Knowledge (XXG)

Epigenome

Source đź“ť

329:: the mature oocyte has an intermediate level of DNA methylation (72%), instead the sperm has high level of DNA methylation (86%). Demethylation in paternal genome occurs quickly after fertilisation, whereas the maternal genome is quite resistant at the demethylation process at this stage. Maternal different methylated regions (DMRs) are more resistant to the preimplantation demethylation wave. 400:
exceeding 30% differences in 5% of the loci. The stochastic switching occurred at thousands of heterozygous regulatory loci that were bound to transcription factors. The intermediate methylation state is referred to the relative frequencies between methylated and unmethylated epialleles. The epiallele frequency variations are correlated with the allele affinity for transcription factors.
22: 540:(ncRNA) gene silencing involves various types of non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and small interfering RNAs (siRNAs). These RNA molecules can modulate gene expression by various mechanisms, including mRNA degradation, inhibition of translation, and chromatin remodeling. 650:
Further proofs towards a role in genetic modulation and transcription regulation refers to the great conservation of the boundary pattern across mammalian evolution, with a dynamic range of small diversities inside different cell types, suggesting that these topological domains take part in cell-type
407:
Haplotype reconstruction strategy is used to trace chromatin chemical modifications (using ChIP-seq) in a variety of human tissues. Haplotype-resolved epigenomic maps can trace allelic biases in chromatin configuration. A substantial variation among different tissues and individuals is observed. This
586:
of the cell. They are formed by regions of chromatin, sized from 100 kilobases up to megabases, which highly self-interact. The domains are linked by other genomic regions, which, based on their size, are either called “topological boundary regions” or “unorganized chromatin”. These boundary regions
246:
CoRSIVs can have a useful application: measurements of CoRSIV methylation in one tissue can provide some information about epigenetic regulation in other tissues, indeed we can predict the expression of associated genes because systemic epigenetic variants are generally consistent in all tissues and
659:
The 4D Nucleome project aims to realize a 3D maps of mammalian genomes in order to develop predictive models to correlate epigenomic modifications with genetic variation. In particular the goal is to link genetic and epigenomic modifications with the enhancers and promoters which they interact with
264:
polymorphisms in humans suggests that such effects are highly deleterious. Indeed, trans-acting factors are expected to be caused by mutations in chromatin control genes or other highly pleiotropic regulators. If trans-acting variants do exist in human populations, they probably segregate as rare
399:
was aimed to construct the maps of allelic imbalances in DNA methylation, gene transcription, and also of histone modifications. 36 cell and tissue types from 13 participant donors were used to examine 71 epigenomes. The results of WGBS tested on 49 methylomes revealed CpG methylation imbalances
742:
has been widely supported since it was initially developed the 1980s. In recent decades, evidence has accumulated supporting the additional idea that DNA damage and repair elicit widespread epigenome alterations that also contribute to aging (e.g.). Such epigenome changes include age-related
207:
ariation in DNA methylation. They span only 0.1% of the human genome, so they are very rare; they can be inter-correlated over long genomic distances (>50 kbp). CoRSIVs are also associated with genes involved in a lot of human disorders, including tumors, mental disorders and cardiovascular
255:
Quantification of the heritable basis underlying population epigenomic variation is also important to delineate its cis- and trans-regulatory architecture. In particular, most studies state that inter-individual differences in DNA methylation are mainly determined by cis-regulatory sequence
514:
Histone acetylation neutralizes the positive charge on histones. This weakens the electrostatic attraction to negatively charged DNA and causes unwinding of DNA from histones, making the DNA more accessible to the transcriptional machinery and hence resulting in transcriptional activation.
384:(WGBS) is used to explore sequence-dependent allele-specific methylation (SD-ASM) at a single-chromosome resolution level and comprehensive whole-genome coverage. The results of WGBS tested on 49 methylomes revealed CpG methylation imbalances exceeding 30% differences in 5% of the loci. 211:
Most of the CoRSIVs are only 200 – 300 bp long and include 5–10 CpG dinucleotides, the largest span several kb and involve hundreds of CpGs. These regions tend to occur in clusters and the two genomic areas of high CoRSIV density are observed at the major histocompatibility
281:
Anyway, differential expression concerns only a slight number of methylated genes: only one fifth of genes with CpG methylation shows variable expression according to their methylation state. It is important to notice that methylation is not the only factor affecting
362:
to the 8-cell stage and then increase. Parental allele-specific analysis shows that paternal genome becomes more open than the maternal genome from the late zygote stage to the 4-cell stage, which may reflect decondensation of the paternal genome with replacement of
598:
process. Inside these domains, the chromatin shows to be well tangled, while in the boundary regions chromatin interactions are far less present. These boundary areas in particular show some peculiarity that determine the functions of all the topological domains.
403:
The analysis of the study suggests that human epigenome in average covers approximately 200 adverse SD-ASM variants. The sensitivity of the genes with tissue-specific expression patterns gives the opportunity for the evolutionary innovation in gene regulation.
379:
DNA methylation imbalances between homologous chromosomes show sequence-dependent behavior. Difference in the methylation state of neighboring cytosines on the same chromosome occurs due to the difference in DNA sequence between the chromosomes. Whole-genome
548:
During the last few years, several methods have been developed to study the structural and consequently the functional modifications of chromatin. The first project that used epigenomic profiling to identify regulatory elements in the human genome was
387:
On the sites of gene regulatory loci bound by transcription factors the random switching between methylated and unmethylated states of DNA was observed. This is also referred as stochastic switching and it is linked to selective buffering of
793:
is to generate human reference epigenomes from normal, healthy individuals across a large variety of cell lines, primary cells, and primary tissues. Data produced by the project, which can be browsed and downloaded from the
273:
DNA methylation (in particular in CpG regions) is able to affect gene expression: hypermethylated regions tend to be differentially expressed. In fact, people with a similar methylation profile tend to also have the same
763:. Advances in sequencing technology now allow for assaying genome-wide epigenomic states by multiple molecular methodologies. Micro- and nanoscale devices have been constructed or proposed to investigate the epigenome. 208:
diseases. It has been observed that disease-associated CpG sites are 37% enriched in CoRSIVs compared to control regions and 53% enriched in CoRSIVs relative to tDMRs (tissue specific Differentially Methylated Regions).
