Knowledge (XXG)

Förster resonance energy transfer

Source 📝

2594:
single-molecule FRET is able to resolve the FRET signal of each individual molecule. The variation of the smFRET signal is useful to reveal kinetic information that an ensemble measurement cannot provide, especially when the system is under equilibrium. Heterogeneity among different molecules can also be observed. This method has been applied in many measurements of biomolecular dynamics such as DNA/RNA/protein folding/unfolding and other conformational changes, and intermolecular dynamics such as reaction, binding, adsorption, and desorption that are particularly useful in chemical sensing, bioassays, and biosensing.
2706:
then essential to understand how isolated nano-emitters behave when they are stacked in a dense layer. Nanoplatelets are especially promising candidates for strong homo-FRET exciton diffusion because of their strong in-plane dipole coupling and low Stokes shift. Fluorescence microscopy study of such single chains demonstrated that energy transfer by FRET between neighbor platelets causes energy to diffuse over a typical 500-nm length (about 80 nano emitters), and the transfer time between platelets is on the order of 1 ps.
2791: 131:. In order to avoid an erroneous interpretation of the phenomenon that is always a nonradiative transfer of energy (even when occurring between two fluorescent chromophores), the name "Förster resonance energy transfer" is preferred to "fluorescence resonance energy transfer"; however, the latter enjoys common usage in scientific literature. FRET is not restricted to fluorescence and occurs in connection with phosphorescence as well. 20: 2563:
measurements, and because photobleaching decay rates do not generally depend on donor concentration (unless acceptor saturation is an issue), the careful control of concentrations needed for intensity measurements is not needed. It is, however, important to keep the illumination the same for the with- and without-acceptor measurements, as photobleaching increases markedly with more intense incident light.
940: 116: 2603: 756: 1195: 2313:
FRET from the donor to the acceptor. For monitoring protein conformational changes, the target protein is labeled with a donor and an acceptor at two loci. When a twist or bend of the protein brings the change in the distance or relative orientation of the donor and acceptor, FRET change is observed.
2299:
interactions, and protein conformational changes. For monitoring the complex formation between two molecules, one of them is labeled with a donor and the other with an acceptor. The FRET efficiency is measured and used to identify interactions between the labeled complexes. There are several ways of
2705:
In the field of nano-photonics, FRET can be detrimental if it funnels excitonic energy to defect sites, but it is also essential to charge collection in organic and quantum-dot-sensitized solar cells, and various FRET-enabled strategies have been proposed for different opto-electronic devices. It is
2262:
and Yguerabide also experimentally demonstrated the theoretical dependence of Förster resonance energy transfer on the overlap integral by using a fused indolosteroid as a donor and a ketone as an acceptor. Calculations on FRET distances of some example dye-pairs can be found here. However, a lot of
2682:
has developed a patented substrate for NanoLuc called furimazine, though other valuables coelenterazine substrates for NanoLuc have also been published. A split-protein version of NanoLuc developed by Promega has also been used as a BRET donor in experiments measuring protein-protein interactions.
2434:
is the photobleaching decay time constant and depends on whether the acceptor is present or not. Since photobleaching consists in the permanent inactivation of excited fluorophores, resonance energy transfer from an excited donor to an acceptor fluorophore prevents the photobleaching of that donor
2330:
rates of the donor in the presence and absence of an acceptor. This method can be performed on most fluorescence microscopes; one simply shines the excitation light (of a frequency that will excite the donor but not the acceptor significantly) on specimens with and without the acceptor fluorophore
2847:
Proteins, DNAs, RNAs, and other polymer folding dynamics have been measured using FRET. Usually, these systems are under equilibrium whose kinetics is hidden. However, they can be measured by measuring single-molecule FRET with proper placement of the acceptor and donor dyes on the molecules. See
2691:
In general, "FRET" refers to situations where the donor and acceptor proteins (or "fluorophores") are of two different types. In many biological situations, however, researchers might need to examine the interactions between two, or more, proteins of the same type—or indeed the same protein with
2798:
FRET-based probes can detect the presence of various molecules: the probe's structure is affected by small molecule binding or activity, which can turn the FRET system on or off. This is often used to detect anions, cations, small uncharged molecules, and some larger biomacromolecules as well.
2701:
Obviously, spectral differences will not be the tool used to detect and measure FRET, as both the acceptor and donor protein emit light with the same wavelengths. Yet researchers can detect differences in the polarisation between the light which excites the fluorophores and the light which is
2562:
This technique was introduced by Jovin in 1989. Its use of an entire curve of points to extract the time constants can give it accuracy advantages over the other methods. Also, the fact that time measurements are over seconds rather than nanoseconds makes it easier than fluorescence lifetime
2593:
smFRET is a group of methods using various microscopic techniques to measure a pair of donor and acceptor fluorophores that are excited and detected at the single molecule level. In contrast to "ensemble FRET" or "bulk FRET" which provides the FRET signal of a high number of molecules,
2308:
One method of measuring FRET efficiency is to measure the variation in acceptor emission intensity. When the donor and acceptor are in proximity (1–10 nm) due to the interaction of the two molecules, the acceptor emission will increase because of the
4488:
Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Kurakata H, Hosoya T (July 2013). "C6-Deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic 19 kDa component of Oplophorus luciferase".
612: 935:{\displaystyle J={\frac {\int f_{\text{D}}(\lambda )\epsilon _{\text{A}}(\lambda )\lambda ^{4}\,d\lambda }{\int f_{\text{D}}(\lambda )\,d\lambda }}=\int {\overline {f_{\text{D}}}}(\lambda )\epsilon _{\text{A}}(\lambda )\lambda ^{4}\,d\lambda ,} 4909:
Liu, Jiawen; Guillemeney, Lilian; Choux, Arnaud; Maître, Agnès; Abécassis, Benjamin; Coolen, Laurent (21 October 2020). "Fourier-Imaging of Single Self-Assembled CdSe Nanoplatelet Chains and Clusters Reveals out-of-Plane Dipole Contribution".
2860:
In addition to common uses previously mentioned, FRET and BRET are also effective in the study of biochemical reaction kinetics. FRET is increasingly used for monitoring pH dependent assembly and disassembly and is valuable in the analysis of
2402: 1047: 2702:
emitted, in a technique called FRET anisotropy imaging; the level of quantified anisotropy (difference in polarisation between the excitation and emission beams) then becomes an indicative guide to how many FRET events have happened.
2644:
A limitation of FRET performed with fluorophore donors is the requirement for external illumination to initiate the fluorescence transfer, which can lead to background noise in the results from direct excitation of the acceptor or to
2606:
If the linker is intact, excitation at the absorbance wavelength of CFP (414 nm) causes emission by YFP (525 nm) due to FRET. If the linker is cleaved by a protease, FRET is abolished and emission is at the CFP wavelength
1484:
The units of the data are usually not in SI units. Using the original units to calculate the Förster distance is often more convenient. For example, the wavelength is often in unit nm and the extinction coefficient is often in unit
2774:, movement and dispersal of membrane proteins, membrane lipid-protein and protein-protein interactions, and successful mixing of different membranes. FRET is also used to study formation and properties of membrane domains and 1823: 1961: 1292:= 2/3 is often assumed. This value is obtained when both dyes are freely rotating and can be considered to be isotropically oriented during the excited-state lifetime. If either dye is fixed or not free to rotate, then 247: 1454:, and thus determinations of changes in relative distance for a particular system are still valid. Fluorescent proteins do not reorient on a timescale that is faster than their fluorescence lifetime. In this case 0 ≤ 336:
The FRET efficiency depends on many physical parameters that can be grouped as: 1) the distance between the donor and the acceptor (typically in the range of 1–10 nm), 2) the spectral overlap of the donor
2558:
are the photobleaching decay time constants of the donor in the presence and in the absence of the acceptor respectively. (Notice that the fraction is the reciprocal of that used for lifetime measurements).
5913:
Lu KY, Lin CW, Hsu CH, Ho YC, Chuang EY, Sung HW, Mi FL (October 2014). "FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier".
4524: 2496: 2057: 6139:
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y (March 2019). "Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines".
91:
that is instantly absorbed by a receiving chromophore. These virtual photons are undetectable, since their existence violates the conservation of energy and momentum, and hence FRET is known as a
2180: 69:. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance. 5774:
Wu Y, Xing D, Luo S, Tang Y, Chen Q (April 2006). "Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis".
2628:(GFP). Labeling with organic fluorescent dyes requires purification, chemical modification, and intracellular injection of a host protein. GFP variants can be attached to a host protein by 461: 1004: 5148:
Shi Y, Stouten PF, Pillalamarri N, Barile L, Rosal RV, Teichberg S, et al. (March 2006). "Quantitative determination of the topological propensities of amyloidogenic peptides".
2529: 2263:
contradictions of special experiments with the theory was observed under complicated environment when the orientations and quantum yields of the molecules are difficult to estimate.
2090: 1031: 1662: 2726:
fields. FRET can be used as a spectroscopic ruler to measure distance and detect molecular interactions in a number of systems and has applications in biology and biochemistry.
2213: 2722:
The applications of fluorescence resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple in many biological and
2556: 2432: 1234: 2117: 5690:
Lohse MJ, Nuber S, Hoffmann C (April 2012). "Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling".
493:
being the Förster distance of this pair of donor and acceptor, i.e. the distance at which the energy transfer efficiency is 50%. The Förster distance depends on the overlap
1880: 1529: 503: 304: 2240: 970: 724: 642: 2892:(BiFC), where two parts of a fluorescent protein are each fused to other proteins. When these two parts meet, they form a fluorophore on a timescale of minutes or hours. 1479: 1425: 1398: 1344: 1317: 1290: 673: 5733:
Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007-01-01). "In vivo measurement by FRET of pathway activity in bacterial chemotaxis". In Simon MI, Crane BR, Crane A (eds.).
1263: 1991: 1695: 5949:
Yang L, Cui C, Wang L, Lei J, Zhang J (July 2016). "Dual-Shell Fluorescent Nanoparticles for Self-Monitoring of pH-Responsive Molecule-Releasing in a Visualized Way".
6282: 4000:
Szöllősi J, Alexander DR (2007). "The Application of Fluorescence Resonance Energy Transfer to the Investigation of Phosphatases". In Klumpp S, Krieglstein J (eds.).
2341: 127:. When both chromophores are fluorescent, the term "fluorescence resonance energy transfer" is often used instead, although the energy is not actually transferred by 1190:{\displaystyle \kappa ={\hat {\mu }}_{\text{A}}\cdot {\hat {\mu }}_{\text{D}}-3({\hat {\mu }}_{\text{D}}\cdot {\hat {R}})({\hat {\mu }}_{\text{A}}\cdot {\hat {R}}),} 1722: 1583: 1452: 1371: 497:
of the donor emission spectrum with the acceptor absorption spectrum and their mutual molecular orientation as expressed by the following equation all in SI units:
491: 331: 277: 4528: 1849: 2738:
in a single protein by tagging different regions of the protein with fluorophores and measuring emission to determine distance. This provides information about
1603: 1549: 748: 693: 389: 369: 157: 5304:"Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein" 4042: 5267:
Truong K, Ikura M (October 2001). "The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo".
2916: 1730: 2692:
itself, for example if the protein folds or forms part of a polymer chain of proteins or for other questions of quantification in biological cells or
4194:
Pfleger KD, Eidne KA (March 2006). "Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET)".
2889: 2576: 1888: 5054:
Szabó, Ágnes; Szendi-Szatmári, Tímea; Szöllősi, János; Nagy, Peter (2020-07-07). "Quo vadis FRET? Förster's method in the era of superresolution".
3822:
Majoul I, Jia Y, Duden R (2006). "Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells". In Pawley JB (ed.).
1319:= 2/3 will not be a valid assumption. In most cases, however, even modest reorientation of the dyes results in enough orientational averaging that 4956: 169: 6302: 5750: 5646: 4170: 4017: 3943: 3907: 3847: 3649: 3598: 3486:
C. King; B. Barbiellini; D. Moser & V. Renugopalakrishnan (2012). "Exactly soluble model of resonant energy transfer between molecules".
