1845:ad 1755:. 1198:ad 1142:ad 1076:ad 244:ad 157:ad 99:ad 3368:. 3338:: 3314:. 3209:W 3195:) 3192:v 3189:( 3184:k 3180:Y 3169:k 3155:0 3152:= 3149:) 3146:v 3143:( 3138:1 3135:+ 3132:k 3128:Y 3124:, 3121:0 3115:) 3112:v 3109:( 3104:k 3100:Y 3079:Y 3069:W 3065:v 3061:L 3057:Y 3053:L 3039:L 3036:+ 3031:h 3026:= 3021:g 2993:g 2976:. 2974:W 2960:) 2957:v 2954:( 2951:Y 2929:h 2921:] 2918:Y 2915:, 2912:X 2909:[ 2887:h 2865:0 2862:= 2859:) 2856:v 2853:( 2850:] 2847:Y 2844:, 2841:X 2838:[ 2835:+ 2832:) 2829:) 2826:v 2823:( 2820:X 2817:( 2814:Y 2811:= 2808:) 2805:) 2802:v 2799:( 2796:Y 2793:( 2790:X 2768:h 2746:X 2724:g 2702:Y 2678:W 2672:v 2669:, 2664:g 2656:X 2636:W 2630:) 2627:v 2624:( 2621:X 2611:W 2595:g 2573:} 2568:h 2560:X 2557:, 2554:0 2551:= 2548:) 2545:v 2542:( 2539:X 2535:| 2531:V 2525:v 2522:{ 2519:= 2516:W 2487:g 2482:= 2473:h 2448:h 2436:Y 2420:h 2396:g 2382:h 2357:h 2349:X 2327:h 2319:) 2316:Y 2313:( 2310:) 2307:X 2304:( 2295:= 2292:] 2289:Y 2286:, 2283:X 2280:[ 2258:h 2234:g 2222:Y 2208:] 2205:Y 2202:[ 2199:= 2196:v 2174:h 2166:X 2146:0 2143:= 2140:) 2137:v 2134:( 2131:) 2128:X 2125:( 2097:h 2091:/ 2085:g 2073:v 2059:) 2054:h 2049:( 2023:) 2018:h 2012:/ 2006:g 2001:( 1996:l 1993:g 1967:X 1947:) 1944:X 1941:( 1913:h 1907:/ 1901:g 1891:h 1885:/ 1879:g 1857:) 1854:X 1851:( 1823:h 1815:X 1793:g 1769:h 1741:g 1717:h 1687:g 1659:g 1645:. 1631:g 1619:X 1605:0 1602:= 1599:) 1596:v 1593:( 1590:X 1580:V 1576:v 1572:V 1556:g 1548:X 1528:) 1525:V 1522:( 1517:l 1514:g 1504:g 1470:g 1446:i 1440:g 1429:g 1422:i 1418:C 1395:1 1392:+ 1389:i 1383:g 1374:] 1369:i 1363:g 1357:, 1352:g 1347:[ 1327:0 1324:= 1319:n 1313:g 1296:1 1290:g 1279:0 1273:g 1267:= 1262:g 1240:) 1235:g 1230:( 1225:l 1222:g 1214:) 1209:g 1204:( 1158:) 1153:g 1148:( 1130:. 1116:g 1108:X 1088:) 1085:X 1082:( 1054:g 1027:g 1005:0 1002:= 997:g 990:k 986:C 975:k 959:g 947:i 933:] 928:g 921:1 915:i 911:C 907:, 902:g 897:[ 894:= 889:g 882:i 878:C 874:, 869:g 864:= 859:g 852:0 848:C 817:g 785:. 780:g 772:X 752:0 749:= 746:) 743:v 740:( 737:X 727:V 723:v 709:) 706:V 703:( 698:l 695:g 685:g 673:V 665:V 649:g 618:g 594:1 591:+ 588:i 584:V 575:i 571:V 562:g 540:i 537:= 532:i 528:V 517:, 514:0 511:= 506:n 502:V 487:1 483:V 474:0 470:V 466:= 463:V 452:. 450:V 434:g 426:X 402:) 399:V 396:( 391:l 388:g 378:g 366:V 352:) 349:V 346:( 341:l 338:g 283:k 269:0 266:= 261:k 257:) 253:X 250:( 222:g 196:] 193:Y 190:, 187:X 184:[ 181:= 178:) 175:Y 172:( 169:) 166:X 163:( 134:, 129:g 119:g 111:) 108:X 105:( 71:g 63:X 37:g

Index

representation theory
nilpotent Lie algebra
adjoint map
nilpotent endomorphism
strictly upper triangular
Lie's theorem
Friedrich Engel
Wilhelm Killing
Hawkins 2000
Umlauf 2010
#Proof
nilpotent
lower central series
Lie's theorem
Jordan decomposition in Lie algebras
Lie's theorem
Heisenberg group
Fulton & Harris 1991
Fulton & Harris 1991
Erdmann, Karin
ISBN
1-84628-040-0
Fulton, William
Harris, Joe
Graduate Texts in Mathematics
doi
10.1007/978-1-4612-0979-9
ISBN
978-0-387-97495-8
MR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