Knowledge (XXG)

Fermi–Ulam model

Source 📝

502:
velocity law of the moving wall such curves exist, while they do not for sawtooth velocity law that is discontinuous. Consequently, at the first case particles cannot accelerate infinitely, reversely to what happens at the last one.
314: 497:
exist. These invariant curves act as barriers that do not allow for a particle to further accelerate and the average velocity of a population of particles saturates after finite iterations of the map. For instance, for
212: 433: 495: 395: 1310: 1243: 1002: 945: 714: 113: 1182:
Barnett A., Cohen D., Heller E.J. (2000). "Deformations and Dilations of Chaotic Billiards: Dissipation Rate, and Quasiorthogonality of the Boundary Wave Functions".
551:
Strongly chaotic billiard with oscillating boundary can serve as a paradigm for driven chaotic systems. In the experimental arena this topic arises in the theory of
344: 453: 368: 843:
A.P. Itin, A.I. Neishtadt (2012), Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances, Chaos 22, 026119.
585:
L. D. Pustyl'nikov (1995). "Poincaré models, rigorous justification of the second law of thermodynamics from mechanics, and Fermi acceleration mechanism".
459: 223: 1129:
Cohen D (2000). "Chaos and Energy Spreading for Time-Dependent Hamiltonians, and the Various Regimes in the Theory of Quantum Dissipation".
536:
Though the 1D Fermi–Ulam model does not lead to acceleration for smooth oscillations, unbounded energy growth has been observed in 2D
858:, in Proceedings of the 38th Karpacz Winter School of Theoretical Physics, Edited by P. Garbaczewski and R. Olkiewicz (Springer, 2002). 727:
A.P. Itin, A.I. Neishtadt, A.A Vasiliev (2001), Resonant phenomena in slowly perturbed rectangular billiards, Phys. Lett. A 291, 133.
121: 959:
Friedman N., Kaplan A., Carasso D., Davidson N. (2001). "Observation of Chaotic and Regular Dynamics in Atom-Optics Billiards".
628:
L. D. Pustyl'nikov (1988). "A new mechanism for particle acceleration and a relativistic analogue of the Fermi-Ulam model".
559:. The driving induces diffusion in energy, and consequently the absorption coefficient is determined by the Kubo formula. 671:
Loskutov A., Ryabov A. B., Akinshin L. G. (2000). "Properties of some chaotic billiards with time-dependent boundaries".
525: 575:
L.D. Pustyl'nikov, (1983). On a problem of Ulam. Teoret. Mat.Fiz.57, 128-132. Engl. transl. in Theor. Math. Phys. 57.
1349: 528:, then under some general conditions the energy of the particle tends to infinity for an open set of initial data. 783:
F. Lenz; F. K. Diakonos; P. Schmelcher (2008). "Tunable Fermi Acceleration in the Driven Elliptical Billiard".
1332:: A widely acknowledged scientific book that treats FUM, written by A. J. Lichtenberg and M. A. Lieberman ( 521:
of the particle are bounded) was given first by L. D. Pustyl'nikov in (see also and references therein).
400: 71:
A. J. Lichtenberg and M. A. Lieberman provided a simplified version of FUM (SFUM) that derives from the
1304: 1237: 996: 939: 708: 1276: 1201: 1148: 1103: 1060: 1025: 968: 919: 880: 802: 749: 680: 637: 594: 1257:
Barnett A., Cohen D., Heller E.J. (2001). "Rate of energy absorption for a driven chaotic cavity".
537: 524:
In spite of these negative results, if one considers the Fermi–Ulam model in the framework of the
468: 373: 1292: 1266: 1225: 1191: 1164: 1138: 826: 792: 765: 696: 653: 610: 507: 53: 1217: 1076: 984: 818: 545: 511: 77: 57: 1284: 1209: 1156: 1111: 1068: 1033: 976: 927: 888: 810: 757: 688: 645: 602: 24: 322: 61: 761: 72: 1280: 1205: 1152: 1107: 1064: 1051:
R. Brown; E. Ott; C. Grebogi (1987). "Ergodic Adiabatic Invariants of Chaotic systems".
1029: 972: 923: 906:
Blocki J., Boneh Y., Nix J.R., Randrup J., Robel M., Sierk A.J., Swiatecki W.J. (1978).