3411: 3312: 3102: 3014: 2985: 2956: 4239:"Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform" 2575:
of the donor. The lifetime of the donor will decrease in the presence of the acceptor. Lifetime measurements of the FRET-donor are used in
5345:"A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin" 65:). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative 2827:
activation and consequent signaling mechanisms. Other examples include the use of FRET to analyze such diverse processes as bacterial
2276: 76:
are within a certain distance of each other. Such measurements are used as a research tool in fields including biology and chemistry.
3361: 4550: 3741:"Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots (supporting information)" 5183:
Matsumoto S, Hammes GG (January 1975). "Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase".
3330: 2734:
FRET is often used to detect and track interactions between proteins. Additionally, FRET can be used to measure distances between
2335:) over time. The timescale is that of photobleaching, which is seconds to minutes, with fluorescence in each curve being given by 6287: 6184:"Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation" 5320: 5303: 5986:"Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration" 2441: 2602: 6297: 4803:
Heckmeier, Philipp J.; Agam, Ganesh; Teese, Mark G.; Hoyer, Maria; Stehle, Ralf; Lamb, Don C.; Langosch, Dieter (July 2020).
2002: 6262: 3974: 1034: 2754:
activity. Applied in vivo, FRET has been used to detect the location and interactions of cellular structures including
163:
of the energy-transfer transition, i.e. the probability of energy-transfer event occurring per donor excitation event:
5486:"Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes" 2743: 1346:= 2/3 does not result in a large error in the estimated energy-transfer distance due to the sixth-power dependence of 4157:. Methods of Biochemical Analysis. Vol. 47 (2nd ed.). Hoboken, NJ: John Wiley & Sons. pp. 361–90. 3030:
Schneckenburger, Herbert (2019-11-27). "Förster resonance energy transfer–what can we learn and how can we use it?".
2125: 66: 397: 6277: 6231: 2824: 2750:. This extends to tracking functional changes in protein structure, such as conformational changes associated with 2621: 4106:
Nguyen AW, Daugherty PS (March 2005). "Evolutionary optimization of fluorescent proteins for intracellular FRET".
5533:
Fung BK, Stryer L (November 1978). "Surface density determination in membranes by fluorescence energy transfer".
4089: 2625: 2250:
The inverse sixth-power distance dependence of Förster resonance energy transfer was experimentally confirmed by
1996:
The FRET efficiency relates to the quantum yield and the fluorescence lifetime of the donor molecule as follows:
2799:
Similarly, FRET systems have been designed to detect changes in the cellular environment due to such factors as
975: 6307: 2901: 2882: 2617: 4551:"Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a Chemical Library of Coelenterazine Analogues" 2300:
measuring the FRET efficiency by monitoring changes in the fluorescence emitted by the donor or the acceptor.
3545: 2911: 2790: 346: 96: 5811:"Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination" 1009: 1608: 6292: 6272: 6257: 2670:
BRET has also been implemented using a different luciferase enzyme, engineered from the deep-sea shrimp
2504: 2534: 2410: 2065: 1203: 4601:"NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells" 4286:
Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T, et al. (December 2015).
3585:. Laboratory Techniques in Biochemistry and Molecular Biology. Vol. 33. Elsevier. pp. 1–57. 2095: 607:{\displaystyle {R_{0}}^{6}={\frac {2.07}{128\,\pi ^{5}\,N_{A}}}\,{\frac {\kappa ^{2}\,Q_{D}}{n^{4}}}J} 6034:
Sanchez-Gaytan BL, Fay F, Hak S, Alaarg A, Fayad ZA, Pérez-Medina C, Mulder WJ, Zhao Y (March 2017).
5867: 5626: 5386:"Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations" 5063: 4971: 4875: 4816: 4805:"Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy" 4759: 4702: 4438:"Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate" 4299: 4057: 3678: 3505: 3440: 3264: 3223: 3142: 2849: 2588: 4392:
Machleidt T, Woodroofe CC, Schwinn MK, Méndez J, Robers MB, Zimmerman K, et al. (August 2015).
2119:
are the donor fluorescence lifetimes in the presence and absence of an acceptor respectively, or as
6267: 2906: 2820: 2629: 2188: 1858: 1488: 342: 282: 4343:
Stoddart LA, Johnstone EK, Wheal AJ, Goulding J, Robers MB, Machleidt T, et al. (July 2015).
3429:"Single-molecule three-color FRET with both negligible spectral overlap and long observation time" 2218: 948: 702: 620: 6164: 6016: 5715: 5664: 5515: 5220:"Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway" 5095: 4995: 4937: 4919: 4691:"Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins" 4581: 4219: 4131: 4081: 3863:
Edelhoch H, Brand L, Wilchek M (February 1967). "Fluorescence studies with tryptophyl peptides".
3521: 3495: 3192: 3063: 2808: 2663: 2632:
which can be more convenient. Additionally, a fusion of CFP and YFP ("tandem-dimer") linked by a
2435:
fluorophore, and thus high FRET efficiency leads to a longer photobleaching decay time constant:
1457: 1403: 1376: 1322: 1295: 1268: 651: 100: 80: 2397:{\displaystyle {\text{background}}+{\text{constant}}\cdot e^{-{\text{time}}/\tau _{\text{pb}}},} 1239: 124: 4748:"Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution" 4642:"Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis" 3935: 3831: 2318:
binding, this FRET technique is applicable to fluorescent indicators for the ligand detection.
1969: 1667: 6205: 6156: 6121: 6083: 6065: 6008: 5985: 5966: 5931: 5895: 5836: 5791: 5756: 5746: 5707: 5652: 5642: 5599: 5550: 5507: 5466: 5415: 5366: 5325: 5284: 5249: 5200: 5165: 5130: 5087: 5079: 5036: 4987: 4891: 4844: 4785: 4728: 4671: 4622: 4573: 4506: 4467: 4415: 4374: 4325: 4268: 4211: 4176: 4166: 4150: 4123: 4073: 4023: 4013: 3939: 3903: 3880: 3843: 3804: 3760: 3704: 3696: 3645: 3594: 3468: 3407: 3308: 3169: 3108: 3098: 3055: 3047: 3010: 3002: 2981: 2973: 2952: 2936: 2804: 2771: 2739: 2674:. This luciferase is smaller (19 kD) and brighter than the more commonly used luciferase from 2280: 727: 338: 23: 5618: 3629: 3391: 3327: 3082: 333:
the rates of any other de-excitation pathways excluding energy transfers to other acceptors.
6252: 6195: 6148: 6111: 6103: 6087: 6055: 6047: 6000: 5958: 5923: 5885: 5875: 5826: 5818: 5783: 5738: 5699: 5634: 5589: 5581: 5542: 5497: 5456: 5446: 5405: 5397: 5356: 5315: 5302:
Chan FK, Siegel RM, Zacharias D, Swofford R, Holmes KL, Tsien RY, Lenardo MJ (August 2001).
5276: 5239: 5231: 5192: 5157: 5122: 5071: 5026: 4979: 4929: 4883: 4834: 4824: 4775: 4767: 4718: 4710: 4661: 4653: 4612: 4599:
Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, et al. (February 2016).
4565: 4549:
Coutant EP, Gagnot G, Hervin V, Baatallah R, Goyard S, Jacob Y, et al. (January 2020).
4498: 4457: 4449: 4405: 4364: 4356: 4315: 4307: 4258: 4250: 4203: 4158: 4115: 4065: 4005: 3927: 3872: 3835: 3823: 3794: 3752: 3686: 3637: 3586: 3578: 3513: 3458: 3448: 3399: 3300: 3272: 3231: 3184: 3150: 3090: 3039: 2944: 2759: 2331:
and monitors the donor fluorescence (typically separated from acceptor fluorescence using a
696: 27: 4436:
Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. (November 2012).
3550:
Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals
1700: 1554: 1430: 1349: 469: 309: 255: 6236: 5676: 5570:"Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents" 4689:
Gautier I, Tramier M, Durieux C, Coppey J, Pansu RB, Nicolas JC, et al. (June 2001).
3365: 2865:
encapsulation. This technique can be used to determine factors affecting various types of
2747: 2650: 2332: 1828: 3170:"Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach" 6092:"FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes" 5871: 5630: 5067: 4975: 4879: 4820: 4763: 4706: 4303: 4061: 3682: 3509: 3444: 3268: 3227: 3146: 6116: 6091: 6060: 6035: 5890: 5855: 5831: 5810: 5594: 5461: 5434: 5410: 5385: 5244: 5219: 4839: 4804: 4780: 4747: 4723: 4690: 4666: 4641: 4462: 4437: 4369: 4344: 4320: 4287: 4263: 4238: 3463: 3428: 2779: 2735: 2646: 2327: 2310: 1588: 1534: 733: 678: 374: 354: 142: 88: 19: 6200: 6183: 5742: 5361: 5344: 5280: 5126: 4714: 4009: 3590: 6246: 6168: 6020: 5099: 4999: 4957:"Long Range Energy Transfer in Self-Assembled Stacks of Semiconducting Nanoplatelets" 4941: 4585: 4288:"Target engagement and drug residence time can be observed in living cells with BRET" 3928: 3824: 3403: 3334: 3196: 3188: 3154: 3067: 2259: 2255: 645: 160: 6004: 5519: 4135: 4085: 3525: 5719: 4223: 3959:
Vekshin NL (1997). "Energy Transfer in Macromolecules, SPIE". In Vekshin NL (ed.).
2870: 2866: 2862: 2823:. For example, FRET and BRET have been used in various experiments to characterize 2572: 2288: 2251: 1818:{\displaystyle {R_{0}}^{6}=8.785\times 10^{-5}{\frac {\kappa ^{2}\,Q_{D}}{n^{4}}}J} 1236:
denotes the normalized transition dipole moment of the respective fluorophore, and
128: 61:) is a mechanism describing energy transfer between two light-sensitive molecules ( 6143:. Unraveling the In Vivo Fate and Cellular Pharmacokinetics of Drug Nanocarriers. 4394:"NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions" 3579:"Förster resonance energy transfer—FRET: what is it, why do it, and how it's done" 2242:
are the donor fluorescence intensities with and without an acceptor respectively.
5787: 5568:
Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, et al. (August 2020).
4983: 4933: 4746:
Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen HC (November 2009).
3839: 3453: 3083:"Spectroscopy-based quantitative fluorescence resonance energy transfer analysis" 3641: 2948: 73: 62: 6152: 5075: 4617: 4600: 4502: 4410: 4393: 3691: 3666: 3517: 3127: 3094: 3043: 6225: 5502: 5485: 5161: 4829: 4771: 4004:. Methods in Enzymology. Vol. 366. Amsterdam: Elsevier. pp. 203–24. 3978: 3304: 2828: 2775: 2723: 2658: 2314:
If a molecular interaction or a protein conformational change is dependent on
2284: 2272: 1956:{\displaystyle k_{\text{ET}}=({\frac {R_{0}}{r}})^{6}\,{\frac {1}{\tau _{D}}}} 115: 5451: 5083: 3740: 3700: 3277: 3252: 3089:. Methods in Molecular Biology. Vol. 337. Humana Press. pp. 65–77. 3051: 2667:) rather than CFP to produce an initial photon emission compatible with YFP. 26:
of FRET with typical timescales indicated. The black dashed line indicates a
4162: 3236: 3211: 2836: 2755: 242:{\displaystyle E={\frac {k_{\text{ET}}}{k_{f}+k_{\text{ET}}+\sum {k_{i}}}},} 104: 87:
of light emitted. In the near-field region, the excited chromophore emits a
6209: 6160: 6125: 6069: 6051: 6012: 5970: 5962: 5935: 5899: 5840: 5795: 5760: 5711: 5656: 5603: 5511: 5470: 5419: 5370: 5329: 5288: 5253: 5169: 5134: 5113:
Pollok BA, Heim R (February 1999). "Using GFP in FRET-based applications".
5091: 5031: 5014: 4991: 4895: 4848: 4789: 4732: 4675: 4626: 4577: 4569: 4510: 4471: 4419: 4378: 4329: 4272: 4215: 4180: 4127: 4077: 4027: 3799: 3782: 3764: 3708: 3472: 3212:"Resonance energy transfer: From fundamental theory to recent applications" 3128:"A unified theory of radiative and radiationless molecular energy transfer" 3112: 3059: 2571:
FRET efficiency can also be determined from the change in the fluorescence
391:
with an inverse 6th-power law due to the dipole–dipole coupling mechanism:
119:
Cartoon diagram of the concept of Förster resonance energy transfer (FRET).
