Knowledge (XXG)

Cyanobacterial morphology

Source đź“ť

708: 764: 292: 1234: 853: 423:. The precise molecular circuits that govern those morphological changes are yet to be identified, however, a so-far constant factor is that the cell shape is determined by the rigid PG sacculus which consists of glycan strands crosslinked by peptides. To grow, cells must synthesize new PG while breaking down the existent polymer to insert the newly synthesized material. How cells grow and elongate has been extensively reviewed in model organisms of both, rod-shaped and coccoid bacteria. The molecular basis for morphological plasticity and pleomorphism in more complex bacteria, however, is slowly being elucidated as well. 667: 1298: 1000: 1088: 951: 915: 508: 585: 31: 968: 553: 723: 690: 740: 1252: 899: 939: 524: 1202:, Camargue, France migrate to the upper layer of the mat during the day and are spread homogenously through the mat at night. An in vitro experiment using P. uncinatum also demonstrated this species' tendency to migrate in order to avoid damaging radiation. These migrations are usually the result of some sort of photomovement, although other forms of taxis can also play a role. 4160: 3813: 1551: 1426: 1137:; however, many filamentous species move on surfaces by gliding, a form of locomotion where no physical appendages are seen to aid movement. The actual mechanism behind gliding is not fully understood, although over a century has elapsed since its discovery. One theory suggests that gliding motion in cyanobacteria is mediated by the continuous secretion of 494:, that travel away from the main biomass to bud and form new colonies elsewhere. The cells in a hormogonium are often thinner than in the vegetative state, and the cells on either end of the motile chain may be tapered. To break away from the parent colony, a hormogonium often must tear apart a weaker cell in a filament, called a necridium. 1337:. After a few hours, the trichomes move away from the darker areas onto the lighter areas, forming a photographic positive on the culture. The experiment demonstrates that photomovement is effective not just for discrete light traps, but for minutely patterned, continuously differentiated light fields as well. 1198:
sp. and Spirulina subsalsa found in the hypersaline benthic mats of Guerrero Negro, Mexico migrate downwards into the lower layers during the day in order to escape the intense sunlight and then rise to the surface at dusk. In contrast, the population of Microcoleus chthonoplastes found in hypersaline mats at
1266:
The cells appear to coordinate their gliding direction by an electrical potential that establishes polarity in the trichomes, and thus establishes a "head" and the "tail". Trichomes usually reverse their polarity randomly with an average period on the order of minutes to hours. Many species also form
1116:
Cyanobacteria are ubiquitous, finding habitats in most water bodies and in extreme environments such as the polar regions, deserts, brine lakes and hot springs. They have also evolved surprisingly complex collective behaviours that lie at the boundary between single-celled and multicellular life. For
1101:
are modeled as thin flexible rods that are discretized into sequences of 50 ÎĽm edges. Each edge is loaded with a linear spring. (B) The local bending moment is a function of the radius of curvature. (C) Trichomes can glide along their long axis and reverse their direction of movement photophobically.