884: 806: 753: 684: 641: 598: 438: 353: 60:
between a fixed wall and a moving one, each of infinite mass. The walls represent the
34: 1327: 1115: 1094:
Wilkinson M (1988). "Statistical aspects of dissipation by Landau-Zener transitions".
692: 1343: 1288: 931: 892: 657: 614: 499: 31: 1296: 1229: 1168: 830: 769: 700: 606: 814: 541: 45: 41: 740:
Gelfreich V., Turaev D. (2008). "Fermi acceleration in non-autonomous billiards".
1213: 1072: 1037: 980: 728: 463: 65: 458:
If the velocity law of the moving wall is differentiable enough, according to
49: 309:{\displaystyle \varphi _{n+1}=\varphi _{n}+{\frac {kM}{u_{n+1}}}{\pmod {k}},} 907: 1221: 1160: 1080: 988: 822: 1143: 859: 347: 649: 1271: 1196: 555:, and more recently in the studies of cold atoms that are trapped in 544:
billiards is found to be much larger than that in billiards that are
518: 28: 844: 797: 517:
The rigorous solution of the Fermi-Ulam problem (the velocity and
207:{\displaystyle u_{n+1}=|u_{n}+U_{\mathrm {wall} }(\varphi _{n})|} 856:
Driven chaotic mesoscopic systems, dissipation and decoherence
1016:
E. Ott (1979). "Goodness of Ergodic Adiabatic Invariants".
540:
with oscillating boundaries, The growth rate of energy in
506:
Over the years FUM became a prototype model for studying
908:"One-body dissipation and the super-viscidity of nuclei" 471: 441: 403: 376: 356: 325: 226: 124: 80: 871:D.H.E. Gross (1975). "Theory of nuclear friction". 489: 447: 427: 389: 362: 338: 308: 206: 107: 397:is the corresponding phase of the moving wall, 455:is the stochasticity parameter of the system. 729:https://doi.org/10.1016/S0375-9601(01)00670-3 8: 1334:Appl. Math. Sci. vol 38) (New York: Springer 1309:: CS1 maint: multiple names: authors list ( 1242:: CS1 maint: multiple names: authors list ( 1001:: CS1 maint: multiple names: authors list ( 944:: CS1 maint: multiple names: authors list ( 713:: CS1 maint: multiple names: authors list ( 435:is the velocity law of the moving wall and 1270: 1195: 1142: 796: 470: 440: 409: 408: 402: 381: 375: 355: 330: 324: 287: 273: 259: 250: 231: 225: 199: 190: 167: 166: 153: 144: 129: 123: 79: 56:. The system consists of a particle that 568: 1302: 1235: 994: 937: 860:https://arxiv.org/abs/quant-ph/0403061 706: 7: 428:{\displaystyle U_{\mathrm {wall} }} 370:-th collision with the fixed wall, 295: 419: 416: 413: 410: 177: 174: 171: 168: 14: 845:https://doi.org/10.1063/1.4705101 607:10.1070/RM1995v050n01ABEH001663 288: 815:10.1103/PhysRevLett.100.014103 762:10.1088/1751-8113/41/21/212003 484: 472: 299: 289: 200: 196: 183: 145: 1: 1329:Regular and Chaotic Dynamics 932:10.1016/0003-4916(78)90208-7 893:10.1016/0375-9474(75)90305-X 526:special theory of relativity 490:{\displaystyle (\varphi ,u)} 390:{\displaystyle \varphi _{n}} 21:Fermi–Ulam model (FUM) 1214:10.1103/physrevlett.85.1412 1116:10.1088/0305-4470/21/21/011 1073:10.1103/PhysRevLett.59.1173 1038:10.1103/PhysRevLett.42.1628 981:10.1103/physrevlett.86.1518 693:10.1088/0305-4470/33/44/309 73:Poincaré surface of section 1366: 1289:10.1088/0305-4470/34/3/308 350:of the particle after the 462:invariant curves in the 108:{\displaystyle x=const.