Knowledge (XXG)

f-block metallocene

Source 📝

1315: 715: 834: 621: 827: 805: 674: 587: 768: 861:
specifically, its 4fn electron configurations have almost no effect on its chemical reactivity and its electrostatic interactions require optimizing through ligand geometries. Moreover, the reactivity of the f-block element complexes relies heavily on their sterics. In other words, a sterically saturated structure offers the best stability, and so, both ligand size or metal size can be altered to modify the reactivity. These special properties allow the following reactions to occur.
875: 33: 910: 925: 860:
Ln, have extremely negative reduction potentials of -2.7 to -3.9 Volts versus the standard hydrogen electrode (NHE). Furthermore, in comparison with d-orbitals of transition metals, the radial extension of their 4f-orbitals are really small and limited, which greatly reduces the orbital effects. More
340:
U and its uranium-chloride bond (2.90 Å) is relatively longer than the uranium-chloride bonds of other analogues. Its existence also indicates that the larger f-block elements are capable of accommodating additional ligands in addition to the three cyclopentadienyl ligands resulting in the isolation
169:
Ln (Ln = La, Ce, Pr, Nd, Sm and Gd). However, their significance is limited more to their existences and structures than to their reactivity. The cyclopentadienyl ligands of f-block metallocenes were considered as inert ancillary ligands, only capable of enhancing their stability and solubility, but
1309:
Sm are able to provide strong reductivity and so this type of reaction was named as SIR. Due to the strong steric hindrance, one ligand cannot bind to the metal center at the ideal distance and so the complex is not stable. Thus, the anion is more inclined to become oxidized and leave the complex,
219:
Sm, making a breakthrough in f-block metallocenes, since both of these two organosamarium(II) complexes were unexpectedly found to participate in the coordination, activation and transformation of a variety of unsaturated compounds, including olefins, dinitrogen, internal alkynens, phosphaalkynes,
1287: 550: 187:, was introduced to prepare the lanthanide complexes with all metals in the series. Apart from improving the stability and solubility of the complexes, it was demonstrated to participate in organometallic reactions. Subsequently, 869:
Like alkyl group, the electron-rich ligand of f-block metallocenes can act as a nucleophile during organometallic reactions. For example, they can polymerize olefins, and participate in ring opening polymerizations, etc.
946: 395: 170:
not their reactivity. In addition, only late and small metals in the lanthanide series, i.e., elements from Sm to Lu, are trivalent metallocene complexes,
1314: 2186: 116: 54: 47: 97: 1282:{\displaystyle {\begin{array}{l}{\ce {(C5Me5)2Sm->{e^{-}}+{+}}}\\{\ce {(C5Me5)3Sm->{e^{-}}+{+}+1/2(C5Me5)2}}\\\end{array}}} 69: 221: 920:
The f-block metallocenes are able to undergo insertion reactions of compounds like carbon monoxide, nitriles or isocyanates.
844:
Unlike d-block elements, f-block elements do not follow 18-electron rule due to their f-orbitals. The following complexes, (C
940:
Since f-block metallocenes are very electron-rich, they tend to lose one electron and a pentamethylcyclopentadienyl ligand.
76: 228:
and other trivalent f-block element complexes. Subsequently, tris(pentamethylcyclopentadienyl) lanthanide complexes, (C
157:
The first prepared and well-characterized f-block metallocenes were the tris(cyclopentadienyl) lanthanide complexes, (C
2191: 83: 188: 756:
M, such as THF, nitriles or isonitriles, should be avoided. Therefore, the following routes are possible options:
43: 714: 65: 833: 620: 826: 804: 673: 586: 1756:
Evans, W. J.; Drummond, D. K.; Chamberlain, L. R.; Doedens, R. J.; Bott, S. G.; Zhang, H.; Atwood, J. L.