2352: 632:
genes are particularly abundant in boundary regions, denoting that those areas have a prolific transcriptional activity, thanks to their structural characteristics, different from other topological regions.
587:
separate the topological domains from heterochromatin, and prevent the amplification of the latter. Topological domains are diffused in mammalian, although similar genome partitions were identified also in
174:
methylation among individuals is about 42%. On the contrary, epigenetic profile (including methylation profile) of each individual is constant over the course of a year, reflecting the constancy of our
617:
Secondly, boundary regions block heterochromatin spreading, thus preventing the loss of useful genetic informations. This information derives from the observation that the heterochromatin mark
877:
Reference epigenomes for healthy individuals will enable the second goal of the Roadmap Epigenomics Project, which is to examine epigenomic differences that occur in disease states such as
827:), and Methylation-sensitive Restriction Enzyme Sequencing (MRE-Seq) identify DNA methylation across portions of the genome at varying levels of resolution down to basepair level. 231:
regions) and contain many transposable elements, but few CpG islands (CGI) and transcription factor binding sites. CoRSIVs are under-represented in the proximity of genes, in
2349: 358:. Stage-specific proximal and distal regions with accessible chromatin regions were identified. Global chromatin accessibility is found to gradually decrease from the 278:. Moreover, one key observation from human methylation is that most functionally relevant changes in CpG methylation occur in regulatory elements, such as enhancers. 93:, enabling cells with the same genetic code to perform different functions. The human epigenome is dynamic and can be influenced by environmental factors such as 2384:"Multilayer-omics analyses of human cancers: exploration of biomarkers and drug targets based on the activities of the International Human Epigenome Consortium" 438:. These modifications can either activate or repress gene expression by altering chromatin structure and accessibility of the DNA to transcriptional machinery. 667:
Hi-C is an experimental method used to map the connections between DNA fragments in three-dimensional space on a genome-wide scale. This technique combines
260:, probably involving mutations in TFBSs (Transcription Factor Binding Sites) with downstream consequences on local chromatin environment. The sparsity of 112:. Unlike the underlying genome, which remains largely static within an individual, the epigenome can be dynamically altered by environmental conditions. 767: 554: 54: 770:(IHEC). IHEC members aim to generate at least 1,000 reference (baseline) human epigenomes from different types of normal and disease-related human 1589:"Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus" 647:. In the recent years, those sequences were referred to alter binding site of CTCF, thus interfering with expression of some genomic areas. 553:(Encyclopedia of DNA Elements) that focused on profiling histone modifications on cell lines. A few years later ENCODE was included in the 179:
and metabolic traits. Methylation profile, in particular, is quite stable in a 12-month period and appears to change more over decades.
824: 641: 314:. This is a consequence of active DNA demethylation at this stage. But global demethylation is not an irreversible process, in fact 798:, fall into five types that assay different aspects of the epigenome and outcomes of epigenomic states (such as gene expression): 710:
modification patterns. The aberrant epigenetic landscape of the cancer cell is characterized by a global genomic hypomethylation,
900: 731: 579: 213: 159:(5mC). This epigenetic mark is widely conserved and plays major roles in the regulation of gene expression, in the silencing of 2484:"Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications" 441:
The epigenetic profiles of human tissues reveals the following distinct histone modifications in different functional areas:
283: 2539: 2333: 836: 595: 529:
Can lead to activation or repression of gene expression depending on the specific amino acids that are methylated.
265:
alleles or originate from somatic mutations and present with clinical phenotypes, as is the case in many cancers.
108:
The epigenome is involved in regulating gene expression, development, tissue differentiation, and suppression of
2581: 2062: 1795:"Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages" 786: 392:
against mutations and genetic diseases. Only rare genetic variants show the stochastic type of gene regulation.
90: 2572: 735: 389: 164: 594:
Topological domains in humans, like in other mammalians, have many functions regarding gene expression and
155:
DNA functionally interacts with a variety of epigenetic marks, such as cytosine methylation, also known as
878: 257: 636:
Finally, in the border areas of the topological domains and their surroundings there is an enrichment of
1089:"Omic personality: implications of stable transcript and methylation profiles for personalized medicine" 1041:
Taudt A, Colomé-Tatché M, Johannes F (June 2016). "Genetic sources of population epigenomic variation".
668: 109: 86: 811:) identifies genome wide patterns of histone modifications using antibodies against the modifications. 318:
methylation occurring from the early to mid-pronuclear stage and from the 4-cell to the 8-cell stage.
2601: 2205: 2149: 1600: 1543: 1345: 820: 606:
regions and barrier elements, both of which function as inhibitors of further transcription from the
603: 417: 408:
allows the deeper understanding of cis-regulatory relationships between genes and control sequences.
381: 160: 149: 74: 2013:
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, et al. (January 2023).
1194:
Waterland RA, Michels KB (2007). "Epigenetic epidemiology of the developmental origins hypothesis".
560:
The structural modifications that these projects aim to study can be divided into five main groups:
1844:"High-resolution genetic mapping of putative causal interactions between regions of open chromatin" 1793:
Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A, Kutter C, et al. (January 2012).
1486:
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et al. (February 2012).
866: 524: 509: 240: 236: 1282:"Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci" 1468: 1066: 672: 1280:
Onuchic V, Lurie E, Carrero I, Pawliczek P, Patel RY, Rozowsky J, et al. (September 2018).