5703: 5401: 5204: 5040: 4254: 3884: 3808: 83:
communication, in that the radius of interaction is much smaller than the
5854:
Sapkota K, Kaur A, Megalathan A, Donkoh-Moore C, Dhakal S (August 2019).
5737:. Methods in Enzymology. Vol. 423. Academic Press. pp. 365–91. 5554: 5235: 2694: 2633: 1427:
is quite different from 2/3, the error can be associated with a shift in
494: 5546: 5321:
10.1002/1097-0320(20010801)44:4<361::AID-CYTO1128>3.0.CO;2-3
5196: 4311: 4237:
Mo XL, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, et al. (June 2016).
3876: 1037:, normally obtained from an absorption spectrum. The orientation factor 5638: 5585: 5569: 4360: 2832: 2679: 2292: 99:
calculations have been used to determine that radiationless (FRET) and
6107: 5927: 5880: 4453: 4069: 3756: 123:
Förster resonance energy transfer is named after the German scientist
4887: 4657: 4207: 2751: 2315: 1993:
is the donor's fluorescence lifetime in the absence of the acceptor.
4119: 3613: 2888:
An alternative method to detecting protein–protein proximity is the
4924: 4863: 3552:. Vol. 3. New York and London: Academic Press. pp. 93–137 4640:
Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RA (August 2019).
4043:"Fluorescence resonance energy transfer microscopy: a mini review" 3500: 3295:
Valeur B, Berberan-Santos M (2012). "Excitation Energy Transfer".
2789: 1855:
For time-dependent analyses of FRET, the rate of energy transfer (
114: 84: 18: 5822: 5343:
Shih WM, Gryczynski Z, Lakowicz JR, Spudich JA (September 2000).
4155:
Green Fluorescent Protein: Properties, Applications and Protocols
3934:(2nd ed.). New York, NY: Kluwer Acad./Plenum Publ. pp.  3009:(8th ed.). New York: W. H. Freeman and Co. pp. 419–44. 6036:"Real-Time Monitoring of Nanoparticle Formation by FRET Imaging" 3739:
Chan YH, Chen J, Wark SE, Skiles SL, Son DH, Batteas JD (2009).
3385: 3383: 72:
Measurements of FRET efficiency can be used to determine if two
3725: 1006:
is the donor emission spectrum normalized to an area of 1, and
4864:"Fluorescence anisotropy: from single molecules to live cells" 2296: 4862:
Gradinaru CC, Marushchak DO, Samim M, Krull UJ (March 2010).
3255:[Intermolecular energy migration and fluorescence]. 3297:
Molecular Fluorescence: Principles and Applications, 2nd ed
2800: 2657:) has been developed. This technique uses a bioluminescent 2943:(3rd ed.). New York, NY: Springer. pp. 162–206. 2794:
FRET-based probe that activates upon interaction with Cd2+
2283:, FRET is a useful tool to quantify molecular dynamics in 2491:{\displaystyle E=1-\tau _{\text{pb}}/\tau _{\text{pb}}',} 4345:"Application of BRET to monitor ligand binding to GPCRs" 3776: 3774: 345:, and 3) the relative orientation of the donor emission 2052:{\displaystyle E=1-\tau '_{\text{D}}/\tau _{\text{D}},} 1265:
denotes the normalized inter-fluorophore displacement.
5218:
Martin SF, Tatham MH, Hay RT, Samuel ID (April 2008).
5015:"Resonance energy transfer: methods and applications" 3783:"Resonance Energy Transfer: Methods and Applications" 3539: 3537: 3535: 3362:"Fluorescence Resonance Energy Transfer spectroscopy" 3253:"Zwischenmolekulare Energiewanderung und Fluoreszenz" 2819:
Another use for FRET is in the study of metabolic or
2616:
One common pair fluorophores for biological use is a
2537: 2507: 2444: 2413: 2344: 2221: 2191: 2128: 2098: 2068: 2005: 1972: 1891: 1861: 1831: 1733: 1703: 1670: 1611: 1591: 1557: 1537: 1491: 1460: 1433: 1406: 1379: 1352: 1325: 1298: 1271: 1242: 1206: 1050: 1012: 978: 951: 759: 736: 705: 681: 654: 623: 506: 472: 400: 377: 371:
depends on the donor-to-acceptor separation distance
357: 312: 285: 258: 172: 145: 5984:
Heitz M, Zamolo S, Javor S, Reymond JL (June 2020).
5856:"Single-Step FRET-Based Detection of Femtomoles DNA" 4491:
Biochemical and Biophysical Research Communications
3398:. Oxford: Oxford University Press. pp. 72–94. 3396:
Molecular Imaging: FRET Microscopy and Spectroscopy
2869:formation as well as the mechanisms and effects of 2636:cleavage sequence can be used as a cleavage assay. 6040:Angewandte Chemie International Edition in English 2550: 2523: 2490: 2426: 2396: 2234: 2207: 2174: 2111: 2084: 2051: 1985: 1955: 1874: 1843: 1817: 1716: 1689: 1656: 1597: 1577: 1543: 1523: 1473: 1446: 1419: 1392: 1365: 1338: 1311: 1284: 1257: 1228: 1189: 1025: 998: 964: 934: 742: 718: 687: 667: 636: 606: 485: 455: 383: 363: 325: 298: 271: 241: 151: 4431: 4429: 3975:"Fluorescence Resonance Energy Transfer Protocol" 3830:(3rd ed.). New York, NY: Springer. pp.  3572: 3570: 3568: 3566: 3623: 3621: 3546:"Delocalized Excitation and Excitation Transfer" 2326:FRET efficiencies can also be inferred from the 2254:, Edelhoch and Brand using tryptophyl peptides. 4483: 4481: 2782:and to determine surface density in membranes. 2714:Various compounds beside fluorescent proteins. 2175:{\displaystyle E=1-F_{\text{D}}'/F_{\text{D}},} 750:is the spectral overlap integral calculated as 3667:"Kappaphobia is the elephant in the fret room" 2937:"The Contrast Formation in Optical Microscopy" 456:{\displaystyle E={\frac {1}{1+(r/R_{0})^{6}}}} 6182:Hu CD, Chinenov Y, Kerppola TK (April 2002). 5619:"Dynamic visualization of cellular signaling" 4151:"Pharmaceutical Applications of GFP and RCFP" 648:of the donor in the absence of the acceptor, 8: 3290: 3288: 2246:Experimental confirmation of the FRET theory 5625:. Vol. 119. Springer. pp. 79–97. 3921: 3919: 3392:"FRET Imaging in the Wide-Field Microscope" 349:and the acceptor absorption dipole moment. 6086:, Love KT, Sahay G, Stutzman T, Young WT, 5435:"FRET in Membrane Biophysics: An Overview" 3826:Handbook of Biological Confocal Microscopy 2941:Handbook of Biological Confocal Microscopy 2917:Time-resolved fluorescence energy transfer 999:{\displaystyle {\overline {f_{\text{D}}}}} 6239:(Tutorial of Becker & Hickl, website) 6199: 6115: 6059: 5889: 5879: 5830: 5593: 5501: 5460: 5450: 5409: 5360: 5319: 5243: 5030: 4923: 4838: 4828: 4779: 4722: 4665: 4616: 4461: 4409: 4368: 4319: 4262: 3798: 3720: 3718: 3690: 3499: 3462: 3452: 3349:(3rd ed.). IUPAC. 2007. p. 340. 3299:. Weinheim: Wiley-VCH. pp. 213–261. 3276: 3235: 2843:Proteins and nucleotides folding kinetics 2678:, and has been named NanoLuc or NanoKAZ. 2542: 2536: 2512: 2506: 2476: 2467: 2461: 2443: 2418: 2412: 2383: 2374: 2369: 2365: 2353: 2345: 2343: 2226: 2220: 2196: 2190: 2163: 2154: 2145: 2127: 2103: 2097: 2073: 2067: 2040: 2031: 2022: 2004: 1977: 1971: 1945: 1936: 1935: 1929: 1914: 1908: 1896: 1890: 1866: 1860: 1835: 1830: 1804: 1793: 1788: 1782: 1775: 1766: 1747: 1740: 1735: 1732: 1708: 1702: 1675: 1669: 1648: 1632: 1616: 1610: 1605:obtained from these units will have unit 1590: 1567: 1556: 1536: 1512: 1496: 1490: 1465: 1459: 1438: 1432: 1411: 1405: 1384: 1378: 1357: 1351: 1330: 1324: 1303: 1297: 1276: 1270: 1244: 1243: 1241: 1220: 1209: 1208: 1205: 1170: 1169: 1160: 1149: 1148: 1130: 1129: 1120: 1109: 1108: 1092: 1081: 1080: 1070: 1059: 1058: 1049: 1017: 1011: 985: 979: 977: 956: 950: 922: 916: 897: 873: 867: 851: 836: 820: 814: 795: 776: 766: 758: 735: 710: 704: 680: 659: 653: 628: 622: 593: 582: 577: 571: 564: 563: 554: 549: 543: 538: 529: 520: 513: 508: 505: 477: 471: 444: 434: 425: 407: 399: 376: 356: 317: 311: 290: 284: 263: 257: 226: 221: 209: 196: 185: 179: 171: 144: 5056:Methods and Applications in Fluorescence 4646:Pharmacology Research & Perspectives 3671:Methods and Applications in Fluorescence 3636:. Dordrecht: Springer. pp. 65–118. 3347:Glossary of Terms Used in Photochemistry 3032:Methods and Applications in Fluorescence 2978:Principles of Computational Cell Biology 2974:"Fluorescence Resonance Energy Transfer" 2890:bimolecular fluorescence complementation 2601: 2577:fluorescence-lifetime imaging microscopy 5735:Two-Component Signaling Systems, Part B 3930:Principles of fluorescence spectroscopy 3902:. New York: Plenum Press. p. 172. 3390:Schaufele F, Demarco I, Day RN (2005). 2927: 2881:A different, but related, mechanism is 2624:(YFP) pair. Both are color variants of 279:the radiative decay rate of the donor, 16:Photochemical energy transfer mechanism 5951:ACS Applied Materials & Interfaces 5916:ACS Applied Materials & Interfaces 5672: 5662: 43:fluorescence resonance energy transfer 5269:Current Opinion in Structural Biology 3427:Lee S, Lee J, Hohng S (August 2010). 