767: 146: 142: 1927:
Blake, P. C.; Edelstein, N. M.; Hitchcock, P. B.; Kot, W. K.; Lappert, M. F.; Shalimoff, G. V.; Tian, S.
545:{\displaystyle {\begin{matrix}{}\\{\ce {{LnCl3}+ 3NaC5H5 -> {(C5H5)3Ln}+ 3NaCl}}\\{}\end{matrix}}} 240:
Ln, and their relevant complexes were synthesized from Sm complexes. These metallocenes included (C
2130:
Evans, W. J.; Davis, B. L.; Perotti, J. M.; Kozimor, S.; Ziller, J. W. Manuscript in preparation.
90: 138: 759:(i) For M=Ln including La, Ce, Pr, Nd and Gd, unsolvated cation route is preferred since 874: 389:
I. the synthesis of the first f-block metallocenes is described by following equation:
130: 2180: 1480:
Tilley, T. D.; Anderson, R. A.; Spencer, B.; Ruben, H.; Zalkin, A.; Templeton, D. H.
732:
M, the starting materials and the reaction conditions require optimizing to ensure (C
698:
An alternative unsolvated cation pathway prohibits THF during the reaction since (C
17: 224:(PAHs). Moreover, due to its strong reducing potential, it was used to synthesize 744:
M is the most favored product. In addition, compounds capable of reacting with (C
32: 2110:
Evans, W. J.; Ulibarri, T. A.; Chamberlain, L. R.; Ziller, J. W.; Alvarez, D.
909: 220:
carbon monoxide, carbon dioxide, isonitriles, diazine derivatives, imines and
797:
Ce requires the usage of silylated glassware since they are easily oxidized.
669:
Sm can also be prepared from trivalent precursors, without ring opening THF.
288:). Later, one tris(pentamethylcyclopentadienyl) f-element halide complex, (C 1616:
Evans, W. J.; Giarikos, D. G.; Robledo, C. B.; Leong, V. S.; Ziller, J. W.
924: 951: 300:
UCl, was successfully isolated as the intermediate of the formation of (C
905:, the Cp and other similar ligands can be removed in the following way. 679:
This solvated cation route generally allows the preparation of all (C
582:
Sm was prepared via exploratory Sm chemistry with cyclooctatetraene:
1656:
Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H.; Atwood, J. L.
463: 1553:
Evans, W. J.; Chamberlain, L. R.; Ulibarri, T. A.; Ziller, J. W.
800:(ii) For M=actinide like U, solvated cation route can be used. 1410:; Hartley, F. R., Patai, S., Eds.; John Wiley: New York, 1982. 26: 1966:
Evans, W. J.; Forrestal, K. J.; Leman, J. T.; Ziller, J. W.
604:
Sm can be efficiently synthesized from a Sm precursor and (C
1716:
Evans, W. J.; Drummond, D. K.; Bott, S. G.; Atwood, J. L.
1884:
Evans, W. J.; Nyce, G. W.; Johnston, M. A.; Ziller, J. W.
1636:
Recknagel, A.; Stalke, D.; Roesky, H. W.; Edelmann, F. T.
1271: 1258: 1245: 1202: 1189: 1176: 1131: 1118: 1105: 1067: 1054: 1041: 996: 983: 970: 514: 501: 488: 455: 442: 421: 1596:
Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L.