2513: 2464: 2435:"Genome-wide chromatin state transitions associated with developmental and environmental cues" 2415: 2313: 2264: 2223: 2175: 2118: 2044: 1995: 1957: 1922: 1873: 1824: 1775: 1744:
Ebersole T, Kim JH, Samoshkin A, Kouprina N, Pavlicek A, White RJ, et al. (August 2011).
1726: 1677: 1628: 1569: 1509: 1460: 1420: 1371: 1311: 1259: 1211: 1176: 1120: 1058: 1020: 988: 953: 895: 823:, Reduced Representation Bisulfite-Seq (RRBS), Methylated DNA Immunoprecipitation Sequencing ( 625: 610:
enzyme. Such elements are characterized by the massive presence of insulator binding proteins
224: 1143:
Gunasekara CJ, Scott CA, Laritsky E, Baker MS, MacKay H, Duryea JD, et al. (June 2019).
2503: 2495: 2454: 2446: 2405: 2395: 2303: 2295: 2254: 2213: 2165: 2157: 2108: 2100: 2034: 2026: 1987: 1949: 1912: 1904: 1863: 1855: 1814: 1806: 1765: 1757: 1716: 1708: 1667: 1659: 1618: 1608: 1559: 1551: 1499: 1452: 1410: 1402: 1361: 1353: 1301: 1293: 1249: 1203: 1166: 1156: 1110: 1100: 1050: 980: 943: 910: 333: 156: 98: 94: 1532:"Topological domains in mammalian genomes identified by analysis of chromatin interactions" 1488:"Three-dimensional folding and functional organization principles of the Drosophila genome" 1443:
Stricker SH, Köferle A, Beck S (January 2017). "From profiles to function in epigenomics".
766:
An international effort to assay reference epigenomes commenced in 2010 in the form of the
2576: 2482:
Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, et al. (October 2010).
2356: 2337: 2138:"Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics" 1332:
Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, et al. (February 2015).
1207: 905: 847: 815: 808: 790: 739: 722:
code for critical genes and a global loss of monoacetylated and trimethylated histone H4.
703: 644: 427: 307: 232: 135: 70: 50: 2586: 2209: 2153: 2039: 2014: 1697:"Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells" 1604: 1547: 1349: 2508: 2483: 2459: 2434: 2410: 2383: 2308: 2283: 2170: 2137: 2113: 2088: 1917: 1892: 1868: 1843: 1819: 1794: 1770: 1745: 1721: 1696: 1672: 1647: 1623: 1588: 1564: 1531: 1366: 1333: 1306: 1281: 1171: 1144: 1115: 1088: 856: 607: 537: 431: 295: 145: 1940:
Gensler HL, Bernstein H (September 1981). "DNA damage as the primary cause of aging".
678:
This kind of studies are currently limited by the lack or unavailability of raw data.
2595: 1978:
Siametis A, Niotis G, Garinis GA (April 2021). "DNA Damage and the Aging Epigenome".
1415: 1390: 795: 303: 299: 275: 25:
The function of DNA strands (yellow) alters depending on how it is organized around
2433:
Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, et al. (January 2013).
1472: 1406: 629: 341: 261: 217: 2544: 1646:
Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, et al. (May 2010).
1070: 759:
aims to identify and catalogue Methylation Variable Positions (MVPs) in the human
664:
and pathways as new candidates for functional analysis and therapeutic targeting.
1648:"Distinct epigenomic landscapes of pluripotent and lineage-committed human cells" 1254: 1238:"Human Germline Cell Development: from the Perspective of Single-Cell Sequencing" 1237: 422:
Post-translational modifications of histone proteins, which include methylation,
1012: 890: 691: 661: 637: 435: 423: 337: 228: 121: 2450: 2030: 1908: 1810: 1663: 1593:
Proceedings of the National Academy of Sciences of the United States of America
1504: 1487: 948: 931: 2104: 1991: 1859: 1161: 1105: 771: 711: 588: 564: 311: 170:
Individuals differ with their epigenetic profile, for example the variance in
2400: 1746:"tRNA genes protect a reporter gene from epigenetic silencing in mouse cells" 1695:
Min IM, Waterfall JJ, Core LJ, Munroe RJ, Schimenti J, Lis JT (April 2011).
1613: 1530:
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. (April 2012).
1334:"Integrative analysis of haplotype-resolved epigenomes across human tissues" 1297: 1145:"A genomic atlas of systemic interindividual epigenetic variation in humans" 1087:
Tabassum R, Sivadas A, Agrawal V, Tian H, Arafat D, Gibson G (August 2015).
840: 831: 364: 355: 347: 176: 58: 2517: 2468: 2419: 2330: 2317: 2299: 2268: 2227: 2179: 2161: 2122: 2048: 1999: 1926: 1877: 1828: 1779: 1761: 1730: 1681: 1632: 1573: 1513: 1464: 1424: 1375: 1315: 1263: 1215: 1180: 1124: 1062: 1024: 992: 957: 843:) uses the DNase I enzyme to find open or accessible regions in the genome. 1961: 344:(MII) stage. Non-CpG methylation continues to accumulate in these stages. 1456: 870: 476: 471: 351: 243:. They are also usually not present in highly conserved genomic regions. 171: 141: 1712: 1555: 1357: 1054: 350:
accessibility in germline was evaluated by different approaches, like sc
298:
experiments that in human preimplantation embryos there is a global DNA
852: 803: 719: 707: 618: 495: 488: 483: 466: 461: 368: 82: 78: 46: 34: 26: 984: 21: 2499: 2066: 783: 760: 743:
changes in the patterns of DNA methylation and histone modification.
695: 583: 550: 359: 322: 62: 57:. Changes to the epigenome can result in changes to the structure of 2564: 2369: 2259: 2242: 2218: 2193: 220:
and at the pericentromeric region on the long arm of chromosome 20.