3328:FRET microscopy tutorial from Olympus 3085:. In Stockand JD, Shapiro MS (eds.). 7: 5384:Sekar RB, Periasamy A (March 2003). 3634:Introduction to Fluorescence Sensing 2980:. Weinheim: Wiley-VCH. p. 202. 1026:{\displaystyle \epsilon _{\text{A}}} 306:is the rate of energy transfer, and 3630:"Fluorescence Detection Techniques" 3003:"Applications of Spectrophotometry" 1657:{\displaystyle M^{-1}cm^{-1}nm^{4}} 6283:Protein–protein interaction assays 2524:{\displaystyle \tau _{\text{pb}}'} 2277:confocal laser scanning microscopy 2267:Methods to measure FRET efficiency 675:is the dipole orientation factor, 14: 5815:Journal of Visualized Experiments 5433:Loura LM, Prieto M (2011-11-15). 4243:Journal of Molecular Cell Biology 3614:http://spie.org/samples/PM194.pdf 2852:for a more detailed description. 2551:{\displaystyle \tau _{\text{pb}}} 2427:{\displaystyle \tau _{\text{pb}}} 2085:{\displaystyle \tau _{\text{D}}'} 1229:{\displaystyle {\hat {\mu }}_{i}} 35:Förster resonance energy transfer 5621:. In Endo I, Nagamune T (eds.). 4153:. In Chalfie M, Kain SR (eds.). 3977:. Wellcome Trust. Archived from 3404:10.1016/B978-019517720-6.50013-4 3394:. In Periasamy A, Day R (eds.). 3168:Andrews DL, Bradshaw DS (2004). 2112:{\displaystyle \tau _{\text{D}}} 1882:) can be used directly instead: 972:is the donor emission spectrum, 6005:10.1021/acs.bioconjchem.0c00231 5809:Liu Y, Liao J (February 2013). 2661:(typically the luciferase from 2295:-protein interactions, protein– 1724:, the equation is adjusted to 107:of a single unified mechanism. 6141:Advanced Drug Delivery Reviews 4955:Liu, Jiawen (April 21, 2020). 3210:Jones GA, Bradshaw DS (2019). 3007:Quantitative Chemical Analysis 2653:resonance energy transfer (or 1926: 1905: 1249: 1214: 1181: 1175: 1154: 1144: 1141: 1135: 1114: 1104: 1086: 1064: 909: 903: 890: 884: 848: 842: 807: 801: 788: 782: 441: 419: 103:are the short- and long-range 1: 6201:10.1016/S1097-2765(02)00496-3 5743:10.1016/S0076-6879(07)23017-4 5362:10.1016/S0092-8674(00)00090-8 5281:10.1016/S0959-440X(00)00249-9 5127:10.1016/S0962-8924(98)01434-2 4715:10.1016/S0006-3495(01)76265-0 4558:Chemistry: A European Journal 4010:10.1016/S0076-6879(03)66017-9 3591:10.1016/S0075-7535(08)00001-6 2583:Single-molecule FRET (smFRET) 2208:{\displaystyle F_{\text{D}}'} 1875:{\displaystyle k_{\text{ET}}} 1524:{\displaystyle M^{-1}cm^{-1}} 299:{\displaystyle k_{\text{ET}}} 6303:Molecular biology techniques 5788:10.1016/j.canlet.2005.04.036 5484:Silvius JR, Nabi IR (2006). 5013:Wu P, Brand L (April 1994). 4984:10.1021/acs.nanolett.0c00376 4934:10.1021/acsphotonics.0c01066 4050:Journal of Biomedical Optics 3840:10.1007/978-0-387-45524-2_45 3665:VanDerMeer, B. Wieb (2020). 3454:10.1371/journal.pone.0012270 3155:10.1016/0301-0104(89)87019-3 2770:FRET can be used to observe 2235:{\displaystyle F_{\text{D}}} 1035:molar extinction coefficient 991: 965:{\displaystyle f_{\text{D}}} 879: 719:{\displaystyle N_{\text{A}}} 637:{\displaystyle Q_{\text{D}}} 6090:, Anderson DG (July 2012). 5390:The Journal of Cell Biology 3642:10.1007/978-1-4020-9003-5_3 3177:European Journal of Physics 2949:10.1007/978-0-387-45524-2_8 1474:{\displaystyle \kappa ^{2}} 1420:{\displaystyle \kappa ^{2}} 1393:{\displaystyle \kappa ^{2}} 1339:{\displaystyle \kappa ^{2}} 1312:{\displaystyle \kappa ^{2}} 1285:{\displaystyle \kappa ^{2}} 668:{\displaystyle \kappa ^{2}} 6324: 6227:FRET effect in a thin film 6153:10.1016/j.addr.2019.04.009 5490:Molecular Membrane Biology 4618:10.1021/acschembio.5b00753 4503:10.1016/j.bbrc.2013.06.026 4411:10.1021/acschembio.5b00143 3518:10.1103/PhysRevB.85.125106 3189:10.1088/0143-0807/25/6/017 2825:G-protein coupled receptor 2649:. To avoid this drawback, 2622:yellow fluorescent protein 2598:Fluorophores used for FRET 2586: 1258:{\displaystyle {\hat {R}}} 55:electronic energy transfer 5503:10.1080/09687860500473002 5162:10.1016/j.bpc.2005.09.015 4830:10.1016/j.bpj.2020.05.025 4772:10.1016/j.bpj.2009.07.059 4041:Periasamy A (July 2001). 3898:Lakowicz JR, ed. (1991). 3305:10.1002/9783527650002.ch8 2672:Oplophorus gracilirostris 2626:green fluorescent protein 1986:{\displaystyle \tau _{D}} 1690:{\displaystyle 10^{-10}m} 101:radiative energy transfer 47:resonance energy transfer 5623:Nano/Micro Biotechnology 5574:Chemical Society Reviews 5452:10.3389/fphys.2011.00082 5076:10.1088/2050-6120/ab9b72 4149:Bevan N, Rees S (2006). 3961:Photonics of Biopolymers 3726:"FPbase FRET Calculator" 3692:10.1088/2050-6120/ab8f87 3583:FRET and FLIM Techniques 3548:. In Sinanoglu O (ed.). 3278:10.1002/andp.19484370105 3095:10.1385/1-59745-095-2:65 3044:10.1088/2050-6120/ab56e1 2902:Dexter electron transfer 2883:Dexter electron transfer 2618:cyan fluorescent protein 97:Quantum electrodynamical 6288:Fluorescence techniques 5692:Pharmacological Reviews 5439:Frontiers in Physiology 5019:Analytical Biochemistry 4163:10.1002/0471739499.ch16 3787:Analytical Biochemistry 3781:Wu PG, Brand L (1994). 3581:. In Gadella TW (ed.). 3237:10.3389/fphy.2019.00100 2912:Surface energy transfer 6052:10.1002/anie.201611288 5993:Bioconjugate Chemistry 5963:10.1021/acsami.6b05872 5617:Ni Q, Zhang J (2010). 5115:Trends in Cell Biology 5032:10.1006/abio.1994.1134 4570:10.1002/chem.201904844 4525:"NanoLuc product page" 3800:10.1006/abio.1994.1134 2939:. In Pawley JB (ed.). 2795: 2608: 2552: 2525: 2492: 2428: 2398: 2236: 2209: 2176: 2113: 2086: 2053: 1987: 1957: 1876: 1845: 1819: 1718: 1691: 1658: 1599: 1579: 1545: 1525: 1475: 1448: 1421: 1394: 1367: 1340: 1313: 1286: 1259: 1230: 1191: 1027: 1000: 966: 936: 744: 720: 689: 669: 638: 608: 487: 457: 385: 365: 327: 300: 273: 243: 153: 120: 67:dipole–dipole coupling 31: 6298:Laboratory techniques 5704:10.1124/pr.110.004309 5402:10.1083/jcb.200210140 5150:Biophysical Chemistry 4292:Nature Communications 3628:Demchenko AP (2008). 2793: 2605: 2567:Lifetime measurements 2553: 2526: 2493: 2429: 2399: 2237: 2210: 2177: 2114: 2087: 2054: 1988: 1958: 1877: 1846: 1820: 1719: 1717:{\displaystyle R_{0}} 1692: 1659: 1600: 1580: 1578:{\displaystyle mol/L} 1546: 1526: 1476: 1449: 1447:{\displaystyle R_{0}} 1422: 1395: 1368: 1366:{\displaystyle R_{0}} 1341: 1314: 1287: 1260: 1231: 1192: 1028: 1001: 967: 937: 745: 721: 690: 670: 639: 609: 488: 486:{\displaystyle R_{0}} 458: 386: 366: 328: 326:{\displaystyle k_{i}} 301: 274: 272:{\displaystyle k_{f}} 244: 154: 139:The FRET efficiency ( 118: 79:FRET is analogous to 22: 6263:Biochemistry methods 5236:10.1110/ps.073369608 4605:ACS Chemical Biology 4442:ACS Chemical Biology 4398:ACS Chemical Biology 4108:Nature Biotechnology 4002:Protein Phosphatases 3926:Lakowicz JR (1999). 3216:Frontiers in Physics 2850:single-molecule FRET 2744:secondary structures 2740:protein conformation 2589:Single-molecule FRET 2535: 2505: 2442: 2411: 2342: 2219: 2189: 2126: 2096: 2066: 2003: 1970: 1889: 1859: 1844:{\displaystyle ^{6}} 1829: 1731: 1701: 1668: 1609: 1589: 1555: 1535: 1489: 1458: 1431: 1404: 1377: 1350: 1323: 1296: 1269: 1240: 1204: 1048: 1010: 976: 949: 757: 734: 703: 679: 652: 644:is the fluorescence 621: 504: 470: 398: 375: 355: 310: 283: 256: 170: 143: 5872:2019Senso..19.3495S 5631:2010nmb..book...79N 5547:10.1021/bi00617a025 5197:10.1021/bi00673a004 5068:2020MApFl...8c2003S 4976:2020NanoL..20.3465L 4880:2010Ana...135..452G 4821:2020BpJ...119...99H 4809:Biophysical Journal 4764:2009BpJ....97.2613B 4752:Biophysical Journal 4707:2001BpJ....80.3000G 4695:Biophysical Journal 4312:10.1038/ncomms10091 4304:2015NatCo...610091R 4255:10.1093/jmcb/mjv064 4062:2001JBO.....6..287P 3877:10.1021/bi00854a024 3683:2020MApFl...8c0401V 3510:2012PhRvB..85l5106K 3445:2010PLoSO...512270L 3269:1948AnP...437...55F 3228:2019FrP.....7..100J 3147:1989CP....135..195A 3126:Andrews DL (1989). 2807:, or mitochondrial 2630:genetic engineering 2520: 2484: 2322:Photobleaching FRET 2304:Sensitized emission 2204: 2153: 2081: 2030: 343:absorption spectrum 5639:10.1007/10_2008_48 5586:10.1039/C9CS00318E 4361:10.1038/nmeth.3398 3544:Förster T (1965). 3257:Annalen der Physik 3251:Förster T (1948). 3001:Harris DC (2010). 