400: 949: 398: 145:
metal and a set of electron-rich ligands such as the
642:) is used since it is more readily available than (C 1281: 885:Especially in the presence of Lewis acids like B(C 544: 174:In 1980, the pentamethylcyclopentadienyl ligand, C 2139:Evans, W. J.; Forrestal, K. J.; Ziller, J. W. 2011:Evans, W. J.; Forrestal, K. J.; Ziller, J. W. 1310:resulting in a highly reducing metal complex. 1819:Evans, W. J.; Gonzales, S. L.; Ziller, J. W. 1796:Evans, W. J.; Gonzales, S. L.; Ziller, J. W. 1573:Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. 1533:Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. 1520:Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. 8: 2090:Evans, W. J.; DeCoster, D. M.; Greaves, J. 1986:Evans, W. J.; Seibel, C. A.; Ziller, J. W. 1676:Evans, W. J.; Seibel, C. A.; Ziller, J. W. 1500:Evans, W. J.; Hughes, L. A.; Hanusa, T. P. 1839:Evans, W. J.; Keyer, R. A.; Ziller, J. W. 191:and his coworkers successfully isolated (C 1946:Evans, W. J.; Nyce, G. W.; Ziller, J. W. 1270: 1265: 1257: 1252: 1244: 1239: 1231: 1212: 1201: 1196: 1188: 1183: 1175: 1170: 1162: 1157: 1155: 1145: 1140: 1130: 1125: 1117: 1112: 1104: 1099: 1091: 1089: 1077: 1066: 1061: 1053: 1048: 1040: 1035: 1027: 1022: 1020: 1010: 1005: 995: 990: 982: 977: 969: 964: 956: 954: 950: 948: 720:III. Generally, in order to synthesize (C 536: 527: 513: 508: 500: 495: 487: 482: 474: 472: 464: 458: 454: 449: 441: 436: 431: 420: 415: 410: 409: 403: 399: 397: 117:Learn how and when to remove this message 1326: 2066: 2064: 695:is known for all lanthanide elements. 328:UCl has a very similar structure as (C 53:Please improve this article by adding 2007: 2005: 2003: 1942: 1940: 1907: 1905: 1903: 1901: 1880: 1878: 1876: 1815: 1813: 1592: 1590: 7: 1476: 1474: 1472: 1378: 1376: 1355: 1353: 1332: 1330: 1297:Sterically crowded complexes like (C 1293:Sterically induced reduction (SIR) 25: 1439:Wolczanski, P. T.; Bercaw, J. E. 1359:Birmingham, J. M.; Wilkinson, G. 1336:Wilkinson, G.; Birmingham, J. M. 316:. It is worthy mentioning that (C 1313: 923: 908: 873: 832: 825: 803: 766: 713: 672: 619: 585: 222:polycyclic aromatic hydrocarbons 31: 1859:Evans, W. J.; Ulibarri, T. A. 1776:Evans, W. J.; Drummond, D. K. 1736:Evans, W. J.; Drummond, D. K. 1696:Evans, W. J.; Drummond, D. K. 1261: 1232: 1208: 1192: 1163: 1158: 1137: 1121: 1092: 1073: 1057: 1028: 1023: 1002: 986: 957: 592:(ii) Similar to method (i), (C 504: 475: 341:of the following complexes: (C 1: 55:secondary or tertiary sources 1461:J. Chem. Soc., Chem. Commun. 773:Notably, the synthesis of (C 763:complexes are too reactive. 