1953: 971:
Delcuve GP, Rastegar M, Davie JR (May 2009). "Epigenetic control".
2569: 715: 699: 557:(IHEC), which aims to coordinate international epigenome studies. 326: 102: 53:; these changes can be passed down to an organism's offspring via 20: 2534: 611: 2015:"Loss of epigenetic information as a cause of mammalian aging" 42: 140:
Addition of a methyl group to the DNA molecule, typically at
2549: 41:
of an organism is the collection of chemical changes to its
1391:"Acetylation of histones and transcription-related factors" 2554: 2284:"Perspectives of international human epigenome consortium" 2559: 1893:"Principles of Chromosome Architecture Revealed by Hi-C" 869:
identifies expression of small noncoding RNA, primarily
2560:
Roadmap Epigenomics Visualization Hub (load track hub)
2350:"France: Human epigenome consortium takes first steps" 660:
in three-dimensional space, thus discovering gene-set
621:
sequences clearly interrupts near boundary sequences.
49:
proteins that affects when, where, and how the DNA is
930:
Bernstein BE, Meissner A, Lander ES (February 2007).
1842:Kumasaka N, Knights AJ, Gaffney DJ (January 2019). 859:
identify expression levels or protein coding genes.
269:
Correlation between methylation and gene expression
567:occupancy to detect regions with regulatory genes; 321:The percentage of DNA methylation is different in 152:and other proteins necessary for gene expression. 2565:Human Epigenome Browser at Washington University 655:Correlation between methylation and 3D structure 2535:Reference Epigenome Mapping Consortium Homepage 1973: 1971: 1019:. Treasure Island (FL): StatPearls Publishing. 1011:Al Aboud NM, Tupper C, Jialal I (August 2023). 1006: 1004: 1002: 582:are a degree of structural organization of the 1275: 1273: 714:promoter hypermethylation of tumor suppressor 675:digestion and next-generation DNA sequencing. 375:Sequence-Dependent Allele-Specific Methylation 354:and sciATAC-seq, scCOOL-seq, scNOMe-seq and sc 126:The main types of epigenetic changes include: 8: 2331:"BioNews - Human Epigenome project launched" 807:– Chromatin Immunoprecipitation Sequencing ( 144:bases. This modification generally leads to 77:, is maintained through cell division (both 2089:"Emerging patterns of epigenomic variation" 1395:Microbiology and Molecular Biology Reviews 624:Thirdly, transcription start sites (TSS), 2507: 2458: 2409: 2399: 2307: 2258: 2217: 2169: 2136:Aguilar CA, Craighead HG (October 2013). 2112: 2038: 1916: 1867: 1818: 1769: 1720: 1671: 1622: 1612: 1563: 1503: 1414: 1365: 1305: 1253: 1170: 1160: 1114: 1104: 947: 85:). The epigenome is essential for normal 2545:NCBI Gene Expression Omnibus Epigenomics 1587:Kim YJ, Cecchini KR, Kim TH (May 2011). 768:International Human Epigenome Consortium 555:International Human Epigenome Consortium 443: 55:transgenerational epigenetic inheritance 922: 29:(blue) that can be methylated (green). 2555:Roadmap Epigenomics Visualization Hub 1525: 1523: 1438: 1436: 1434: 1327: 1325: 1208:10.1146/annurev.nutr.27.061406.093705 575:Topological associated domains (TADs) 310:level decreases sharply in the early 251:Factors affecting methylation pattern 7: 2243:"Project set to map marks on genome" 1231: 1229: 1227: 1225: 1138: 1136: 1134: 1082: 1080: 1036: 1034: 1389:Sterner DE, Berger SL (June 2000). 570:Chromatin interactions and domains; 61:and changes to the function of the 14: 1013:"Genetics, Epigenetic Mechanism" 901:Epigenome-wide association study 784:NIH Roadmap Epigenomics Project 694:is a currently active topic in 1897:Trends in Biochemical Sciences 1407:10.1128/MMBR.64.2.435-459.2000 1236:Wen L, Tang F (October 2019). 973:Journal of Cellular Physiology 702:undergo a major disruption of 580:Topological associated domains 332:CpG methylation is similar in 1: 2570:Epigenome Browser UCSC mirror 2087:Milosavljevic A (June 2011). 757:Human Epigenome Pilot Project 734:drives aging by compromising 533:Non-coding RNA gene silencing 148:by preventing the binding of 2204:(7281): 587. February 2010. 1255:10.1016/j.molcel.2019.08.025 837:DNase I hypersensitive sites 751:As a prelude to a potential 651:specific regulatory events. 