2856:Other applications 2821:signaling pathways 2815:Signaling pathways 2809:membrane potential 2796: 2676:Renilla reniformis 2664:Renilla reniformis 2609: 2548: 2521: 2508: 2488: 2472: 2424: 2394: 2232: 2205: 2192: 2172: 2141: 2109: 2082: 2069: 2049: 2018: 1983: 1953: 1872: 1841: 1815: 1714: 1687: 1654: 1595: 1575: 1541: 1521: 1471: 1444: 1417: 1390: 1363: 1336: 1309: 1282: 1255: 1226: 1187: 1023: 996: 962: 932: 740: 716: 685: 665: 634: 604: 483: 453: 381: 361: 323: 296: 269: 239: 149: 121: 32: 6278:Optical phenomena 6108:10.1021/nn3013838 6046:(11): 2923–2926. 5928:10.1021/am505441p 5881:10.3390/s19163495 5752:978-0-12-373852-3 5648:978-3-642-14946-7 5580:(15): 5110–5139. 4918:(10): 2825–2833. 4454:10.1021/cb3002478 4172:978-0-471-73682-0 4070:10.1117/1.1383063 4019:978-0-12-182269-9 3945:978-0-306-46093-7 3909:978-0-306-43875-2 3849:978-0-387-25921-5 3757:10.1021/nn900317n 3651:978-1-4020-9002-8 3600:978-0-08-054958-3 3488:Physical Review B 3413:978-0-19-517720-6 3314:978-3-527-32837-6 3104:978-1-59745-095-9 3016:978-1-4292-1815-3 2987:978-3-527-31555-0 2958:978-0-387-25921-5 2935:Cheng PC (2006). 2772:membrane fluidity 2760:membrane proteins 2545: 2515: 2479: 2464: 2421: 2386: 2372: 2356: 2348: 2281:molecular biology 2229: 2199: 2166: 2148: 2106: 2076: 2043: 2025: 1951: 1923: 1899: 1869: 1810: 1664:. To use unit Å ( 1598:{\displaystyle J} 1551:is concentration 1544:{\displaystyle M} 1252: 1217: 1178: 1163: 1157: 1138: 1123: 1117: 1095: 1089: 1073: 1067: 1020: 994: 988: 959: 900: 882: 876: 859: 839: 798: 779: 743:{\displaystyle J} 728:Avogadro constant 713: 688:{\displaystyle n} 631: 599: 561: 451: 384:{\displaystyle r} 364:{\displaystyle E} 341:and the acceptor 339:emission spectrum 293: 234: 212: 188: 152:{\displaystyle E} 135:Theoretical basis 24:Jablonski diagram 6315: 6228: 6214: 6213: 6203: 6179: 6173: 6172: 6136: 6130: 6129: 6119: 6080: 6074: 6073: 6063: 6031: 6025: 6024: 5999:(6): 1671–1684. 5990: 5981: 5975: 5974: 5957:(29): 19084–91. 5946: 5940: 5939: 5922:(20): 18275–89. 5910: 5904: 5903: 5893: 5883: 5851: 5845: 5844: 5834: 5806: 5800: 5799: 5771: 5765: 5764: 5730: 5724: 5723: 5687: 5681: 5680: 5674: 5670: 5668: 5660: 5614: 5608: 5607: 5597: 5565: 5559: 5558: 5530: 5524: 5523: 5505: 5481: 5475: 5474: 5464: 5454: 5430: 5424: 5423: 5413: 5381: 5375: 5374: 5364: 5340: 5334: 5333: 5323: 5299: 5293: 5292: 5264: 5258: 5257: 5247: 5215: 5209: 5208: 5180: 5174: 5173: 5145: 5139: 5138: 5110: 5104: 5103: 5051: 5045: 5044: 5034: 5010: 5004: 5003: 4970:(5): 3465–3470. 4961: 4952: 4946: 4945: 4927: 4906: 4900: 4899: 4888:10.1039/b920242k 4859: 4853: 4852: 4842: 4832: 4800: 4794: 4793: 4783: 4743: 4737: 4736: 4726: 4686: 4680: 4679: 4669: 4658:10.1002/prp2.513 4637: 4631: 4630: 4620: 4596: 4590: 4589: 4555: 4546: 4540: 4539: 4537: 4536: 4527:. Archived from 4521: 4515: 4514: 4485: 4476: 4475: 4465: 4433: 4424: 4423: 4413: 4389: 4383: 4382: 4372: 4340: 4334: 4333: 4323: 4283: 4277: 4276: 4266: 4234: 4228: 4227: 4208:10.1038/nmeth841 4191: 4185: 4184: 4146: 4140: 4139: 4103: 4097: 4096: 4094: 4088:. Archived from 4047: 4038: 4032: 4031: 3997: 3991: 3990: 3988: 3986: 3981:on July 17, 2013 3971: 3965: 3964: 3956: 3950: 3949: 3933: 3923: 3914: 3913: 3895: 3889: 3888: 3860: 3854: 3853: 3829: 3819: 3813: 3812: 3802: 3778: 3769: 3768: 3751:(7): 1735–1744. 3736: 3730: 3729: 3722: 3713: 3712: 3694: 3662: 3656: 3655: 3625: 3616: 3611: 3605: 3604: 3577:Clegg R (2009). 3574: 3561: 3560: 3558: 3557: 3541: 3530: 3529: 3503: 3483: 3477: 3476: 3466: 3456: 3424: 3418: 3417: 3387: 3378: 3377: 3375: 3373: 3368:on July 26, 2016 3364:. Archived from 3357: 3351: 3350: 3343: 3337: 3325: 3319: 3318: 3292: 3283: 3282: 3280: 3248: 3242: 3241: 3239: 3207: 3201: 3200: 3174: 3165: 3159: 3158: 3135:Chemical Physics 3132: 3123: 3117: 3116: 3081:Zheng J (2006). 3078: 3072: 3071: 3027: 3021: 3020: 2998: 2992: 2991: 2972:Helms V (2008). 2969: 2963: 2962: 2932: 2907:Förster coupling 2557: 2555: 2554: 2549: 2547: 2546: 2543: 2530: 2528: 2527: 2522: 2516: 2513: 2497: 2495: 2494: 2489: 2480: 2477: 2471: 2466: 2465: 2462: 2433: 2431: 2430: 2425: 2423: 2422: 2419: 2403: 2401: 2400: 2395: 2390: 2389: 2388: 2387: 2384: 2378: 2373: 2370: 2357: 2354: 2349: 2346: 2279:, as well as in 2271:In fluorescence 2241: 2239: 2238: 2233: 2231: 2230: 2227: 2214: 2212: 2211: 2206: 2200: 2197: 2181: 2179: 2178: 2173: 2168: 2167: 2164: 2158: 2149: 2146: 2118: 2116: 2115: 2110: 2108: 2107: 2104: 2091: 2089: 2088: 2083: 2077: 2074: 2058: 2056: 2055: 2050: 2045: 2044: 2041: 2035: 2026: 2023: 1992: 1990: 1989: 1984: 1982: 1981: 1962: 1960: 1959: 1954: 1952: 1950: 1949: 1937: 1934: 1933: 1924: 1919: 1918: 1909: 1901: 1900: 1897: 1881: 1879: 1878: 1873: 1871: 1870: 1867: 1850: 1848: 1847: 1842: 1840: 1839: 1824: 1822: 1821: 1816: 1811: 1809: 1808: 1799: 1798: 1797: 1787: 1786: 1776: 1774: 1773: 1752: 1751: 1746: 1745: 1744: 1723: 1721: 1720: 1715: 1713: 1712: 1696: 1694: 1693: 1688: 1683: 1682: 1663: 1661: 1660: 1655: 1653: 1652: 1640: 1639: 1624: 1623: 1604: 1602: 1601: 1596: 1584: 1582: 1581: 1576: 1571: 1550: 1548: 1547: 1542: 1530: 1528: 1527: 1522: 1520: 1519: 1504: 1503: 1480: 1478: 1477: 1472: 1470: 1469: 1453: 1451: 1450: 1445: 1443: 1442: 1426: 1424: 1423: 1418: 1416: 1415: 1399: 1397: 1396: 1391: 1389: 1388: 1372: 1370: 1369: 1364: 1362: 1361: 1345: 1343: 1342: 1337: 1335: 1334: 1318: 1316: 1315: 1310: 1308: 1307: 1291: 1289: 1288: 1283: 1281: 1280: 1264: 1262: 1261: 1256: 1254: 1253: 1245: 1235: 1233: 1232: 1227: 1225: 1224: 1219: 1218: 1210: 1196: 1194: 1193: 1188: 1180: 1179: 1171: 1165: 1164: 1161: 1159: 1158: 1150: 1140: 1139: 1131: 1125: 1124: 1121: 1119: 1118: 1110: 1097: 1096: 1093: 1091: 1090: 1082: 1075: 1074: 1071: 1069: 1068: 1060: 1040: 1033:is the acceptor 1032: 1030: 1029: 1024: 1022: 1021: 1018: 1005: 1003: 1002: 997: 995: 990: 989: 986: 980: 971: 969: 968: 963: 961: 960: 957: 941: 939: 938: 933: 921: 920: 902: 901: 898: 883: 878: 877: 874: 868: 860: 858: 841: 840: 837: 827: 819: 818: 800: 799: 796: 781: 780: 777: 767: 749: 747: 746: 741: 725: 723: 722: 717: 715: 714: 711: 697:refractive index 694: 692: 691: 686: 674: 672: 671: 666: 664: 663: 643: 641: 640: 635: 633: 632: 629: 613: 611: 610: 605: 600: 598: 597: 588: 587: 586: 576: 575: 565: 562: 560: 559: 558: 548: 547: 530: 525: 524: 519: 518: 517: 492: 490: 489: 484: 482: 481: 462: 460: 459: 454: 452: 450: 449: 448: 439: 438: 429: 408: 390: 388: 387: 382: 370: 368: 367: 362: 332: 330: 329: 324: 322: 321: 305: 303: 302: 297: 295: 294: 291: 278: 276: 275: 270: 268: 267: 248: 246: 245: 240: 235: 233: 232: 231: 230: 214: 213: 210: 201: 200: 190: 189: 186: 180: 158: 156: 155: 150: 6323: 6322: 6318: 6317: 6316: 6314: 6313: 6312: 6308:Energy transfer 6243: 6242: 6226: 6222: 6217: 6181: 6180: 6176: 6138: 6137: 6133: 6082: 6081: 6077: 6033: 6032: 6028: 5988: 5983: 5982: 5978: 5948: 5947: 5943: 5912: 5911: 5907: 5853: 5852: 5848: 5808: 5807: 5803: 5773: 5772: 5768: 5753: 5732: 5731: 5727: 5689: 5688: 5684: 5671: 5661: 5649: 5616: 5615: 5611: 5567: 5566: 5562: 5532: 5531: 5527: 5483: 5482: 5478: 5432: 5431: 5427: 5383: 5382: 5378: 5342: 5341: 5337: 5301: 5300: 5296: 5266: 5265: 5261: 5224:Protein Science 5217: 5216: 5212: 5182: 5181: 5177: 5147: 5146: 5142: 5112: 5111: 5107: 5053: 5052: 5048: 5012: 5011: 5007: 4959: 4954: 4953: 4949: 4908: 4907: 4903: 4861: 4860: 4856: 4802: 4801: 4797: 4745: 4744: 4740: 4688: 4687: 4683: 4639: 4638: 4634: 4598: 4597: 4593: 4553: 4548: 4547: 4543: 4534: 4532: 4523: 4522: 4518: 4487: 4486: 4479: 4448:(11): 1848–57. 4435: 4434: 4427: 4404:(8): 1797–804. 