640:
In aquatic habitats, unicellular cyanobacteria are considered as an important group regarding abundance, diversity, and ecological character. Unicellular cyanobacteria have spherical, ovoid, or cylindrical cells that may aggregate into irregular or regular colonies bound together by the mucous matrix
1197:
Filamentous cyanobacteria that live in microbial mats often migrate vertically and horizontally within the mat in order to find an optimal niche that balances their light requirements for photosynthesis against their sensitivity to photodamage. For example, the filamentous cyanobacteria Oscillatoria
346:
is the biological process that causes an organism to develop its shape. Cyanobacteria show a high degree of morphological diversity and can undergo a variety of cellular differentiation processes in order to adapt to certain environmental conditions. This helps them thrive in almost every habitat on
1129:
to produce a wide range of chemicals, including biofuels like biodiesel and ethanol. However, despite their importance to the history of life on Earth, and their commercial and environmental potentials, there remain basic questions of how filamentous cyanobacteria move, respond to their environment
1181:
patterns. Similar patterns have been observed in fossil records. For filamentous cyanobacteria, the mechanics of the filaments is known to contribute to self-organization, for example in determining how one filament will bend when in contact with other filaments or obstacles. Further, biofilms and
442:
morphologies are tasks that would require active cell wall remodelling and thus far no genes attributed to the different morphotypes have been identified in cyanobacteria. Therefore, the most likely scenario is that genes or their products are differentially regulated during these cell morphology
2783:
Shih, Patrick M.; Wu, Dongying; Latifi, Amel; Axen, Seth D.; Fewer, David P.; Talla, Emmanuel; Calteau, Alexandra; Cai, Fei; Tandeau de Marsac, Nicole; Rippka, Rosmarie; Herdman, Michael; Sivonen, Kaarina; Coursin, Therese; Laurent, Thierry; Goodwin, Lynne; Nolan, Matt; Davenport, Karen W.; Han,
354:
One factor which can drive morphological changes in cyanobacteria is light. As cyanobacteria are bacteria that use light to fuel their energy-producing photosynthetic machinery they depend on perceiving light in order to optimize their response and to avoid harmful light that could result in the
3161:
Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.; Huang, Mengtian; Zeng, Zhenzhong; Canadell, Josep G.; Ciais, Philippe; Sitch, Stephen; Friedlingstein, Pierre; Arneth, Almut; Cao, Chunxiang; Cheng, Lei; Kato, Etsushi; Koven, Charles; Li, Yue; Lian, Xu; Liu, Yongwen; Liu, Ronggao; Mao, Jiafu; Pan,
2725:
Dagan, Tal; Roettger, Mayo; Stucken, Karina; Landan, Giddy; Koch, Robin; Major, Peter; Gould, Sven B.; Goremykin, Vadim V.; Rippka, Rosmarie; Tandeau de Marsac, Nicole; Gugger, Muriel; Lockhart, Peter J.; Allen, John F.; Brune, Iris; Maus, Irena; PĂĽhler, Alfred; Martin, William F. (2012-12-07).
1193:
Cyanobacteria have strict light requirements. Too little light can result in insufficient energy production, and in some species may cause the cells to resort to heterotrophic respiration. Too much light can inhibit the cells, decrease photosynthesis efficiency and cause damage by bleaching. UV
120:
Cellular functions require a well-organized and coordinated internal structure to operate effectively. Cells need to build, sustain, and sometimes modify their shape, which allows them to rapidly change their behaviour in response to external factors. During different life cycle stages, such as
1229:
and extrudes slime at an acute angle. The sets extrude slime in opposite directions and so only one set is likely to be activated during gliding. An alternative hypothesis is that the cells use contractive elements that produce undulations running over the surface inside the slime tube like an
282:
trichomes. Considering this complex morphology, it was postulated that certain subsection V-specific (cytoskeletal) proteins could be responsible for this phenotype. However, no specific gene was identified whose distribution was specifically correlated with the cell morphology among different
231:(PG) layer between the inner and outer membrane, thus containing features of both Gram phenotypes. Additionally, the degree of PG crosslinking is much higher in cyanobacteria than in other Gram-negative bacteria, although teichoic acids, typically present in Gram-positive bacteria, are absent. 105:
by which a trichome modulates its gliding according to the incident light. The latter has been found to play an important role in guiding the trichomes to optimal lighting conditions, which can either inhibit the cells if the incident light is too weak, or damage the cells if too strong.
666: 443:
transitions, as it has been hypothesized for most bacteria. In multicellular cyanobacteria, division of labor between cells within a trichome is achieved by different cell programing strategies. Thus, gene regulation occurs differentially in these specific cell types .
238:, their cellular morphologies are extremely diverse and range from unicellular species to complex cell-differentiating, multicellular species. Based on this observation, cyanobacteria have been classically divided into five subsections. Subsection I cyanobacteria ( 1172:
Through collective interaction, filamentous cyanobacteria self-organize into colonies or biofilms, symbiotic communities found in a wide variety of ecological niches. Their larger-scale collective structures are characterized by diverse shapes including bundles,
4049:
Palinska, Katarzyna A.; Liesack, Werner; Rhiel, Erhard; Krumbein, W. E. (17 October 1996). "Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates".