1911:Evans, W. J.; Davis, B. J. 1638:Angew. Chem. Int. Ed. Engl. 1382:Evans, W. J.; Wayda, A. L. 654:Sm and does not react THF. 2208: 1404:The Chemistry of the Metal 2187:Organometallic compounds 1283: 710:Sm can ring open THF. 657:(iii) additionally, (C 546: 147:cyclopentadienyl anion 42:relies excessively on 2033:Adv. Organomet. Chem. 1284: 865:Alkyl-like reactivity 822:MZ with Z=X, H, etc. 555:II. Preparation of (C 547: 66:"F-block metallocene" 947: 396: 135:f-block metallocenes 1929:J. Organomet. Chem. 1841:J. Organomet. Chem. 1273: 1260: 1247: 1204: 1191: 1178: 1133: 1120: 1107: 1069: 1056: 1043: 998: 985: 972: 936:Ordinary reductions 810:IV. Synthesis of (C 691:Ln complexes since 626:In this pathway, (C 516: 503: 490: 469: 457: 444: 423: 18:F-Block Metallocene 2192:Sandwich compounds 1279: 1277: 1248: 1235: 1230: 1179: 1166: 1161: 1108: 1095: 1090: 1044: 1031: 1026: 973: 960: 955: 542: 540: 491: 478: 473: 445: 432: 411: 139:sandwich compounds 2161:Coord. Chem. Rev. 2141:J. Am. Chem. Soc. 2013:J. Am. Chem. Soc. 1988:J. Am. Chem. Soc. 1918:, 102, 2119−2136. 1886:J. Am. Chem. Soc. 1861:J. Am. Chem. Soc. 1821:J. Am. Chem. Soc. 1798:J. Am. Chem. Soc. 1778:J. Am. Chem. Soc. 1758:J. Am. Chem. Soc. 1738:J. Am. Chem. Soc. 1658:J. Am. Chem. Soc. 1598:J. Am. Chem. Soc. 1575:J. Am. Chem. Soc. 1555:J. Am. Chem. Soc. 1535:J. Am. Chem. Soc. 1522:J. Am. Chem. Soc. 1502:J. Am. Chem. Soc. 1421:Coord. Chem. Rev. 1361:J. Am. Chem. Soc. 1338:J. Am. Chem. Soc. 1251: 1238: 1229: 1207: 1182: 1169: 1144: 1136: 1111: 1098: 1072: 1047: 1034: 1009: 1001: 976: 963: 530: 519: 494: 481: 470: 467: 448: 435: 414: 141:consisting of an 127: 126: 119: 101: 16:(Redirected from 2199: 2171: 2157: 2151: 2137: 2131: 2128: 2122: 2108: 2102: 2088: 2082: 2068: 2059: 2058:, 46, 3435-3449. 2049: 2043: 2029: 2023: 2009: 1998: 1984: 1978: 1964: 1958: 1944: 1935: 1925: 1919: 1909: 1896: 1882: 1871: 1857: 1851: 1837: 1831: 1817: 1808: 1794: 1788: 1774: 1768: 1754: 1748: 1734: 1728: 1714: 1708: 1694: 1688: 1674: 1668: 1654: 1648: 1634: 1628: 1614: 1608: 1594: 1585: 1571: 1565: 1551: 1545: 1531: 1525: 1518: 1512: 1498: 1492: 1478: 1467: 1457: 1451: 1437: 1431: 1417: 1411: 1402:Evans, W. J. In 1400: 1394: 1380: 1371: 1357: 1348: 1334: 1317: 1288: 1286: 1285: 1280: 1278: 1274: 1272: 1269: 1264: 1259: 1256: 1249: 1246: 1243: 1236: 1222: 1218: 1217: 1216: 1211: 1205: 1203: 1200: 1195: 1190: 1187: 1180: 1177: 1174: 1167: 1151: 1150: 1149: 1142: 1134: 1132: 1129: 1124: 1119: 1116: 1109: 1106: 1103: 1096: 1084: 1083: 1082: 1081: 1076: 1070: 1068: 1065: 1060: 1055: 1052: 1045: 1042: 1039: 1032: 1016: 1015: 1014: 1007: 999: 997: 994: 989: 