} 742:J. Phys. A: Math. Theor 27:that was introduced by 1161:10.1006/aphy.2000.6052 491: 449: 429: 391: 364: 340: 310: 208: 109: 673:J. Phys. A: Math. Gen 587:Russian Math. Surveys 548:in the static limit. 492: 450: 430: 392: 365: 341: 339:{\displaystyle u_{n}} 311: 209: 110: 469: 439: 401: 374: 354: 323: 224: 122: 78: 58:collides elastically 40:FUM is a variant of 1281:2001JPhA...34..413B 1206:2000PhRvL..85.1412B 1153:2000AnPhy.283..175C 1108:1988JPhA...21.4021W 1065:1987PhRvL..59.1173B 1030:1979PhRvL..42.1628O 973:2001PhRvL..86.1518F 924:1978AnPhy.113..330B 885:1975NuPhA.240..472G 807:2008PhRvL.100a4103L 754:2008JPhA...41u2003G 685:2000JPhA...33.7973L 642:1988TMP....77.1110P 599:1995RuMaS..50..145P 508:non-linear dynamics 44:'s primary work on 650:10.1007/BF01028687 487: 445: 425: 387: 360: 336: 306: 204: 105: 54:Fermi acceleration 1350:Dynamical systems 1131:Annals of Physics 1059:(11): 1173–1176. 1024:(24): 1628–1631. 630:Theor. Math. Phys 557:optical billiards 532:2D generalization 448:{\displaystyle M} 363:{\displaystyle n} 285: 1357: 1315: 1314: 1308: 1300: 1274: 1254: 1248: 1247: 1241: 1233: 1199: 1179: 1173: 1172: 1146: 1144:cond-mat/9902168 1126: 1120: 1119: 1091: 1085: 1084: 1048: 1042: 1041: 1013: 1007: 1006: 1000: 992: 956: 950: 949: 943: 935: 903: 897: 896: 868: 862: 853: 847: 841: 835: 834: 800: 780: 774: 773: 737: 731: 725: 719: 718: 712: 704: 668: 662: 661: 636:(1): 1110–1115. 625: 619: 618: 582: 576: 573: 553:nuclear friction 512:coupled mappings 496: 494: 493: 488: 454: 452: 451: 446: 434: 432: 431: 426: 424: 423: 422: 396: 394: 393: 388: 386: 385: 369: 367: 366: 361: 345: 343: 342: 337: 335: 334: 315: 313: 312: 307: 302: 286: 284: 283: 268: 260: 255: 254: 242: 241: 213: 211: 210: 205: 203: 195: 194: 182: 181: 180: 158: 157: 148: 140: 139: 114: 112: 111: 106: 66:cosmic particles 62:magnetic mirrors 25:dynamical system 16:Dynamical system 1365: 1364: 1360: 1359: 1358: 1356: 1355: 1354: 1340: 1339: 1324: 1319: 1318: 1301: 1256: 1255: 1251: 1234: 1184:Phys. Rev. Lett 1181: 1180: 1176: 1128: 1127: 1123: 1093: 1092: 1088: 1053:Phys. Rev. Lett 1050: 1049: 1045: 1018:Phys. Rev. Lett 1015: 1014: 1010: 993: 961:Phys. Rev. Lett 958: 957: 953: 936: 905: 904: 900: 870: 869: 865: 854: 850: 842: 838: 785:Phys. Rev. Lett 782: 781: 777: 739: 738: 734: 726: 722: 705: 670: 669: 665: 627: 626: 622: 584: 583: 579: 574: 570: 565: 534: 467: 466: 437: 436: 404: 399: 398: 377: 372: 371: 352: 351: 326: 321: 320: 269: 261: 246: 227: 222: 221: 217: 186: 162: 149: 125: 120: 119: 76: 75: 64:with which the 17: 12: 11: 5: 1363: 1361: 1353: 1352: 1342: 1341: 1338: 1337: 1323: 1322:External links 1320: 1317: 1316: 1265:(3): 413–438. 