4391: 4390: 4386: 4342: 4341: 4337: 4285: 4284: 4280: 4236: 4235: 4231: 4193: 4192: 4188: 4173: 4148: 4147: 4143: 4120:10.1038/nbt1066 4105: 4104: 4100: 4092: 4045: 4040: 4039: 4035: 4020: 3999: 3998: 3994: 3984: 3982: 3973: 3972: 3968: 3958: 3957: 3953: 3946: 3925: 3924: 3917: 3910: 3897: 3896: 3892: 3862: 3861: 3857: 3850: 3821: 3820: 3816: 3780: 3779: 3772: 3738: 3737: 3733: 3724: 3723: 3716: 3664: 3663: 3659: 3652: 3627: 3626: 3619: 3612: 3608: 3601: 3576: 3575: 3564: 3555: 3553: 3543: 3542: 3533: 3485: 3484: 3480: 3426: 3425: 3421: 3414: 3389: 3388: 3381: 3371: 3369: 3359: 3358: 3354: 3345: 3344: 3340: 3326: 3322: 3315: 3294: 3293: 3286: 3250: 3249: 3245: 3209: 3208: 3204: 3172: 3167: 3166: 3162: 3130: 3125: 3124: 3120: 3105: 3080: 3079: 3075: 3029: 3028: 3024: 3017: 3000: 2999: 2995: 2988: 2971: 2970: 2966: 2959: 2934: 2933: 2929: 2925: 2898: 2879: 2858: 2845: 2817: 2788: 2768: 2748:protein folding 2732: 2720: 2712: 2689: 2651:bioluminescence 2642: 2614: 2600: 2591: 2585: 2569: 2538: 2533: 2532: 2503: 2502: 2457: 2440: 2439: 2414: 2409: 2408: 2379: 2361: 2340: 2339: 2333:bandpass filter 2324: 2306: 2275:, fluorescence 2269: 2248: 2222: 2217: 2216: 2187: 2186: 2159: 2124: 2123: 2099: 2094: 2093: 2064: 2063: 2036: 2001: 2000: 1973: 1968: 1967: 1941: 1925: 1910: 1892: 1887: 1886: 1862: 1857: 1856: 1832: 1827: 1826: 1800: 1789: 1778: 1777: 1762: 1736: 1734: 1729: 1728: 1704: 1699: 1698: 1671: 1666: 1665: 1644: 1628: 1612: 1607: 1606: 1587: 1586: 1553: 1552: 1533: 1532: 1508: 1492: 1487: 1486: 1461: 1456: 1455: 1434: 1429: 1428: 1407: 1402: 1401: 1380: 1375: 1374: 1353: 1348: 1347: 1326: 1321: 1320: 1299: 1294: 1293: 1272: 1267: 1266: 1238: 1237: 1207: 1202: 1201: 1147: 1107: 1079: 1057: 1046: 1045: 1038: 1013: 1008: 1007: 981: 974: 973: 952: 947: 946: 912: 893: 869: 832: 828: 810: 791: 772: 768: 755: 754: 732: 731: 706: 701: 700: 699:of the medium, 677: 676: 655: 650: 649: 624: 619: 618: 589: 578: 567: 566: 550: 539: 534: 509: 507: 502: 501: 473: 468: 467: 440: 430: 412: 396: 395: 373: 372: 353: 352: 313: 308: 307: 286: 281: 280: 259: 254: 253: 222: 205: 192: 191: 181: 168: 167: 141: 140: 137: 125:Theodor Förster 113: 17: 12: 11: 5: 6321: 6319: 6311: 6310: 6305: 6300: 6295: 6290: 6285: 6280: 6275: 6270: 6265: 6260: 6255: 6245: 6244: 6241: 6240: 6234: 6221: 6220:External links 6218: 6216: 6215: 6188:Molecular Cell 6174: 6131: 6102:(7): 6133–41. 6075: 6026: 5976: 5941: 5905: 5846: 5801: 5776:Cancer Letters 5766: 5751: 5725: 5698:(2): 299–336. 5682: 5673:|journal= 5647: 5609: 5560: 5541:(24): 5241–8. 5525: 5476: 5425: 5376: 5335: 5294: 5259: 5210: 5175: 5140: 5105: 5046: 5005: 4947: 4901: 4854: 4795: 4758:(9): 2613–22. 4738: 4681: 4632: 4591: 4564:(4): 948–958. 4541: 4516: 4477: 4425: 4384: 4355:(7): 661–663. 4349:Nature Methods 4335: 4278: 4229: 4196:Nature Methods 4186: 4171: 4141: 4098: 4095:on 2020-02-10. 4033: 4018: 3992: 3966: 3951: 3944: 3915: 3908: 3890: 3855: 3848: 3814: 3770: 3731: 3714: 3657: 3650: 3617: 3606: 3599: 3562: 3531: 3494:(12): 125106. 3478: 3419: 3412: 3379: 3352: 3338: 3333:2012-06-29 at 3320: 3313: 3284: 3263:(1–2): 55–75. 3243: 3202: 3183:(6): 845–858. 3160: 3141:(2): 195–201. 3118: 3103: 3073: 3022: 3015: 2993: 2986: 2964: 2957: 2926: 2924: 2921: 2920: 2919: 2914: 2909: 2904: 2897: 2894: 2878: 2875: 2857: 2854: 2844: 2841: 2816: 2813: 2787: 2784: 2780:cell membranes 2767: 2764: 2731: 2728: 2719: 2716: 2711: 2708: 2698:experiments. 2688: 2685: 2647:photobleaching 2641: 2638: 2613: 2610: 2607:(475 nm). 2599: 2596: 2587:Main article: 2584: 2581: 2568: 2565: 2541: 2519: 2511: 2499: 2498: 2487: 2483: 2475: 2470: 2460: 2456: 2453: 2450: 2447: 2417: 2405: 2404: 2393: 2382: 2377: 2368: 2364: 2360: 2352: 2328:photobleaching 2323: 2320: 2311:intermolecular 2305: 2302: 2268: 2265: 2247: 2244: 2225: 2203: 2195: 2183: 2182: 2171: 2162: 2157: 2152: 2144: 2140: 2137: 2134: 2131: 2102: 2080: 2072: 2060: 2059: 2048: 2039: 2034: 2029: 2021: 2017: 2014: 2011: 2008: 1980: 1976: 1964: 1963: 1948: 1944: 1940: 1932: 1928: 1922: 1917: 1913: 1907: 1904: 1895: 1865: 1853: 1852: 1838: 1834: 1814: 1807: 1803: 1796: 1792: 1785: 1781: 1772: 1769: 1765: 1761: 1758: 1755: 1750: 1743: 1739: 1711: 1707: 1686: 1681: 1678: 1674: 1651: 1647: 1643: 1638: 1635: 1631: 1627: 1622: 1619: 1615: 1594: 1574: 1570: 1566: 1563: 1560: 1540: 1518: 1515: 1511: 1507: 1502: 1499: 1495: 1468: 1464: 1441: 1437: 1414: 1410: 1387: 1383: 1360: 1356: 1333: 1329: 1306: 1302: 1279: 1275: 1251: 1248: 1223: 1216: 1213: 1198: 1197: 1186: 1183: 1177: 1174: 1168: 1156: 1153: 1146: 1143: 1137: 1134: 1128: 1116: 1113: 1106: 1103: 1100: 1088: 1085: 1078: 1066: 1063: 1056: 1053: 1016: 993: 984: 955: 943: 942: 931: 928: 925: 919: 915: 911: 908: 905: 896: 892: 889: 886: 881: 872: 866: 863: 857: 854: 850: 847: 844: 835: 831: 826: 823: 817: 813: 809: 806: 803: 794: 790: 787: 784: 775: 771: 765: 762: 739: 709: 684: 662: 658: 627: 615: 614: 603: 596: 592: 585: 581: 574: 570: 557: 553: 546: 542: 537: 533: 528: 523: 516: 512: 480: 476: 464: 463: 447: 443: 437: 433: 428: 424: 421: 418: 415: 411: 406: 403: 380: 360: 320: 316: 289: 266: 262: 250: 249: 238: 229: 225: 220: 217: 208: 204: 199: 195: 184: 178: 175: 148: 136: 133: 112: 109: 89:virtual photon 28:virtual photon 15: 13: 10: 9: 6: 4: 3: 2: 6320: 6309: 6306: 6304: 6301: 6299: 6296: 6294: 6291: 6289: 6286: 6284: 6281: 6279: 6276: 6274: 6271: 6269: 6266: 6264: 6261: 6259: 6256: 6254: 6251: 6250: 6248: 6238: 6235: 6233: 6229: 6224: 6223: 6219: 6211: 6207: 6202: 6197: 6194:(4): 789–98. 6193: 6189: 6185: 6178: 6175: 6170: 6166: 6162: 6158: 6154: 6150: 6146: 6142: 6135: 6132: 6127: 6123: 6118: 6113: 6109: 6105: 6101: 6097: 6093: 6089: 6085: 6079: 6076: 6071: 6067: 6062: 6057: 6053: 6049: 6045: 6041: 6037: 6030: 6027: 6022: 6018: 6014: 6010: 6006: 6002: 5998: 5994: 5987: 5980: 5977: 5972: 5968: 5964: 5960: 5956: 5952: 5945: 5942: 5937: 5933: 5929: 5925: 5921: 5917: 5909: 5906: 5901: 5897: 5892: 5887: 5882: 5877: 5873: 5869: 5865: 5861: 5857: 5850: 5847: 5842: 5838: 5833: 5828: 5824: 5820: 5817:(72): e4430. 5816: 5812: 5805: 5802: 5797: 5793: 5789: 5785: 5782:(2): 239–47. 5781: 5777: 5770: 5767: 5762: 5758: 5754: 5748: 5744: 5740: 5736: 5729: 5726: 5721: 5717: 5713: 5709: 5705: 5701: 5697: 5693: 5686: 5683: 5678: 5666: 5658: 5654: 5650: 5644: 5640: 5636: 5632: 5628: 5624: 5620: 5613: 5610: 5605: 5601: 5596: 5591: 5587: 5583: 5579: 5575: 5571: 5564: 5561: 5556: 5552: 5548: 5544: 5540: 5536: 5529: 5526: 5521: 5517: 5513: 5509: 5504: 5499: 5495: 5491: 5487: 5480: 5477: 5472: 5468: 5463: 5458: 5453: 5448: 5444: 5440: 5436: 5429: 5426: 5421: 5417: 5412: 5407: 5403: 5399: 5396:(5): 629–33. 5395: 5391: 5387: 5380: 5377: 5372: 5368: 5363: 5358: 5355:(5): 683–94. 5354: 5350: 5346: 5339: 5336: 5331: 5327: 5322: 5317: 5313: 5309: 5305: 5298: 5295: 5290: 5286: 5282: 5278: 5274: 5270: 5263: 5260: 5255: 5251: 5246: 5241: 5237: 5233: 5230:(4): 777–84. 5229: 5225: 5221: 5214: 5211: 5206: 5202: 5198: 5194: 5191:(2): 214–24. 5190: 5186: 5179: 5176: 5171: 5167: 5163: 5159: 5155: 5151: 5144: 5141: 5136: 5132: 5128: 5124: 5120: 5116: 5109: 5106: 5101: 5097: 5093: 5089: 5085: 5081: 5077: 5073: 5069: 5065: 5062:(3): 032003. 5061: 5057: 5050: 5047: 5042: 5038: 5033: 5028: 5024: 5020: 5016: 5009: 5006: 5001: 4997: 4993: 4989: 4985: 4981: 4977: 4973: 4969: 4965: 4958: 4951: 4948: 4943: 4939: 4935: 4931: 4926: 4921: 4917: 4913: 4912:ACS Photonics 4905: 4902: 4897: 4893: 4889: 4885: 4881: 4877: 4873: 4869: 4865: 4858: 4855: 4850: 4846: 4841: 4836: 4831: 4826: 4822: 4818: 4815:(1): 99–114. 4814: 4810: 4806: 4799: 4796: 4791: 4787: 4782: 4777: 4773: 4769: 4765: 4761: 4757: 4753: 4749: 4742: 4739: 4734: 4730: 4725: 4720: 4716: 4712: 4708: 4704: 4701:(6): 3000–8. 4700: 4696: 4692: 4685: 4682: 4677: 4673: 4668: 4663: 4659: 4655: 4652:(4): e00513. 4651: 4647: 4643: 4636: 4633: 4628: 4624: 4619: 4614: 4610: 4606: 4602: 4595: 4592: 4587: 4583: 4579: 4575: 4571: 4567: 4563: 4559: 4552: 4545: 4542: 4531:on 2016-12-25 4530: 4526: 4520: 4517: 4512: 4508: 4504: 4500: 4496: 4492: 4484: 4482: 4478: 4473: 4469: 4464: 4459: 4455: 4451: 4447: 4443: 4439: 4432: 4430: 4426: 4421: 4417: 4412: 4407: 4403: 4399: 4395: 4388: 4385: 4380: 4376: 4371: 4366: 4362: 4358: 4354: 4350: 4346: 4339: 4336: 4331: 4327: 4322: 4317: 4313: 4309: 4305: 4301: 4297: 4293: 4289: 4282: 4279: 4274: 4270: 4265: 4260: 4256: 4252: 4249:(3): 271–81. 4248: 4244: 4240: 4233: 4230: 4225: 4221: 4217: 4213: 4209: 4205: 4202:(3): 165–74. 4201: 4197: 4190: 4187: 4182: 4178: 4174: 4168: 4164: 4160: 4156: 4152: 4145: 4142: 4137: 4133: 4129: 4125: 4121: 4117: 4114:(3): 355–60. 4113: 4109: 4102: 4099: 4091: 4087: 4083: 4079: 4075: 4071: 4067: 4063: 4059: 4056:(3): 287–91. 4055: 4051: 4044: 4037: 4034: 4029: 4025: 4021: 4015: 4011: 4007: 4003: 3996: 3993: 3980: 3976: 3970: 3967: 3962: 3955: 3952: 3947: 3941: 3937: 3932: 3931: 3922: 3920: 3916: 3911: 3905: 3901: 3894: 3891: 3886: 3882: 3878: 3874: 3871:(2): 547–59. 3870: 3866: 3859: 3856: 3851: 3845: 3841: 3837: 3833: 3828: 3827: 3818: 3815: 3810: 3806: 3801: 3796: 3792: 3788: 3784: 3777: 3775: 3771: 3766: 3762: 3758: 3754: 3750: 3746: 3742: 3735: 3732: 3727: 3721: 3719: 3715: 3710: 3706: 3702: 3698: 3693: 3688: 3684: 3680: 3677:(3): 030401. 