984: 981: 974: 971: 968: 961: 927: 912: 877: 836: 829: 807: 770: 717: 676: 623: 589: 570:(i) the first (C 551: 549: 548: 543: 541: 537: 531: 528: 520: 517: 515: 512: 507: 502: 499: 492: 489: 486: 479: 471: 468: 465: 459: 456: 453: 446: 443: 440: 433: 424: 422: 419: 412: 404: 189:William J. Evans 186: 185: 122: 115: 111: 108: 102: 100: 59: 35: 27: 21: 2207: 2206: 2202: 2201: 2200: 2198: 2197: 2196: 2177: 2176: 2175: 2174: 2158: 2154: 2138: 2134: 2129: 2125: 2112:Organometallics 2109: 2105: 2092:Macromolecules. 2089: 2085: 2069: 2062: 2050: 2046: 2030: 2026: 2010: 2001: 1985: 1981: 1968:Organometallics 1965: 1961: 1948:Organometallics 1945: 1938: 1926: 1922: 1910: 1899: 1883: 1874: 1858: 1854: 1838: 1834: 1818: 1811: 1795: 1791: 1775: 1771: 1755: 1751: 1735: 1731: 1718:Organometallics 1715: 1711: 1698:Organometallics 1695: 1691: 1675: 1671: 1655: 1651: 1635: 1631: 1618:Organometallics 1615: 1611: 1595: 1588: 1572: 1568: 1552: 1548: 1532: 1528: 1519: 1515: 1499: 1495: 1479: 1470: 1458: 1454: 1441:Acc. Chem. Res. 1438: 1434: 1418: 1414: 1401: 1397: 1381: 1374: 1358: 1351: 1335: 1328: 1323: 1308: 1304: 1300: 1295: 1276: 1275: 1156: 1141: 1086: 1085: 1021: 1006: 945: 944: 938: 933: 931:Redox chemistry 918: 904: 900: 896: 892: 888: 883: 881:Ligand cleavage 867: 859: 855: 851: 847: 842: 821: 817: 813: 796: 792: 788: 784: 780: 776: 762: 755: 751: 747: 743: 739: 735: 731: 727: 723: 709: 705: 701: 694: 690: 686: 682: 668: 664: 660: 653: 649: 645: 641: 637: 633: 629: 615: 611: 607: 603: 599: 595: 581: 577: 573: 566: 562: 558: 539: 538: 533: 532: 406: 405: 394: 393: 387: 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 227: 218: 214: 210: 206: 202: 198: 194: 184: 181: 180: 179: 177: 173: 168: 164: 160: 155: 137:are a class of 123: 112: 106: 103: 60: 58: 52: 48:primary sources 36: 23: 22: 15: 12: 11: 5: 2205: 2203: 2195: 2194: 2189: 2179: 2178: 2173: 2172: 2152: 2132: 2123: 2103: 2083: 2060: 2044: 2024: 1999: 1979: 1959: 1936: 1920: 1897: 1872: 1852: 1832: 1809: 1789: 1769: 1749: 1729: 1709: 1689: 1669: 1649: 1629: 1609: 1586: 1566: 1546: 1526: 1513: 1493: 1468: 1459:Watson, P. L. 1452: 1432: 1412: 1395: 1372: 1349: 1325: 1324: 1322: 1319: 1306: 1302: 1298: 1294: 1291: 1290: 1289: 1268: 1263: 1255: 1242: 1234: 1228: 1225: 1221: 1215: 1210: 1199: 1194: 1186: 1173: 1165: 1160: 1154: 1148: 1139: 1128: 1123: 1115: 1102: 1094: 1088: 1087: 1080: 1075: 1064: 1059: 1051: 1038: 1030: 1025: 1019: 1013: 1004: 993: 988: 980: 967: 959: 953: 952: 937: 934: 932: 929: 917: 914: 902: 898: 894: 890: 886: 882: 879: 866: 863: 857: 853: 849: 845: 841: 838: 819: 815: 811: 794: 790: 786: 782: 778: 774: 