1249: 1174: 1121: 1086: 1043: 1008: 967:(8): 1518–21. 951: 898: 879:(3): 472–484. 863: 848: 836: 775: 748:(21): 212003. 732: 720: 663: 620: 593:(1): 145–189. 577: 567: 566: 564: 561: 533: 530: 486: 483: 480: 477: 474: 444: 421: 418: 415: 412: 407: 384: 380: 359: 333: 329: 317: 316: 305: 301: 298: 294: 291: 282: 279: 276: 272: 267: 264: 258: 253: 249: 245: 240: 237: 234: 230: 215: 214: 202: 198: 193: 189: 185: 179: 176: 173: 170: 165: 161: 156: 152: 147: 143: 138: 135: 132: 128: 104: 101: 98: 95: 92: 89: 86: 83: 35:Stanislaw Ulam 15: 13: 10: 9: 6: 4: 3: 2: 1362: 1351: 1348: 1347: 1345: 1335: 1331: 1330: 1326: 1325: 1321: 1312: 1306: 1298: 1294: 1290: 1286: 1282: 1278: 1273: 1268: 1264: 1260: 1253: 1250: 1245: 1239: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1198: 1193: 1190:(7): 1412–5. 1189: 1185: 1178: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1145: 1140: 1136: 1132: 1125: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1090: 1087: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1047: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1009: 1004: 998: 990: 986: 982: 978: 974: 970: 966: 962: 955: 952: 947: 941: 933: 929: 925: 921: 917: 913: 909: 902: 899: 894: 890: 886: 882: 878: 874: 873:Nucl. Phys. A 867: 864: 861: 857: 852: 849: 846: 840: 837: 832: 828: 824: 820: 816: 812: 808: 804: 799: 794: 791:(1): 014103. 790: 786: 779: 776: 771: 767: 763: 759: 755: 751: 747: 743: 736: 733: 730: 724: 721: 716: 710: 702: 698: 694: 690: 686: 682: 678: 674: 667: 664: 659: 655: 651: 647: 643: 639: 635: 631: 624: 621: 616: 612: 608: 604: 600: 596: 592: 588: 581: 578: 572: 569: 562: 560: 558: 554: 549: 547: 543: 539: 531: 529: 527: 522: 520: 515: 513: 509: 504: 501: 481: 478: 475: 465: 461: 456: 442: 405: 382: 378: 357: 349: 331: 327: 303: 296: 292: 280: 277: 274: 270: 265: 262: 256: 251: 247: 243: 238: 235: 232: 228: 220: 219: 218: 191: 187: 163: 159: 154: 150: 141: 136: 133: 130: 126: 118: 117: 116: 102: 99: 96: 93: 90: 87: 84: 81: 74: 69: 67: 63: 59: 55: 51: 47: 43: 38: 36: 33: 32:mathematician 30: 26: 22: 1333: 1328: 1305:cite journal 1272:nlin/0006041 1262: 1258: 1252: 1238:cite journal 1197:nlin/0003018 1187: 1183: 1177: 1134: 1130: 1124: 1102:(21): 4021. 1099: 1095: 1089: 1056: 1052: 1046: 1021: 1017: 1011: 997:cite journal 964: 960: 954: 940:cite journal 915: 911: 901: 876: 872: 866: 855: 851: 839: 788: 784: 778: 745: 741: 735: 723: 709:cite journal 679:(44): 7973. 676: 672: 666: 633: 629: 623: 590: 586: 580: 571: 556: 552: 550: 535: 523: 516: 505: 457: 318: 216: 70: 46:acceleration 42:Enrico Fermi 39: 20: 18: 464:phase space 460:KAM theorem 115:and writes 50:cosmic rays 1259:J. Phys. A 1137:(2): 175. 