405:, or the ability of one cell to alternate between different shapes, is a common strategy of many bacteria in response to environmental changes or as part of their normal life cycle. Bacteria may alter their shape by simpler transitions from 763: 283:
cyanobacterial subsections. Therefore, it seems more likely that differential expression of cell growth and division genes rather than the presence or absence of a single gene is responsible for the cyanobacterial morphological diversity.
707: 967: 212:. Constant influx of new findings finally established that numerous prokaryotic cellular functions, including cell division, cell elongation or bacterial microcompartment segregation are governed by the prokaryotic cytoskeleton. 40:(A) spherical and ovoid unicellular, (B) colonial, (C) filamentous, (D) spiral, (E) unsheathed trichome, (F) sheathed trichome, (G) false branching, (H) true branching, (I) different cell types in filamentous cyanobacteria. 3162:
Yaozhong; Peng, Shushi; Peñuelas, Josep; Poulter, Benjamin; Pugh, Thomas A. M.; Stocker, Benjamin D.; Viovy, Nicolas; Wang, Xuhui; Wang, Yingping; Xiao, Zhiqiang; Yang, Hui; Zaehle, Sönke; Zeng, Ning (2016-04-25).
1016: 198:, a bacterial actin homolog. These discoveries started an intense search for other cytoskeletal proteins in bacteria and archaea which finally led to the identification of bacterial IF-like proteins such as 1213:. Gliding in filamentous cyanobacteria appears to be powered by a "slime jet" mechanism, in which the cells extrude a gel that expands quickly as it hydrates providing a propulsion force, although some 3667:
NĂĽrnberg, Dennis J.; Mariscal, Vicente; Parker, Jamie; Mastroianni, Giulia; Flores, Enrique; Mullineaux, Conrad W. (2014). "Branching and intercellular communication in the Section V cyanobacterium
4445:
Walter, M.R.; Bauld, J.; Brock, T.D. (1976). "Chapter 6.2 Microbiology and Morphogenesis of Columnar Stromatolites (Conophyton, Vacerrilla) from Hot Springs in Yellowstone National Park".
1209:
is a form of cell movement that differs from crawling or swimming in that it does not rely on any obvious external organ or change in cell shape and it occurs only in the presence of a
4638:
Farrokh, Parisa; Sheikhpour, Mojgan; Kasaeian, Alibakhsh; Asadi, Hassan; Bavandi, Roya (2019). "Cyanobacteria as an eco-friendly resource for biofuel production: A critical review".
4177:
Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001). "An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium".
1243:
appear as long thin curved filaments. (b) When rendered inactive, for example by being briefly cooled, the same filaments adopt a more random shape. (c) Under higher magnification
183:(IFs), although other cytoskeletal classes have been identified in recent years. Only the collaborative work of all three cytoskeletal systems enables proper cell mechanics. 1267:
a semi-rigid sheath that is left behind as a hollow tube as the trichome moves forward. When the trichome reverses direction, it can move back into the sheath or break out.
74:
that can take a multitude of forms. Of particular interest among the many species of cyanobacteria are those that live colonially in elongate hair-like structures, known as
419:, by more complex transitions while establishing multicellularity or by the development of specialized cells, structures or appendages where the population presents a 5495:
Sumner, Dawn Y. (1997). "Late Archean Calcite-Microbe Interactions: Two Morphologically Distinct Microbial Communities That Affected Calcite Nucleation Differently".
1125:. These large colonies provide a rigid, stable and long-term environment for their communities of bacteria. In addition, cyanobacteria-based biofilms can be used as 1102:(D) Trichome collisions are defined between edge-vertex pairs. A vertex that penetrates an edge's volume is repulsed by equal and opposite forces between the pair. 5444:
Allwood, Abigail C.; Walter, Malcolm R.; Kamber, Balz S.; Marshall, Craig P.; Burch, Ian W. (2006). "Stromatolite reef from the Early Archaean era of Australia".