760: 753: 749: 745: 741: 737: 733: 729: 725: 721: 707: 703: 699: 692: 688: 684: 680: 666: 662: 658: 651: 647: 643: 639: 635: 631: 627: 613: 609: 605: 601: 597: 593: 579: 575: 571: 564: 560: 556: 553: 552: 535: 534: 526: 523: 511: 506: 498: 485: 477: 462: 452: 439: 430: 427: 418: 408: 407: 402: 401: 386: 383: 378: 374: 370: 366: 362: 358: 354: 350: 346: 342: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 216: 212: 208: 204: 200: 196: 192: 182: 175: 171: 166: 162: 158: 154: 151: 131:organometallic 125: 124: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2204: 2193: 2190: 2188: 2185: 2184: 2182: 2169: 2165: 2162: 2159:Evans, W. J. 2156: 2153: 2149: 2145: 2142: 2136: 2133: 2127: 2124: 2120: 2116: 2113: 2107: 2104: 2100: 2096: 2093: 2087: 2084: 2080: 2076: 2073: 2070:Evans, W. J. 2067: 2065: 2061: 2057: 2054: 2051:Evans, W. J. 2048: 2045: 2041: 2037: 2034: 2031:Evans, W. J. 2028: 2025: 2021: 2017: 2014: 2008: 2006: 2004: 2000: 1996: 1992: 1989: 1983: 1980: 1976: 1972: 1969: 1963: 1960: 1956: 1952: 1949: 1943: 1941: 1937: 1933: 1930: 1924: 1921: 1917: 1914: 1908: 1906: 1904: 1902: 1898: 1894: 1890: 1887: 1881: 1879: 1877: 1873: 1869: 1865: 1862: 1856: 1853: 1849: 1845: 1842: 1836: 1833: 1829: 1825: 1822: 1816: 1814: 1810: 1806: 1802: 1799: 1793: 1790: 1786: 1782: 1779: 1773: 1770: 1766: 1762: 1759: 1753: 1750: 1746: 1742: 1739: 1733: 1730: 1726: 1722: 1719: 1713: 1710: 1706: 1702: 1699: 1693: 1690: 1686: 1682: 1679: 1673: 1670: 1666: 1662: 1659: 1653: 1650: 1646: 1642: 1639: 1633: 1630: 1626: 1622: 1619: 1613: 1610: 1606: 1602: 1599: 1593: 1591: 1587: 1583: 1579: 1576: 1570: 1567: 1563: 1559: 1556: 1550: 1547: 1543: 1539: 1536: 1530: 1527: 1523: 1517: 1514: 1510: 1506: 1503: 1497: 1494: 1490: 1486: 1483: 1477: 1475: 1473: 1469: 1465: 1462: 1456: 1453: 1449: 1445: 1442: 1436: 1433: 1429: 1425: 1422: 1416: 1413: 1409: 1405: 1399: 1396: 1392: 1388: 1385: 1379: 1377: 1373: 1369: 1365: 1362: 1356: 1354: 1350: 1346: 1342: 1339: 1333: 1331: 1327: 1320: 1318: 1316: 1311: 1292: 1266: 1253: 1240: 1226: 1223: 1219: 1213: 1197: 1184: 1171: 1152: 1146: 1126: 1113: 1100: 1078: 1062: 1049: 1036: 1017: 1011: 991: 978: 965: 943: 942: 941: 935: 930: 928: 926: 921: 915: 913: 911: 906: 880: 878: 876: 871: 864: 862: 839: 837: 835: 830: 828: 823: 808: 806: 801: 798: 771: 769: 764: 757: 718: 716: 711: 696: 677: 675: 670: 655: 624: 622: 617: 590: 588: 583: 568: 524: 521: 509: 496: 483: 460: 450: 437: 428: 425: 416: 392: 391: 390: 384: 382: 223: 190: 152: 150: 148: 144: 140: 136: 132: 121: 118: 110: 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: –  67: 63: 62:Find sources: 56: 50: 