227:and quiescent regions (e.g. 778:Roadmap epigenomics project 2618: 2451:10.1016/j.cell.2012.12.033 2288:Genomics & Informatics 2241:Abbott A (February 2010). 2031:10.1016/j.cell.2022.12.027 1909:10.1016/j.tibs.2018.03.006 1811:10.1016/j.cell.2011.11.058 1664:10.1016/j.stem.2010.03.018 1505:10.1016/j.cell.2012.01.010 1196:Annual Review of Nutrition 949:10.1016/j.cell.2007.01.033 522: 507: 415: 133: 119: 2550:The Human Epigenome Atlas 2105:10.1016/j.tig.2011.03.001 2063:"Human Epigenome Project" 1992:10.1016/j.jid.2020.10.006 1860:10.1038/s41588-018-0278-6 1162:10.1186/s13059-019-1708-1 1106:10.1186/s13073-015-0209-4 932:"The mammalian epigenome" 336:(GV) stage, intermediate 2401:10.3389/fgene.2014.00024 2382:Kanai Y, Arai E (2014). 2194:"Time for the epigenome" 1445:Nature Reviews. Genetics 1043:Nature Reviews. Genetics 544:Structural modifications 453:Transcribed Gene Bodies 223:CoRSIVs are enriched in 91:cellular differentiation 2582:Human Epigenome Project 1701:Genes & Development 1614:10.1073/pnas.1018279108 1298:10.1126/science.aar3146 1292:(6409). New York, N.Y. 832:Chromatin Accessibility 753:Human Epigenome Project 596:transcriptional control 390:gene regulatory circuit 2300:10.5808/GI.2013.11.1.7 2162:10.1038/nnano.2013.195 1891:Eagen KP (June 2018). 1762:10.4161/cc.10.16.17092 602:Firstly, they contain 340:(MI) stage and mature 290:Methylation in embryos 30: 2388:Frontiers in Genetics 2282:Bae JB (March 2013). 2142:Nature Nanotechnology 804:Histone Modifications 796:Human Epigenome Atlas 682:Clinical significance 669:chemical crosslinking 161:transposable elements 150:transcription factors 110:transposable elements 24: 2540:NCBI Epigenomics Hub 2488:Nature Biotechnology 1457:10.1038/nrg.2016.138 863:Small RNA Expression 418:Histone modification 412:Histone modification 382:bisulfite sequencing 75:histone modification 2210:2010Natur.463Q.587. 2154:2013NatNa...8..709A 1713:10.1101/gad.2005511 1605:2011PNAS..108.7391K 1556:10.1038/nature11082 1548:2012Natur.485..376D 1358:10.1038/nature14217 1350:2015Natur.518..350L 1055:10.1038/nrg.2016.45 879:Alzheimer's disease 525:Histone methylation 510:Histone acetylation 294:It was revealed by 2575:2021-02-14 at the 2355:2015-07-08 at the 2336:2010-12-28 at the 2093:Trends in Genetics 2025:(2): 305–326.e27. 789:2021-04-08 at the 673:restriction enzyme 671:of chromatin with 626:housekeeping genes 395:The study made by 31: 2494:(10): 1097–1105. 1980:J Invest Dermatol 1756:(16): 2779–2791. 1599:(18): 7391–7396. 1542:(7398): 376–380. 1344:(7539): 350–354. 985:10.1002/jcp.21678 896:Epigenome editing 857:expression arrays 501: 500: 456:Silenced Regions 450:Active Enhancers 447:Active Promoters 183:Methylation sites 2609: 2522: 2521: 2511: 2500:10.1038/nbt.1682 2479: 2473: 2472: 2462: 2430: 2424: 2423: 2413: 2403: 2379: 2373: 2366: 2360: 2347: 2341: 2328: 2322: 2321: 2311: 2279: 2273: 2272: 2262: 2238: 2232: 2231: 2221: 2190: 2184: 2183: 2173: 2133: 2127: 2126: 2116: 2084: 2078: 2077: 2075: 2074: 2065:. Archived from 2059: 2053: 2052: 2042: 2010: 2004: 2003: 1975: 1966: 1965: 1937: 1931: 1930: 1920: 1888: 1882: 1881: 1871: 1839: 1833: 1832: 1822: 1805:(1–2): 335–348. 1790: 1784: 1783: 1773: 1741: 1735: 1734: 1724: 1692: 1686: 1685: 1675: 1643: 1637: 1636: 1626: 1616: 1584: 1578: 1577: 1567: 1527: 1518: 1517: 1507: 1483: 1477: 1476: 1440: 1429: 1428: 1418: 1386: 1380: 1379: 1369: 1329: 1320: 1319: 1309: 1277: 1268: 1267: 1257: 1233: 1220: 1219: 1191: 1185: 1184: 1174: 1164: 1140: 1129: 1128: 1118: 1108: 1084: 1075: 1074: 1038: 1029: 1028: 1008: 997: 996: 968: 962: 961: 951: 927: 911:NCBI Epigenomics 782:One goal of the 698:research. Human 645:retrotransposons 444: 334:germinal vesicle 235:regions, active 165:repeat sequences 157:5-methylcytosine 2617: 2616: 2612: 2611: 2610: 2608: 2607: 2606: 2592: 2591: 2587:Cancer Research 2577:Wayback Machine 2531: 2526: 2525: 2481: 2480: 2476: 2432: 2431: 2427: 2381: 2380: 2376: 2367: 2363: 2359:. 5 March 2010. 2357:Wayback Machine 2348: 2344: 2338:Wayback Machine 2329: 2325: 2281: 2280: 2276: 2260:10.1038/463596b 2253:(7281): 596–7. 2240: 2239: 2235: 2219:10.1038/463587a 2192: 2191: 2187: 2148:(10): 709–718. 2135: 2134: 2130: 2086: 2085: 2081: 2072: 2070: 2061: 2060: 2056: 2012: 2011: 2007: 1986:(4S): 961–967. 