3676: 3672: 3668: 3661: 3658: 3653: 3647: 3643: 3639: 3635: 3631: 3624: 3622: 3618: 3615: 3610: 3607: 3602: 3596: 3592: 3588: 3584: 3580: 3573: 3571: 3569: 3567: 3563: 3551: 3547: 3540: 3538: 3536: 3532: 3527: 3523: 3519: 3515: 3511: 3507: 3502: 3497: 3493: 3489: 3482: 3479: 3474: 3470: 3465: 3460: 3455: 3450: 3446: 3442: 3439:(8): e12270. 3438: 3434: 3430: 3423: 3420: 3415: 3409: 3405: 3401: 3397: 3393: 3386: 3384: 3380: 3367: 3363: 3356: 3353: 3348: 3342: 3339: 3336: 3335:archive.today 3332: 3329: 3324: 3321: 3316: 3310: 3306: 3302: 3298: 3291: 3289: 3285: 3279: 3274: 3270: 3266: 3262: 3259:(in German). 3258: 3254: 3247: 3244: 3238: 3233: 3229: 3225: 3221: 3217: 3213: 3206: 3203: 3198: 3194: 3190: 3186: 3182: 3178: 3171: 3164: 3161: 3156: 3152: 3148: 3144: 3140: 3136: 3129: 3122: 3119: 3114: 3110: 3106: 3100: 3096: 3092: 3088: 3084: 3077: 3074: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3041: 3038:(1): 013001. 3037: 3033: 3026: 3023: 3018: 3012: 3008: 3004: 2997: 2994: 2989: 2983: 2979: 2975: 2968: 2965: 2960: 2954: 2950: 2946: 2942: 2938: 2931: 2928: 2922: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2899: 2895: 2893: 2891: 2886: 2884: 2877:Other methods 2876: 2874: 2872: 2871:nanomedicines 2868: 2864: 2863:nucleic acids 2855: 2853: 2851: 2842: 2840: 2838: 2834: 2830: 2826: 2822: 2814: 2812: 2810: 2806: 2802: 2792: 2785: 2783: 2781: 2777: 2773: 2765: 2763: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2729: 2727: 2725: 2717: 2715: 2709: 2707: 2703: 2699: 2697: 2696: 2686: 2684: 2681: 2677: 2673: 2668: 2666: 2665: 2660: 2656: 2652: 2648: 2639: 2637: 2635: 2631: 2627: 2623: 2619: 2612:CFP-YFP pairs 2611: 2604: 2597: 2595: 2590: 2582: 2580: 2578: 2574: 2566: 2564: 2560: 2539: 2517: 2509: 2485: 2481: 2473: 2468: 2458: 2454: 2451: 2448: 2445: 2438: 2437: 2436: 2415: 2391: 2380: 2375: 2366: 2362: 2358: 2350: 2338: 2337: 2336: 2334: 2329: 2321: 2319: 2317: 2312: 2303: 2301: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2266: 2264: 2261: 2257: 2253: 2245: 2243: 2223: 2201: 2193: 2169: 2160: 2155: 2150: 2142: 2138: 2135: 2132: 2129: 2122: 2121: 2120: 2100: 2078: 2070: 2046: 2037: 2032: 2027: 2019: 2015: 2012: 2009: 2006: 1999: 1998: 1997: 1994: 1978: 1974: 1946: 1942: 1938: 1930: 1920: 1915: 1911: 1902: 1893: 1885: 1884: 1883: 1863: 1836: 1833: 1812: 1805: 1801: 1794: 1790: 1783: 1779: 1770: 1767: 1763: 1759: 1756: 1753: 1748: 1741: 1737: 1727: 1726: 1725: 1709: 1705: 1684: 1679: 1676: 1672: 1649: 1645: 1641: 1636: 1633: 1629: 1625: 1620: 1617: 1613: 1592: 1572: 1568: 1564: 1561: 1558: 1538: 1516: 1513: 1509: 1505: 1500: 1497: 1493: 1482: 1466: 1462: 1439: 1435: 1412: 1408: 1385: 1381: 1358: 1354: 1331: 1327: 1304: 1300: 1277: 1273: 1246: 1221: 1211: 1184: 1172: 1166: 1151: 1132: 1126: 1111: 1101: 1098: 1083: 1076: 1061: 1054: 1051: 1044: 1043: 1042: 1036: 1014: 982: 953: 929: 926: 923: 917: 913: 906: 894: 887: 870: 864: 861: 855: 852: 845: 833: 829: 824: 821: 815: 811: 804: 792: 785: 773: 769: 763: 760: 753: 752: 751: 737: 729: 707: 698: 682: 660: 656: 647: 646:quantum yield 625: 601: 594: 590: 583: 579: 572: 568: 555: 551: 544: 540: 535: 531: 526: 521: 514: 510: 500: 499: 498: 496: 478: 474: 445: 435: 431: 426: 422: 416: 413: 409: 404: 401: 394: 393: 392: 378: 358: 350: 348: 347:dipole moment 344: 340: 334: 318: 314: 287: 264: 260: 236: 227: 223: 218: 215: 206: 202: 197: 193: 182: 176: 173: 166: 165: 164: 162: 161:quantum yield 146: 134: 132: 130: 126: 117: 110: 108: 106: 102: 98: 94: 93:radiationless 90: 86: 82: 77: 75: 70: 68: 64: 60: 56: 52: 48: 44: 40: 36: 29: 25: 21: 6293:Cell biology 6273:Cell imaging 6258:Fluorescence 6237:FRET Imaging 6191: 6187: 6177: 6144: 6140: 6134: 6099: 6095: 6078: 6043: 6039: 6029: 5996: 5992: 5979: 5954: 5950: 5944: 5919: 5915: 5908: 5866:(16): 3495. 5863: 5859: 5849: 5823:10.3791/4430 5814: 5804: 5779: 5775: 5769: 5734: 5728: 5695: 5691: 5685: 5622: 5612: 5577: 5573: 5563: 5538: 5535:Biochemistry 5534: 5528: 5493: 5489: 5479: 5442: 5438: 5428: 5393: 5389: 5379: 5352: 5348: 5338: 5314:(4): 361–8. 5311: 5307: 5297: 5275:(5): 573–8. 5272: 5268: 5262: 5227: 5223: 5213: 5188: 5185:Biochemistry 5184: 5178: 5156:(1): 55–61. 5153: 5149: 5143: 5121:(2): 57–60. 5118: 5114: 5108: 5059: 5055: 5049: 5022: 5018: 5008: 4967: 4964:Nano Letters 4963: 4950: 4915: 4911: 4904: 4874:(3): 452–9. 4871: 4867: 4857: 4812: 4808: 4798: 4755: 4751: 4741: 4698: 4694: 4684: 4649: 4645: 4635: 4611:(2): 400–8. 4608: 4604: 4594: 4561: 4557: 4544: 4533:. Retrieved 4529:the original 4519: 4494: 4490: 4445: 4441: 4401: 4397: 4387: 4352: 4348: 4338: 4295: 4291: 4281: 4246: 4242: 4232: 4199: 4195: 4189: 4154: 4144: 4111: 4107: 4101: 4090:the original 4053: 4049: 4036: 4001: 3995: 3983:. Retrieved 3979:the original 3969: 3960: 3954: 3929: 3899: 3893: 3868: 3865:Biochemistry 3864: 3858: 3825: 3817: 3790: 3786: 3748: 3744: 3734: 3674: 3670: 3660: 3633: 3609: 3582: 3554:. Retrieved 3549: 3491: 3487: 3481: 3436: 3432: 3422: 3395: 3370:. Retrieved 3366:the original 3355: 3346: 3341: 3323: 3296: 3260: 3256: 3246: 3219: 3215: 3205: 3180: 3176: 3163: 3138: 3134: 3121: 3087:Ion Channels 3086: 3076: 3035: 3031: 3025: 3006: 2996: 2977: 2967: 2940: 2930: 2887: 2880: 2867:nanoparticle 2859: 2846: 2835:activity in 2818: 2797: 2769: 2742:, including 2733: 2721: 2718:Applications 2713: 2704: 2700: 2693: 2690: 2675: 2671: 2669: 2662: 2654: 2643: 2615: 2592: 2570: 2561: 2500: 2406: 2325: 2307: 2289:biochemistry 2270: 2249: 2184: 2061: 1995: 1965: 1854: 1483: 1400:. Even when 1199: 1041:is given by 944: 616: 465: 351: 335: 251: 138: 129:fluorescence 122: 92: 78: 74:fluorophores 71: 63:chromophores 58: 54: 50: 46: 42: 38: 34: 33: 6147:: 177–205. 5496:(1): 5–16. 5025:(1): 1–13. 4868:The Analyst 4497:(1): 23–8. 3963:. Springer. 3793:(1): 1–13. 2786:Chemosensor 2776:lipid rafts 2724:biophysical 111:Terminology 95:mechanism. 6268:Biophysics 6247:Categories 4925:2008.07610 4535:2016-10-25 3900:Principles 3556:2011-06-22 2923:References 2829:chemotaxis 2659:luciferase 2347:background 2291:, such as 2285:biophysics 2273:microscopy 1697:) for the 105:asymptotes 85:wavelength 81:near-field 6169:189898459 6021:218689921 5675:ignored ( 5665:cite book 5308:Cytometry 5100:219588720 5084:2050-6120 5000:216075288 4942:221150436 4586:208276133 4298:: 10091. 3701:2050-6120 3501:1108.0935 3360:Moens P. 3197:250845175 3068:207965475 3052:2050-6120 2837:apoptosis 2766:Membranes 2756:integrins 2687:Homo-FRET 2540:τ 2510:τ 2474:τ 2459:τ 2455:− 2416:τ 2381:τ 2367:− 2359:⋅ 2139:− 2101:τ 2071:τ 2038:τ 2020:τ 2016:− 1975:τ 1943:τ 1780:κ 1768:− 1760:× 1677:− 1634:− 1618:− 1514:− 1498:− 1463:κ 1409:κ 1382:κ 1328:κ 1301:κ 1274:κ 1250:^ 1215:^ 1212:μ 1176:^ 1167:⋅ 1155:^ 1152:μ 1136:^ 1127:⋅ 1115:^ 1112:μ 1099:− 1087:^ 1084:μ 1077:⋅ 1065:^ 1062:μ 1052:κ 1015:ϵ 992:¯ 927:λ 914:λ 907:λ 895:ϵ 888:λ 880:¯ 865:∫ 856:λ 846:λ 830:∫ 825:λ 812:λ 805:λ 793:ϵ 786:λ 770:∫ 657:κ 569:κ 541:π 219:∑ 159:) is the 6210:11983170 6161:31201837 6126:22693946 6096:ACS Nano 6088:Langer R 6084:Alabi CA 6070:28112478 6013:32421327 5971:27377369 5936:25260022 5900:31405068 5841:23463095 5796:15958279 5761:17609141 5712:22407612 5657:19499207 5604:32697225 5520:34651742 5512:16611577 5471:22110442 5420:12615908 5371:11007486 5330:11500853 5289:11785758 5254:18359863 5170:16288953 5135:10087619 5092:32521530 4992:32315197 4896:20174695 4849:32553128 4790:19883605 4733:11371472 4676:31384473 4627:26569370 4578:31765054 4511:23792095 4472:22894855 4420:26006698 4379:26030448 4330:26631872 4273:26578655 4216:16489332 4181:16335721 4136:24202205 4128:15696158 4086:39759478 4078:11516318 4028:14674251 3765:19499906 3745:ACS Nano 3709:32362590 3526:16938353 3473:20808851 3433:PLOS ONE 3372:July 14, 3331:Archived 3113:16929939 3060:31715588 2896:See also 2730:Proteins 2695:in vitro 2634:protease 2620:(CFP) – 2579:(FLIM). 2573:lifetime 2518:′ 2482:′ 2355:constant 2260:Haugland 2202:′ 2151:′ 2079:′ 2028:′ 1531:, where 495:integral 6253:Imaging 6232:YouTube 6117:3404193 6061:5589959 5891:6719117 5868:Bibcode 5860:Sensors 5832:3605757 5720:2042851 5627:Bibcode 5595:7408345 5462:3216123 5411:2173363 5245:2271167 5205:1091284 5064:Bibcode 5041:8053542 4972:Bibcode 4876:Bibcode 4840:7335908 4817:Bibcode 4781:2770629 4760:Bibcode 4724:1301483 4703:Bibcode 4667:6667744 4463:3501149 4370:4488387 4321:4686764 4300:Bibcode 4264:4937889 4224:9759741 4058:Bibcode 3985:24 June 3885:6047638 3809:8053542 3679:Bibcode 3506:Bibcode 3464:2924373 3441:Bibcode 3265:Bibcode 3224:Bibcode 3222:: 100. 