3881:"A Putative O-Linked β-N-Acetylglucosamine Transferase Is Essential for Hormogonium Development and Motility in the Filamentous Cyanobacterium Nostoc punctiforme" 1690: 4529:
Wharton, Robert A.; Parker, Bruce C.; Simmons, George M. (1983). "Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes".
3105: 186:
The long-lasting dogma that prokaryotes, based on their simple cell shapes, do not require cytoskeletal elements was finally abolished by the discovery of
1015: 914: 487:(reproductive, motile filaments). These, together with the intercellular connections they possess, are considered the first signs of multicellularity. 3291:"Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S" 3832:"Genetic characterization of the hmp locus, a chemotaxis-like gene cluster that regulates hormogonium development and motility in Nostoc punctiforme" 950: 5387:"Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes" 3931:
Dvořák, Petr; Casamatta, Dale A.; Hašler, Petr; Jahodářová, Eva; Norwich, Alyson R.; Poulíčková, Aloisie (2017). "Diversity of the Cyanobacteria".
1194:
radiation is especially deadly for cyanobacteria, with normal solar levels being significantly detrimental for these microorganisms in some cases.
2210:
Kühn, Juliane; Briegel, Ariane; Mörschel, Erhard; Kahnt, Jörg; Leser, Katja; Wick, Stephanie; Jensen, Grant J; Thanbichler, Martin (2009-12-03).
3048:
Wiltbank, Lisa B.; Kehoe, David M. (2018-11-08). "Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors".
1230:
earthworm. The trichomes rotate in a spiral fashion, the angle of which corresponds with the pitch angle of Castenholz's contractile trichomes.
689: 4622: 4581: 4429: 3948: 3586: 1666: 1460: 4478:
Jones, B.; Renaut, R. W.; Rosen, M. R.; Ansdell, K. M. (2002). "Coniform Stromatolites from Geothermal Systems, North Island, New Zealand".
3879:
Khayatan B, Bains DK, Cheng MH, Cho YW, Huynh J, Kim R, Omoruyi OH, Pantoja AP, Park JS, Peng JK, Splitt SD, Tian MY, Risser DD (May 2017).
722: 645:) secreted during the growth of the colony. Based on the species, the number of cells in each colony may vary from two to several thousand. 335:, it does not necessarily mean it is essential in all other cyanobacteria. N/A indicates that no mutant phenotypes have been described. WT: 291: 1233: 1157:
would lead to motion, with some suggesting they retract, while others suggest they push, to generate forces. Other scholars have suggested
852: 2212:"Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus" 376: 1277:
in its movement. Filaments in colonies slide back and forth against each other until the whole mass is reoriented to its light source.
5074:"Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria" 4008: 785: 402: 5985:"The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria" 4869:"The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria" 3724:
Herrero, Antonia; Stavans, Joel; Flores, Enrique (2016). "The multicellular nature of filamentous heterocyst-forming cyanobacteria".
2369:
Videau, Patrick; Rivers, Orion S.; Ushijima, Blake; Oshiro, Reid T.; Kim, Min Joo; Philmus, Benjamin; Cozy, Loralyn M. (2016-04-15).
6371: 4462: 3973: 3651: 3619: 2930: 1584: 999: 2728:"Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids" 739: 278:) that are surrounded by a common sheath, subsection V can produce lateral branches and/or divide in multiple planes, establishing 5809:"Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France)" 5807:
Fourã§Ans, Aude; Solã©, Antoni; Diestra, Ella; Ranchou-Peyruse, Anthony; Esteve, Isabel; Caumette, Pierre; Duran, Robert (2006).
3460:
Egan, Alexander J. F.; Errington, Jeff; Vollmer, Waldemar (2020-05-18). "Regulation of peptidoglycan synthesis and remodelling".
6093:"The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. Strain PCC6803" 5018:"Genetic characterization of thehmplocus, a chemotaxis-like gene cluster that regulates hormogonium development and motility in 3013:
Larkum, A. W. D.; Ritchie, R. J.; Raven, J. A. (2018). "Living off the Sun: Chlorophylls, bacteriochlorophylls and rhodopsins".
1346: 1909:
de Boer, Piet; Crossley, Robin; Rothfield, Lawrence (1992). "The essential bacterial cell-division protein FtsZ is a GTPase".