1977: 1976: 1969: 1939: 1938: 1934: 1890: 1889: 1885: 1848:Nature Genetics 1841: 1840: 1836: 1792: 1791: 1787: 1743: 1742: 1738: 1694: 1693: 1689: 1645: 1644: 1640: 1586: 1585: 1581: 1529: 1528: 1521: 1485: 1484: 1480: 1442: 1441: 1432: 1388: 1387: 1383: 1331: 1330: 1323: 1279: 1278: 1271: 1235: 1234: 1223: 1193: 1192: 1188: 1142: 1141: 1132: 1093:Genome Medicine 1086: 1085: 1078: 1040: 1039: 1032: 1010: 1009: 1000: 970: 969: 965: 929: 928: 924: 919: 906:Human epigenome 887: 848:Gene Expression 819:– Whole Genome 816:DNA Methylation 791:Wayback Machine 780: 749: 740:DNA replication 728: 704:DNA methylation 689: 684: 657: 577: 546: 535: 527: 521: 512: 506: 428:phosphorylation 420: 414: 377: 308:DNA methylation 302:process. After 292: 284:gene regulation 271: 253: 233:heterochromatic 203:nterindividual 185: 138: 136:DNA methylation 132: 130:DNA methylation 124: 118: 71:DNA methylation 67:human epigenome 17: 16:Biological term 12: 11: 5: 2615: 2613: 2605: 2604: 2594: 2593: 2590: 2589: 2584: 2579: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2530: 2529:External links 2527: 2524: 2523: 2474: 2445:(3): 642–654. 2425: 2374: 2361: 2342: 2323: 2274: 2233: 2185: 2128: 2099:(6): 242–250. 2079: 2054: 2005: 1967: 1954:10.1086/412317 1948:(3): 279–303. 1932: 1903:(6): 469–478. 1883: 1854:(1): 128–137. 1834: 1785: 1736: 1707:(7): 742–754. 1687: 1658:(5): 479–491. 1652:Cell Stem Cell 1638: 1579: 1519: 1498:(3): 458–472. 1478: 1430: 1381: 1321: 1269: 1248:(2): 320–328. 1242:Molecular Cell 1221: 1202:(1): 363–388. 1186: 1149:Genome Biology 1130: 1076: 1049:(6): 319–332. 1030: 998: 963: 942:(4): 669–681. 921: 920: 918: 915: 914: 913: 908: 903: 898: 893: 886: 883: 875: 874: 860: 844: 828: 812: 779: 776: 748: 745: 730:The idea that 727: 724: 688: 685: 683: 680: 656: 653: 608:RNA polymerase 576: 573: 572: 571: 568: 545: 542: 538:Non-coding RNA 534: 531: 523:Main article: 520: 517: 508:Main article: 505: 502: 499: 498: 493: 491: 486: 480: 479: 474: 469: 464: 458: 457: 454: 451: 448: 432:ubiquitination 416:Main article: 413: 410: 397:Onuchic et al. 376: 373: 296:immunostaining 291: 288: 270: 267: 252: 249: 184: 181: 146:gene silencing 134:Main article: 131: 128: 120:Main article: 117: 114: 15: 13: 10: 9: 6: 4: 3: 2: 2614: 2603: 2600: 2599: 2597: 2588: 2585: 2583: 2580: 2578: 2574: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2532: 2528: 2519: 2515: 2510: 2505: 2501: 2497: 2493: 2489: 2485: 2478: 2475: 2470: 2466: 2461: 2456: 2452: 2448: 2444: 2440: 2436: 2429: 2426: 2421: 2417: 2412: 2407: 2402: 2397: 2393: 2389: 2385: 2378: 2375: 2371: 2368:Eurice GmbH. 2365: 2362: 2358: 2354: 2351: 2346: 2343: 2339: 2335: 2332: 2327: 2324: 2319: 2315: 2310: 2305: 2301: 2297: 2293: 2289: 2285: 2278: 2275: 2270: 2266: 2261: 2256: 2252: 2248: 2244: 2237: 2234: 2229: 2225: 2220: 2215: 2211: 2207: 2203: 2199: 2195: 2189: 2186: 2181: 2177: 2172: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2129: 2124: 2120: 2115: 2110: 2106: 2102: 2098: 2094: 2090: 2083: 2080: 2069:on 2011-07-16 2068: 2064: 2058: 2055: 2050: 2046: 2041: 2036: 2032: 2028: 2024: 2020: 2016: 2009: 2006: 2001: 1997: 1993: 1989: 1985: 1981: 1974: 1972: 1968: 1963: 1959: 1955: 1951: 1947: 1943: 1936: 1933: 1928: 1924: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1887: 1884: 1879: 1875: 1870: 1865: 1861: 1857: 1853: 1849: 1845: 1838: 1835: 1830: 1826: 1821: 1816: 1812: 1808: 1804: 1800: 1796: 1789: 1786: 1781: 1777: 1772: 1767: 1763: 1759: 1755: 1751: 1747: 1740: 1737: 1732: 1728: 1723: 1718: 1714: 1710: 1706: 1702: 1698: 1691: 1688: 1683: 1679: 1674: 1669: 1665: 1661: 1657: 1653: 1649: 1642: 1639: 1634: 1630: 1625: 1620: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1583: 1580: 1575: 1571: 1566: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1524: 1520: 1515: 1511: 1506: 1501: 1497: 1493: 1489: 1482: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1439: 1437: 1435: 1431: 1426: 1422: 1417: 1412: 1408: 1404: 1401:(2): 435–59. 