3143:Bibcode 2833:caspase 2805:hypoxia 2736:domains 2680:Promega 2293:protein 2252:Wilchek 726:is the 695:is the 6208:  6167:  6159:  6124:  6114:  6068:  6058:  6019:  6011:  5969:  5934:  5898:  5888:  5839:  5829:  5794:  5759:  5749:  5718:  5710:  5655:  5645:  5602:  5592:  5555:728398 5553:  5518:  5510:  5469:  5459:  5445:: 82. 5418:  5408:  5369:  5328:  5287:  5252:  5242:  5203:  5168:  5133:  5098:  5090:  5082:  5039:  4998:  4990:  4940:  4894:  4847:  4837:  4788:  4778:  4731:  4721:  4674:  4664:  4625:  4584:  4576:  4509:  4470:  4460:  4418:  4377:  4367:  4328:  4318:  4271:  4261:  4222:  4214:  4179:  4169:  4134:  4126:  4084:  4076:  4026:  4016:  3942:  3938:–443. 3906:  3883:  3846:  3834:–808. 3807:  3763:  3707:  3699:  3648:  3597:  3524:  3471:  3461:  3410:  3311:  3195:  3111:  3101:  3066:  3058:  3050:  3013:  2984:  2955:  2752:myosin 2710:Others 2501:where 2407:where 2316:ligand 2256:Stryer 2185:where 2062:where 1966:where 1200:where 945:where 730:, and 617:where 252:where 6165:S2CID 6017:S2CID 5989:(PDF) 5716:S2CID 5516:S2CID 5096:S2CID 4996:S2CID 4960:(PDF) 4938:S2CID 4920:arXiv 4582:S2CID 4554:(PDF) 4220:S2CID 4132:S2CID 4093:(PDF) 4082:S2CID 4046:(PDF) 3522:S2CID 3496:arXiv 3193:S2CID 3173:(PDF) 3131:(PDF) 3064:S2CID 1757:8.785 1481:≤ 4. 466:with 53:) or 6206:PMID 6157:PMID 6122:PMID 6066:PMID 6009:PMID 5967:PMID 5932:PMID 5896:PMID 5837:PMID 5792:PMID 5757:PMID 5747:ISBN 5708:PMID 5677:help 5653:PMID 5643:ISBN 5600:PMID 5551:PMID 5508:PMID 5467:PMID 5416:PMID 5367:PMID 5349:Cell 5326:PMID 5285:PMID 5250:PMID 5201:PMID 5166:PMID 5131:PMID 5088:PMID 5080:ISSN 5037:PMID 4988:PMID 4892:PMID 4845:PMID 4786:PMID 4729:PMID 4672:PMID 4623:PMID 4574:PMID 4507:PMID 4468:PMID 4416:PMID 4375:PMID 4326:PMID 4269:PMID 4212:PMID 4177:PMID 4167:ISBN 4124:PMID 4074:PMID 4024:PMID 4014:ISBN 3987:2012 3940:ISBN 3904:ISBN 3881:PMID 3844:ISBN 3805:PMID 3761:PMID 3705:PMID 3697:ISSN 3646:ISBN 3595:ISBN 3469:PMID 3408:ISBN 3374:2012 3309:ISBN 3109:PMID 3099:ISBN 3056:PMID 3048:ISSN 3011:ISBN 2982:ISBN 2953:ISBN 2831:and 2758:and 2746:and 2655:BRET 2640:BRET 2531:and 2371:time 2287:and 2215:and 2092:and 532:2.07 39:FRET 6230:on 6196:doi 6149:doi 6145:143 6112:PMC 6104:doi 6056:PMC 6048:doi 6001:doi 5959:doi 5924:doi 5886:PMC 5876:doi 5827:PMC 5819:doi 5784:doi 5780:235 5739:doi 5700:doi 5635:doi 5590:PMC 5582:doi 5543:doi 5498:doi 5457:PMC 5447:doi 5406:PMC 5398:doi 5394:160 5357:doi 5353:102 5316:doi 5277:doi 5240:PMC 5232:doi 5193:doi 5158:doi 5154:120 5123:doi 5072:doi 5027:doi 5023:218 4980:doi 4930:doi 4884:doi 4872:135 4835:PMC 4825:doi 4813:119 4776:PMC 4768:doi 4719:PMC 4711:doi 4662:PMC 4654:doi 4613:doi 4566:doi 4499:doi 4495:437 4458:PMC 4450:doi 4406:doi 4365:PMC 4357:doi 4316:PMC 4308:doi 4259:PMC 4251:doi 4204:doi 4159:doi 4116:doi 4066:doi 4006:doi 3936:374 3873:doi 3836:doi 3832:788 3795:doi 3791:218 3753:doi 3687:doi 3638:doi 3587:doi 3514:doi 3459:PMC 3449:doi 3400:doi 3301:doi 3273:doi 3261:437 3232:doi 3185:doi 3151:doi 3139:135 3091:doi 3040:doi 2945:doi 2778:in 2297:DNA 1373:on 536:128 59:EET 51:RET 41:), 6249:: 6204:. 6190:. 6186:. 6163:. 6155:. 6120:. 6110:. 6098:. 6094:. 6064:. 6054:. 6044:56 6042:. 6038:. 6015:. 6007:. 5997:31 5995:. 5991:. 5965:. 5953:. 5930:. 5918:. 5894:. 5884:. 5874:. 5864:19 5862:. 5858:. 5835:. 5825:. 5813:. 5790:. 5778:. 5755:. 5745:. 5714:. 5706:. 5696:64 5694:. 5669:: 5667:}} 5663:{{ 5651:. 5641:. 5633:. 5598:. 5588:. 5578:49 5576:. 5572:. 5549:. 5539:17 5537:. 5514:. 5506:. 5494:23 5492:. 5488:. 5465:. 5455:. 5441:. 5437:. 5414:. 5404:. 5392:. 5388:. 5365:. 5351:. 5347:. 5324:. 5312:44 5310:. 5306:. 5283:. 5273:11 5271:. 5248:. 5238:. 5228:17 5226:. 5222:. 5199:. 5189:14 5187:. 5164:. 5152:. 5129:. 5117:. 5094:. 5086:. 5078:. 5070:. 5058:. 5035:. 5021:. 5017:. 4994:. 4986:. 4978:. 4968:20 4966:. 4962:. 4936:. 4928:. 4914:. 4890:. 4882:. 4870:. 4866:. 4843:. 4833:. 4823:. 4811:. 4807:. 4784:. 4774:. 4766:. 4756:97 4754:. 4750:. 4727:. 4717:. 4709:. 4699:80 4697:. 4693:. 4670:. 4660:. 4648:. 4644:. 4621:. 4609:11 4607:. 4603:. 4580:. 4572:. 4562:26 4560:. 4556:. 4505:. 4493:. 4480:^ 4466:. 4456:. 4444:. 4440:. 4428:^ 4414:. 4402:10 4400:. 4396:. 4373:. 4363:. 4353:12 4351:. 4347:. 4324:. 4314:. 4306:. 4294:. 4290:. 4267:. 4257:. 4245:. 4241:. 4218:. 4210:. 4198:. 4175:. 4165:. 4130:. 4122:. 4112:23 4110:. 4080:. 4072:. 4064:. 4052:. 4048:. 4022:. 4012:. 3918:^ 3879:. 3867:. 3842:. 3803:. 3789:. 3785:. 3773:^ 3759:. 3747:. 3743:. 3717:^ 3703:. 3695:. 3685:. 3673:. 3669:. 3644:. 3632:. 3620:^ 3593:. 3565:^ 3534:^ 3520:. 3512:. 3504:. 3492:85 3490:. 3467:. 3457:. 3447:. 3435:. 3431:. 3406:. 3382:^ 3307:. 3287:^ 3271:. 3230:. 3218:. 3214:. 3191:. 3181:25 3179:. 3175:. 3149:. 3137:. 3133:. 3107:. 3097:. 3062:. 3054:. 3046:. 3034:. 3005:. 2976:. 2951:. 2885:. 2873:. 2839:. 2811:. 2803:, 2801:pH 2762:. 2544:pb 2514:pb 2478:pb 2463:pb 2420:pb 2385:pb 2258:, 1898:ET 1868:ET 1825:(Å 1764:10 1680:10 1673:10 1585:. 292:ET 211:ET 187:ET 45:, 6212:. 6198:: 6192:9 6171:. 6151:: 6128:. 6106:: 6100:6 6072:. 6050:: 6023:. 6003:: 5973:. 5961:: 5955:8 5938:. 5926:: 5920:6 5902:. 5878:: 5870:: 5843:. 5821:: 5798:. 5786:: 5763:. 5741:: 5722:. 5702:: 5679:) 5659:. 5637:: 5629:: 5606:. 5584:: 5557:. 5545:: 5522:. 5500:: 5473:. 5449:: 5443:2 5422:. 5400:: 5373:. 5359:: 5332:. 5318:: 5291:. 5279:: 5256:. 5234:: 5207:. 5195:: 5172:. 5160:: 5137:. 5125:: 5119:9 5102:. 5074:: 5066:: 5060:8 5043:. 5029:: 5002:. 4982:: 4974:: 4944:. 4932:: 4922:: 4916:7 4898:. 4886:: 4878:: 4851:. 4827:: 4819:: 4792:. 4770:: 4762:: 4735:. 4713:: 4705:: 4678:. 4656:: 4650:7 4629:. 4615:: 4588:. 4568:: 4538:. 4513:. 4501:: 4474:. 4452:: 4446:7 4422:. 4408:: 4381:. 4359:: 4332:. 4310:: 4302:: 4296:6 4275:. 4253:: 4247:8 4226:. 4206:: 4200:3 4183:. 4161:: 4138:. 4118:: 4068:: 4060:: 4054:6 4030:. 4008:: 3989:. 3948:. 3912:. 3887:. 3875:: 3869:6 3852:. 3838:: 3811:. 3797:: 3767:. 3755:: 3749:3 3728:. 3711:. 3689:: 3681:: 3675:8 3654:. 3640:: 3603:. 3589:: 3559:. 3528:. 3516:: 3508:: 3498:: 3475:. 3451:: 3443:: 3437:5 3416:. 3402:: 3376:. 3317:. 3303:: 3281:. 3275:: 3267:: 3240:. 3234:: 3226:: 3220:7 3199:. 3187:: 3157:. 3153:: 3145:: 3115:. 3093:: 3070:. 3042:: 3036:8 3019:. 2990:. 2961:. 2947:: 2486:, 2469:/ 2452:1 2449:= 2446:E 2392:, 2376:/ 2363:e 2351:+ 2228:D 2224:F 2198:D 2194:F 2170:, 2165:D 2161:F 2156:/ 2147:D 2143:F 2136:1 2133:= 2130:E 2105:D 2075:D 2047:, 2042:D 2033:/ 2024:D 2013:1 2010:= 2007:E 1979:D 1947:D 1939:1 1931:6 1927:) 1921:r 1916:0 1912:R 1906:( 1903:= 1894:k 1864:k 1851:) 1837:6 1813:J 1806:4 1802:n 1795:D 1791:Q 1784:2 1771:5 1754:= 1749:6 1742:0 1738:R 1710:0 1706:R 1685:m 1650:4 1646:m 1642:n 1637:1 1630:m 1626:c 1621:1 1614:M 1593:J 1573:L 1569:/ 1565:l 1562:o 1559:m 1539:M 1517:1 1510:m 1506:c 1501:1 1494:M 1467:2 1440:0 1436:R 1413:2 1386:2 1359:0 1355:R 1332:2 1305:2 1278:2 1247:R 1222:i 1185:, 1182:) 1173:R 1162:A 1145:( 1142:) 1133:R 1122:D 1105:( 1102:3 1094:D 1072:A 1055:= 1039:κ 1019:A 987:D 983:f 958:D 954:f 930:, 924:d 918:4 910:) 904:( 899:A 891:) 885:( 875:D 871:f 862:= 853:d 849:) 843:( 838:D 834:f 822:d 816:4 808:) 802:( 797:A 789:) 783:( 778:D 774:f 764:= 761:J 738:J 712:A 708:N 683:n 661:2 630:D 626:Q 602:J 595:4 591:n 584:D 580:Q 573:2 556:A 552:N 545:5 527:= 522:6 515:0 511:R 479:0 475:R 446:6 442:) 436:0 432:R 427:/ 423:r 420:( 417:+ 414:1 410:1 405:= 402:E 379:r 359:E 319:i 315:k 288:k 265:f 261:k 237:, 228:i 224:k 216:+ 207:k 203:+ 198:f 194:k 183:k 177:= 174:E 147:E 57:( 49:( 37:( 30:.

Index


Jablonski diagram
virtual photon
chromophores
dipole–dipole coupling
fluorophores
near-field
wavelength
virtual photon
Quantum electrodynamical
radiative energy transfer
asymptotes

Theodor Förster
fluorescence
quantum yield
emission spectrum
absorption spectrum
dipole moment
integral
quantum yield
refractive index
Avogadro constant
molar extinction coefficient
Wilchek
Stryer
Haugland
microscopy
confocal laser scanning microscopy
molecular biology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.