49: 45: 40:This article 38: 34: 29: 28: 19: 2167: 2163: 2160: 2155: 2147: 2143: 2140: 2135: 2126: 2118: 2114: 2111: 2106: 2098: 2094: 2091: 2086: 2078: 2074: 2071: 2055: 2053:Inorg. Chem. 2052: 2047: 2039: 2035: 2032: 2027: 2019: 2015: 2012: 1994: 1990: 1987: 1982: 1974: 1970: 1967: 1962: 1954: 1950: 1947: 1931: 1928: 1923: 1915: 1912: 1892: 1888: 1885: 1867: 1863: 1860: 1855: 1847: 1843: 1840: 1835: 1827: 1823: 1820: 1804: 1800: 1797: 1792: 1784: 1780: 1777: 1772: 1764: 1760: 1757: 1752: 1744: 1740: 1737: 1732: 1724: 1720: 1717: 1712: 1704: 1700: 1697: 1692: 1684: 1680: 1678:Inorg. Chem. 1677: 1672: 1664: 1660: 1657: 1652: 1644: 1640: 1637: 1632: 1624: 1620: 1617: 1612: 1604: 1600: 1597: 1581: 1577: 1574: 1569: 1561: 1557: 1554: 1549: 1541: 1537: 1534: 1529: 1521: 1516: 1508: 1504: 1501: 1496: 1488: 1484: 1482:Inorg. Chem. 1481: 1463: 1460: 1455: 1447: 1443: 1440: 1435: 1427: 1423: 1420: 1419:King, R. B. 1415: 1407: 1403: 1398: 1390: 1386: 1384:Inorg. Chem. 1383: 1367: 1363: 1360: 1344: 1340: 1337: 1312: 1296: 939: 922: 919: 907: 884: 872: 868: 843: 831: 824: 809: 802: 799: 772: 765: 758: 719: 712: 697: 678: 671: 656: 625: 618: 591: 584: 569: 554: 388: 156: 134: 128: 113: 104: 94: 87: 80: 73: 61: 41: 1934:, 636, 124. 1408:Carbon Bond 133:chemistry, 2181:Categories 2072:Polyhedron 1913:Chem. Rev. 1321:References 916:Insertions 840:Reactivity 107:March 2016 77:newspapers 44:references 1147:− 1138:⟶ 1012:− 1003:⟶ 785:La and (C 385:Synthesis 369:Th and (C 2150:, 12635. 1895:, 12019. 1787:, 3329. 1747:, 7440. 461:→ 2121:, 2124. 2101:, 7929. 2022:, 9273. 1997:, 6745. 1957:, 5489. 1870:, 4292. 1830:, 7423. 1807:, 2600. 1767:, 4983. 1727:, 2389. 1667:, 3728. 1627:, 5648. 1607:, 1401. 1584:, 6877. 1564:, 6423. 1544:, 2314. 1511:, 4270. 1491:, 2999. 1393:, 2190. 1347:, 6210. 203:Sm(THF) 153:History 143:f-block 91:scholar 2170:, 263. 2081:, 803. 2042:, 131. 1977:, 527. 1707:, 797. 1687:, 770. 1647:, 445. 1466:, 652. 1450:, 121. 1430:, 155. 638:Sm(OEt 353:UF, (C 256:Sm, (C 207:and (C 93:  86:  79:  72:  64:  1850:, 87. 1370:, 42. 897:or Al 381:ThH. 361:(TMS) 98:JSTOR 84:books 2164:2000 2144:1995 2115:1990 2095:1995 2075:1987 2056:2007 2036:1985 2016:1998 1991:1998 1971:1996 1951:2001 1932:2001 1916:2002 1889:2000 1864:1987 1844:1990 1824:1991 1801:1994 1781:1989 1761:1988 1741:1986 1721:1986 1701:1988 1681:1998 1661:1985 1641:1989 1621:2001 1601:1983 1578:1988 1558:1988 1538:1990 1524:219. 