1400: 1396: 1392: 1385: 1382: 1377: 1373: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1328: 1326: 1322: 1317: 1313: 1308: 1303: 1299: 1295: 1291: 1287: 1283: 1276: 1274: 1270: 1265: 1261: 1256: 1251: 1247: 1243: 1239: 1232: 1230: 1228: 1226: 1222: 1217: 1213: 1209: 1205: 1201: 1197: 1190: 1187: 1182: 1178: 1173: 1168: 1163: 1158: 1154: 1150: 1146: 1139: 1137: 1135: 1131: 1126: 1122: 1117: 1112: 1107: 1102: 1098: 1094: 1090: 1083: 1081: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1035: 1031: 1026: 1022: 1018: 1014: 1007: 1005: 1003: 999: 994: 990: 986: 982: 979:(2): 243–50. 978: 974: 967: 964: 959: 955: 950: 945: 941: 937: 933: 926: 923: 916: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 888: 884: 882: 880: 872: 868: 864: 861: 858: 854: 850: 849: 845: 842: 838: 834: 833: 829: 826: 822: 821:Bisulfite-Seq 818: 817: 813: 810: 806: 805: 801: 800: 799: 797: 792: 788: 785: 777: 775: 773: 769: 764: 762: 758: 754: 746: 744: 741: 737: 736:transcription 733: 725: 723: 721: 718:, an altered 717: 713: 709: 705: 701: 697: 693: 686: 681: 679: 676: 674: 670: 665: 663: 654: 652: 648: 646: 643: 639: 634: 631: 627: 622: 620: 615: 613: 609: 605: 600: 597: 592: 590: 585: 581: 574: 569: 566: 563: 562: 561: 558: 556: 552: 543: 541: 539: 532: 530: 526: 518: 516: 511: 503: 497: 494: 492: 490: 487: 485: 482: 481: 478: 475: 473: 470: 468: 465: 463: 460: 459: 455: 452: 449: 446: 445: 442: 439: 437: 433: 429: 425: 419: 411: 409: 405: 401: 398: 393: 391: 385: 383: 374: 372: 370: 366: 361: 357: 353: 349: 345: 343: 339: 335: 330: 328: 324: 319: 317: 313: 309: 305: 304:fertilisation 301: 300:demethylation 297: 289: 287: 285: 279: 277: 276:transcriptome 268: 266: 263: 259: 258:polymorphisms 250: 248: 244: 242: 238: 234: 230: 226: 221: 219: 215: 209: 206: 202: 198: 194: 190: 182: 180: 178: 173: 168: 166: 162: 158: 153: 151: 147: 143: 137: 129: 127: 123: 115: 113: 111: 106: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 28: 23: 19: 2491: 2487: 2477: 2442: 2438: 2428: 2391: 2387: 2377: 2370:"About IHEC" 2364: 2345: 2326: 2291: 2287: 2277: 2250: 2246: 2236: 2201: 2197: 2188: 2145: 2141: 2131: 2096: 2092: 2082: 2071:. Retrieved 2067:the original 2057: 2022: 2018: 2008: 1983: 1979: 1945: 1941: 1935: 1900: 1896: 1886: 1851: 1847: 1837: 1802: 1798: 1788: 1753: 1749: 1739: 1704: 1700: 1690: 1655: 1651: 1641: 1596: 1592: 1582: 1539: 1535: 1495: 1491: 1481: 1451:(1): 51–66. 1448: 1444: 1398: 1394: 1384: 1341: 1337: 1289: 1285: 1245: 1241: 1199: 1195: 1189: 1152: 1148: 1096: 1092: 1046: 1042: 1016: 976: 972: 966: 939: 935: 925: 876: 862: 846: 839:Sequencing ( 830: 814: 802: 781: 765: 756: 752: 750: 729: 690: 677: 666: 662:interactomes 658: 649: 635: 623: 616: 601: 593: 578: 559: 547: 536: 528: 513: 440: 421: 406: 402: 396: 394: 386: 378: 346: 342:metaphase II 331: 320: 315: 293: 280: 272: 262:trans-acting 254: 247:cell types. 245: 229:subtelomeric 222: 218:chromosome 6 210: 204: 200: 196: 192: 188: 187:CoRSIVs are 186: 169: 154: 139: 125: 107: 69:, including 66: 38: 32: 18: 2602:Epigenetics 2294:(1): 7–14. 1017:StatPearls 891:Epigenetics 692:Epigenetics 640:/B1 and B2 519:Methylation 504:Acetylation 436:sumoylation 424:acetylation 338:metaphase I 216:) locus on 122:Epigenetics 87:development 2073:2011-06-29 1942:Q Rev Biol 1750:Cell Cycle 1155:(1): 105. 917:References 772:cell types 732:DNA damage 712:CpG island 589:Drosophila 565:Nucleosome 365:protamines 225:intergenic 195:egions of 1099:(1): 88. 867:smRNA-Seq 841:DNase-Seq 825:MeDIP-Seq 604:insulator 356:DNase-seq 348:Chromatin 312:pronuclei 241:enhancers 237:promoters 191:rrelated 177:phenotype 59:chromatin 51:expressed 39:epigenome 2596:Category 2573:Archived 2518:20852635 2469:23333102 2420:24592273 2353:Archived 2334:Archived 2318:23613677 2269:20162836 2228:20130607 2180:24091454 2123:21507501 2049:36638792 2040:10166133 2000:33494932 1927:29685368 1878:30478436 1829:22244452 1780:21822054 1731:21460038 1682:20452322 1633:21502535 1574:22495300 1514:22265598 1465:27867193 1425:10839822 1376:25693566 1316:30139913 1264:31563431 1216:17465856 1181:31155008 1125:26391122 1063:27156976 1025:30422591 993:19127539 958:17320505 885:See also 809:ChIP-Seq 787:Archived 747:Research 477:H3K27me3 472:H3K36me3 369:histones 352:ATAC-seq 199:ystemic 142:cytosine 27:histones 2509:2955169 2460:3563935 2411:3924033 2309:3630389 2206:Bibcode 2171:4072028 2150:Bibcode 2114:3104125 1962:7031747 1918:6028237 1869:6330062 1820:3368268 1771:3219543 1722:3070936 1673:2867844 1624:3088595 1601:Bibcode 1565:3356448 1544:Bibcode 1473:4461801 1367:4449149 1346:Bibcode 1307:6198826 1286:Science 1172:6545702 1116:4578259 853:RNA-Seq 720:histone 708:histone 619:H3K9me3 496:H3K9me3 489:H3K27ac 484:H3K27ac 467:H3K4me1 462:H3K4me3 325:and in 323:oocytes 316:de novo 83:meiosis 79:mitosis 47:histone 35:biology 2516:  2506:  2467:  2457:  2418:  2408:  2394:: 24. 