833:
are capable of a waving motion; the filament oscillates back and forth. In water columns, some cyanobacteria float by forming
681:. Species in this genus divide in only two directions, creating a characteristic grid-like pattern arranged in rows and flats. 262:) are multicellular, cell differentiating cyanobacteria that form specialized cell types in the absence of combined nitrogen ( 781: 391:
growth up to a wavelength of 750 nm. To sense the light across this range of wavelengths, cyanobacteria possess various
1657:
Alberts, Bruce; Heald, Rebecca; Johnson, Alexander; Morgan, David Owen; Raff, Martin C.; Roberts, K.; Walter, Peter (2022).
3769:
Aguilera, Anabella; KlemenÄŤiÄŤ, Marina; Sueldo, Daniela J.; Rzymski, Piotr; Giannuzzi, Leda; Martin, MarĂ­a Victoria (2021).
4412:
Wolk, C. Peter; Ernst, Annaliese; Elhai, Jeff (1994). "Heterocyst Metabolism and Development". In Donald A. Bryant (ed.).
5123:"PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803" 1282: 1107: 438:
among cyanobacterial taxa, which can also vary within a given strain during its life cycle. Changes in cellular or even
6199:
Halfen, Lawrence N.; Castenholz, Richard W. (1971). "Gliding Motility in the Blue-Green Alga Oscillatoria Princeps 1".
5213:
Halfen, Lawrence N.; Castenholz, Richard W. (1971). "Gliding Motility in the Blue-Green Alga Oscillatoria Princeps 1".
6242:"Enhanced Model for Photophobic Responses of the Blue-Green Alga, <italic>Phormidium uncinatum</italic>". 1117:
example, filamentous cyanobacteria live in long chains of cells that bundle together into larger structures including
938: 420: 5858:"Diel Vertical Movements of the Cyanobacterium Oscillatoria terebriformis in a Sulfide-Rich Hot Spring Microbial Mat" 5649:"Modeling Filamentous Cyanobacteria Reveals the Advantages of Long and Fast Trichomes for Optimizing Light Exposure" 1501:"Modeling Filamentous Cyanobacteria Reveals the Advantages of Long and Fast Trichomes for Optimizing Light Exposure" 4024: 1331:. In Häder's cyanograph experiment a photographic negative is projected onto a Petri dish containing a culture of 2029:"An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins" 1778:
Springstein, Benjamin L.; NĂĽrnberg, Dennis J.; Weiss, Gregor L.; Pilhofer, Martin; Stucken, Karina (2020-12-17).
620: 472: 4499: 2318:
Wagstaff, James; Löwe, Jan (2018-01-22). "Prokaryotic cytoskeletons: protein filaments organizing small cells".
246:) are also unicellular but can undergo multiple fission events, giving rise to many small daughter cells termed 78:. These filamentous species can contain hundreds to thousands of cells. They often dominate the upper layers of 4924:
Craig, Lisa; Pique, Michael E.; Tainer, John A. (2004). "Type IV pilus structure and bacterial pathogenicity".
2784:
Cliff S.; Rubin, Edward M.; Eisen, Jonathan A.; Woyke, Tanja; Gugger, Muriel; Kerfeld, Cheryl A. (2012-12-31).
220: 115: 1319:
cover the lighter areas of the projection while uncovering the darker areas producing a photographic positive.
1169:. Recent work also suggests that shape fluctuations and capillary forces could be involved in gliding motion. 3104:
Claessen, Dennis; Rozen, Daniel E.; Kuipers, Oscar P.; Søgaard-Andersen, Lotte; Van Wezel, Gilles P. (2014).
5913:
McBride, Mark J. (2001). "Bacterial Gliding Motility: Multiple Mechanisms for Cell Movement over Surfaces".
3771:"Cell Death in Cyanobacteria: Current Understanding and Recommendations for a Consensus on Its Nomenclature" 2846:
Koch, Robin; Kupczok, Anne; Stucken, Karina; Ilhan, Judith; Hammerschmidt, Katrin; Dagan, Tal (2017-08-31).