1505:1984 1485:1980 1464:1980 1444:1980 1424:1976 1387:1980 1364:1956 1341:1954 852:SiMe 616:Pb: 567:Sm: 529:NaCl 413:LnCl 280:(μ-C 268:Sm(C 252:Sm, 70:news 2168:206 2148:117 2020:120 1995:120 1893:122 1868:109 1848:394 1828:113 1805:116 1785:111 1765:110 1745:108 1665:107 1605:105 1582:110 1562:110 1542:112 1509:106 466:THF 434:NaC 312:UCl 276:), 129:In 46:to 2183:: 2166:, 2146:, 2117:, 2099:28 2097:, 2077:, 2063:^ 2040:24 2038:, 2018:, 2002:^ 1993:, 1975:15 1973:, 1955:20 1953:, 1939:^ 1900:^ 1891:, 1875:^ 1866:, 1846:, 1826:, 1812:^ 1803:, 1783:, 1763:, 1743:, 1723:, 1703:, 1685:37 1683:, 1663:, 1645:28 1643:, 1625:20 1623:, 1603:, 1589:^ 1580:, 1560:, 1540:, 1507:, 1489:19 1487:, 1471:^ 1448:11 1446:, 1428:20 1426:, 1391:19 1389:, 1375:^ 1368:78 1366:, 1352:^ 1345:76 1343:, 1329:^ 1301:Me 1250:Me 1206:Sm 1181:Me 1135:Sm 1110:Me 1071:Sm 1046:Me 1000:Sm 975:Me 901:Me 814:Me 789:Me 777:Me 748:Me 736:Me 724:Me 702:Me 683:Me 661:Me 646:Me 630:Me 608:Me 596:Me 574:Me 559:Me 518:Ln 373:Me 345:Me 332:Me 320:Me 304:Me 292:Me 260:Me 244:Me 232:Me 211:Me 195:Me 178:Me 149:. 57:. 2119:9 2079:6 1725:5 1705:7 1406:- 1307:3 1305:) 1303:5 1299:5 1267:2 1262:) 1254:5 1241:5 1237:C 1233:( 1227:2 1224:1 1220:+ 1214:+ 1209:] 1198:2 1193:) 1185:5 1172:5 1168:C 1164:( 1159:[ 1153:+ 1143:e 1127:3 1122:) 1114:5 1101:5 1097:C 1093:( 1079:+ 1074:] 1063:2 1058:) 1050:5 1037:5 1033:C 1029:( 1024:[ 1018:+ 1008:e 992:2 987:) 979:5 966:5 962:C 958:( 903:6 899:2 895:3 893:) 891:5 889:F 887:6 858:3 856:) 854:3 850:4 848:H 846:5 820:3 818:) 816:5 812:5 795:3 793:) 791:5 787:5 783:3 781:) 779:5 775:5 761:x 754:3 752:) 750:5 746:5 742:3 740:) 738:5 734:5 730:3 728:) 726:5 722:5 708:3 706:) 704:5 700:5 693:x 689:3 687:) 685:5 681:5 667:3 665:) 663:5 659:5 652:3 650:) 648:5 644:5 640:2 636:2 634:) 632:5 628:5 614:2 612:) 610:5 606:5 602:3 600:) 598:5 594:5 580:3 578:) 576:5 572:5 565:3 563:) 561:5 557:5 525:3 522:+ 510:3 505:) 497:5 493:H 484:5 480:C 476:( 451:5 447:H 438:5 429:3 426:+ 417:3 379:3 377:) 375:5 371:5 367:3 365:) 363:2 359:3 357:H 355:5 351:3 349:) 347:5 343:5 338:3 336:) 334:5 330:5 326:3 324:) 322:5 318:5 314:2 310:2 308:) 306:5 302:5 298:3 296:) 294:5 290:5 286:5 284:H 282:5 278:2 274:5 272:H 270:5 266:2 264:) 262:5 258:5 254:3 250:3 248:) 246:5 242:5 238:3 236:) 234:5 230:5 226:2 217:2 215:) 213:5 209:5 205:2 201:2 199:) 197:5 193:5 183:5 176:5 172:n 167:3 165:) 163:5 161:H 159:5 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 51:. 20:)

Index

F-Block Metallocene

references
primary sources
secondary or tertiary sources
"F-block metallocene"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
organometallic
sandwich compounds
f-block
cyclopentadienyl anion
William J. Evans
polycyclic aromatic hydrocarbons











Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.