2316:  2306:  2267:  2247:Nature 2226:  2198:Nature 2178:  2168:  2121:  2111:  2047:  2037:  1998:  1960:  1925:  1915:  1876:  1866:  1827:  1817:  1778:  1768:  1729:  1719:  1680:  1670:  1631:  1621:  1572:  1562:  1536:Nature 1512:  1471:  1463:  1423:  1413:  1374:  1364:  1338:Nature 1314:  1304:  1262:  1214:  1179:  1169:  1123:  1113:  1071:336906 1069:  1061:  1023:  991:  956:  871:miRNAs 761:genome 755:, the 700:tumors 696:cancer 687:Cancer 584:genome 551:ENCODE 434:, and 360:zygote 306:, the 239:, and 103:toxins 101:, and 99:stress 65:. The 63:genome 37:, the 1469:S2CID 1416:98999 1067:S2CID 726:Aging 716:genes 327:sperm 116:Types 2514:PMID 2465:PMID 2439:Cell 2416:PMID 2314:PMID 2265:PMID 2224:PMID 2176:PMID 2119:PMID 2045:PMID 2019:Cell 1996:PMID 1958:PMID 1923:PMID 1874:PMID 1825:PMID 1799:Cell 1776:PMID 1727:PMID 1678:PMID 1629:PMID 1570:PMID 1510:PMID 1492:Cell 1461:PMID 1421:PMID 1372:PMID 1312:PMID 1260:PMID 1212:PMID 1177:PMID 1121:PMID 1059:PMID 1021:PMID 989:PMID 954:PMID 936:Cell 855:and 738:and 706:and 642:SINE 630:tRNA 628:and 612:CTCF 163:and 95:diet 89:and 81:and 73:and 45:and 2504:PMC 2496:doi 2455:PMC 2447:doi 2443:152 2406:PMC 2396:doi 2304:PMC 2296:doi 2255:doi 2251:463 2214:doi 2202:463 2166:PMC 2158:doi 2109:PMC 2101:doi 2035:PMC 2027:doi 2023:186 1988:doi 1984:141 1950:doi 1913:PMC 1905:doi 1864:PMC 1856:doi 1815:PMC 1807:doi 1803:148 1766:PMC 1758:doi 1717:PMC 1709:doi 1668:PMC 1660:doi 1619:PMC 1609:doi 1597:108 1560:PMC 1552:doi 1540:485 1500:doi 1496:148 1453:doi 1411:PMC 1403:doi 1362:PMC 1354:doi 1342:518 1302:PMC 1294:doi 1290:361 1250:doi 1204:doi 1167:PMC 1157:doi 1111:PMC 1101:doi 1051:doi 981:doi 977:219 944:doi 940:128 835:– 638:Alu 367:by 214:MHC 172:CpG 43:DNA 33:In 2598:: 2512:. 2502:. 2492:28 2490:. 2486:. 2463:. 2453:. 2441:. 2437:. 2414:. 2404:. 2390:. 2386:. 2312:. 2302:. 2292:11 2290:. 2286:. 2263:. 2249:. 2245:. 2222:. 2212:. 2200:. 2196:. 2174:. 2164:. 2156:. 2144:. 2140:. 2117:. 2107:. 2097:27 2095:. 2091:. 2043:. 2033:. 2021:. 2017:. 1994:. 1982:. 1970:^ 1956:. 1946:56 1944:. 1921:. 1911:. 1901:43 1899:. 1895:. 1872:. 1862:. 1852:51 1850:. 1846:. 1823:. 1813:. 1801:. 1797:. 1774:. 1764:. 1754:10 1752:. 1748:. 1725:. 1715:. 1705:25 1703:. 1699:. 1676:. 1666:. 1654:. 1650:. 1627:. 1617:. 1607:. 1595:. 1591:. 1568:. 1558:. 1550:. 1538:. 1534:. 1522:^ 1508:. 1494:. 1490:. 1467:. 1459:. 1449:18 1447:. 1433:^ 1419:. 1409:. 1399:64 1397:. 1393:. 1370:. 1360:. 1352:. 1340:. 1336:. 1324:^ 1310:. 1300:. 1288:. 1284:. 1272:^ 1258:. 1246:76 1244:. 1240:. 1224:^ 1210:. 1200:27 1198:. 1175:. 1165:. 1153:20 1151:. 1147:. 1133:^ 1119:. 1109:. 1095:. 1091:. 1079:^ 1065:. 1057:. 1047:17 1045:. 1033:^ 1015:. 1001:^ 987:. 975:. 952:. 938:. 934:. 881:. 865:– 851:– 774:. 614:. 591:. 430:, 426:, 371:. 286:. 189:Co 167:. 105:. 97:, 2520:. 2498:: 2471:. 2449:: 2422:. 2398:: 2392:5 2372:. 2340:. 2320:. 2298:: 2271:. 2257:: 2230:. 2216:: 2208:: 2182:. 2160:: 2152:: 2146:8 2125:. 2103:: 2076:. 2051:. 2029:: 2002:. 1990:: 1964:. 1952:: 1929:. 1907:: 1880:. 1858:: 1831:. 1809:: 1782:. 1760:: 1733:. 1711:: 1684:. 1662:: 1656:6 1635:. 1611:: 1603:: 1576:. 1554:: 1546:: 1516:. 1502:: 1475:. 1455:: 1427:. 1405:: 1378:. 1356:: 1348:: 1318:. 1296:: 1266:. 1252:: 1218:. 1206:: 1183:. 1159:: 1127:. 1103:: 1097:7 1073:. 1053:: 1027:. 995:. 983:: 960:. 946:: 873:. 212:( 205:V 201:I 197:S 193:R

Index


histones
biology
DNA
histone
expressed
transgenerational epigenetic inheritance
chromatin
genome
DNA methylation
histone modification
mitosis
meiosis
development
cellular differentiation
diet
stress
toxins
transposable elements
Epigenetics
DNA methylation
cytosine
gene silencing
transcription factors
5-methylcytosine
transposable elements
repeat sequences
CpG
phenotype
MHC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