1096:J. Phys. A 918:(2): 330. 563:References 546:integrable 500:sinusoidal 912:Ann. Phys 798:0801.0641 658:120290250 615:250875392 538:billiards 476:φ 379:φ 248:φ 229:φ 188:φ 68:collide. 52:, namely 37:in 1961. 1344:Category 1297:10454573 1230:10273905 1222:10970517 1169:51787849 1081:10035162 989:11290182 831:35145404 823:18232773 770:12572964 701:55969054 348:velocity 1277:Bibcode 1202:Bibcode 1149:Bibcode 1104:Bibcode 1061:Bibcode 1026:Bibcode 969:Bibcode 920:Bibcode 881:Bibcode 803:Bibcode 750:Bibcode 681:Bibcode 638:Bibcode 595:Bibcode 542:chaotic 346:is the 1295:  1228:  1220:  1167:  1079:  987:  829:  821:  768:  699:  656:  613:  519:energy 319:where 29:Polish 1293:S2CID 1267:arXiv 1226:S2CID 1192:arXiv 1165:S2CID 1139:arXiv 827:S2CID 793:arXiv 766:S2CID 697:S2CID 654:S2CID 611:S2CID 23:is a 1311:link 1244:link 1218:PMID 1077:PMID 1003:link 985:PMID 946:link 819:PMID 715:link 510:and 19:The 1285:doi 1210:doi 1157:doi 1135:283 1112:doi 1069:doi 1034:doi 977:doi 928:doi 916:113 889:doi 877:240 811:doi 789:100 758:doi 689:doi 646:doi 603:doi 293:mod 48:of 1346:: 1336:). 1307:}} 1303:{{ 1291:. 1283:. 1275:. 1263:34 1261:. 1240:}} 1236:{{ 1224:. 1216:. 1208:. 1200:. 1188:85 1186:. 1163:. 1155:. 1147:. 1133:. 1110:. 1100:21 1098:. 1075:. 1067:. 1057:59 1055:. 1032:. 1022:42 1020:. 999:}} 995:{{ 983:. 975:. 965:86 963:. 942:}} 938:{{ 926:. 914:. 910:. 887:. 875:. 825:. 817:. 809:. 801:. 787:. 764:. 756:. 746:41 744:. 711:}} 707:{{ 695:. 687:. 677:33 675:. 652:. 644:. 634:77 632:. 609:. 601:. 591:50 589:. 514:. 1313:) 1299:. 1287:: 1279:: 1269:: 1246:) 1232:. 1212:: 1204:: 1194:: 1171:. 1159:: 1151:: 1141:: 1118:. 1114:: 1106:: 1083:. 1071:: 1063:: 1040:. 1036:: 1028:: 1005:) 991:. 979:: 971:: 948:) 934:. 930:: 922:: 895:. 891:: 883:: 833:. 813:: 805:: 795:: 772:. 760:: 752:: 717:) 703:. 691:: 683:: 660:. 648:: 640:: 617:. 605:: 597:: 485:) 482:u 479:, 473:( 443:M 420:l 417:l 414:a 411:w 406:U 383:n 358:n 332:n 328:u 304:, 300:) 297:k 290:( 281:1 278:+ 275:n 271:u 266:M 263:k 257:+ 252:n 244:= 239:1 236:+ 233:n 201:| 197:) 192:n 184:( 178:l 175:l 172:a 169:w 164:U 160:+ 155:n 151:u 146:| 142:= 137:1 134:+ 131:n 127:u 103:. 100:t 97:s 94:n 91:o 88:c 85:= 82:x

Index

dynamical system
Polish
mathematician
Stanislaw Ulam
Enrico Fermi
acceleration
cosmic rays
Fermi acceleration
collides elastically
magnetic mirrors
cosmic particles
Poincaré surface of section
velocity
KAM theorem
phase space
sinusoidal
non-linear dynamics
coupled mappings
energy
special theory of relativity
billiards
chaotic
integrable
Bibcode
1995RuMaS..50..145P
doi
10.1070/RM1995v050n01ABEH001663
S2CID
250875392
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.