2679:
Rippka, Rosmarie; Stanier, Roger Y.; Deruelles, Josette; Herdman, Michael; Waterbury, John B. (1979-03-01).
507: 356: 216: 64: 3966:
Toxic cyanobacteria in water : a guide to their public health consequences, monitoring, and management
6451: 5162:
Halfen, Lawrence N.; Castenholz, Richard W. (1970). "Gliding in a Blue–Green Alga: A Possible Mechanism".
1297: 224: 204: 6265:
Häder, Donat-P. (1987). "EFFECTS OF UV-B IRRADIATION ON PHOTOMOVEMENT IN THE DESMID, Cosmarium cucumis".
2094:
van den Ent, Fusinita; Amos, Linda A.; Löwe, Jan (2001). "Prokaryotic origin of the actin cytoskeleton".
898: 2371:"Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120" 392: 379:), but some cyanobacteria may expand on PAR by not only absorbing in the visible spectrum, but also the 180: 5121:
Schuergers, Nils; NĂĽrnberg, Dennis J.; Wallner, Thomas; Mullineaux, Conrad W.; Wilde, Annegret (2015).
2956:"Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress" 1850:
Bi, Erfei; Lutkenhaus, Joe (1991). "FtsZ ring structure associated with division in Escherichia coli".
1087: 584: 4681:
Rippka, Rosmarie; Stanier, Roger Y.; Deruelles, Josette; Herdman, Michael; Waterbury, John B. (1979).
3130: 2848:"Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria" 802:
vegetative cells – the normal, photosynthetic cells that are formed under favorable growing conditions
30: 6395: 6208: 6104: 6049: 5996: 5869: 5820: 5763: 5722: 5660: 5610: 5551: 5504: 5453: 5421: 5398: 5338: 5279: 5222: 5171: 4880: 4723: 4538: 4487: 4059: 3175: 2859: 2620: 2496: 2103: 2040: 1977: 1918: 1859: 1791: 1512: 930: 130: 48: 4969:"Molecular Analysis of Genes in Nostoc punctiforme Involved in Pilus Biogenesis and Plant Infection" 3512: 364: 2267:
Lin, Lin; Thanbichler, Martin (2013). "Nucleotide-independent cytoskeletal scaffolds in bacteria".
1968:
Löwe, Jan; Amos, Linda A. (1998). "Crystal structure of the bacterial cell-division protein FtsZ".
1351: 1210: 1045: 368: 608: 6427: 6282: 6224: 6073: 6040:
Hoiczyk, E. (2000). "Gliding motility in cyanobacteria: Observations and possible explanations".
6022: 5520: 5477: 5426: 5364: 5269: 5238: 5195: 5103: 5051: 4949: 4906: 4849: 4747: 4714:
Hoiczyk, E. (2000). "Gliding motility in cyanobacteria: Observations and possible explanations".
4663: 4587: 4511: 4202: 4083: 3861: 3706: 3551: 3493: 3209: 3143: 3081: 3030: 2936: 2485:"Escherichia coli Peptidoglycan Structure and Mechanics as Predicted by Atomic-Scale Simulations" 2351: 2300: 2192: 2135: 2009: 1950: 1891: 1741: 1684: 1111: 1050: 614: 596: 459:
to multicellular filamentous forms. Their cell size varies from less than 1 ÎĽm in diameter (
427: 60: 1281:
is mainly blue-green or brown-green and is commonly found in watering-troughs. It reproduces by
552: 242:) are unicellular and divide by binary fission or budding, whereas subsection II cyanobacteria ( 90:, deserts and polar regions, as well as being widely distributed in more mundane environments. 6419: 6411: 6367: 6181: 6132: 6065: 6014: 5965: 5930: 5895: 5838: 5789: 5688: 5626: 5579: 5469: 5356: 5307: 5256:
Tchoufag, Joël; Ghosh, Pushpita; Pogue, Connor B.; Nan, Beiyan; Mandadapu, Kranthi K. (2019).
5187: 5144: 5095: 5043: 4998: 4941: 4898: 4739: 4655: 4618: 4577: 4503: 4458: 4425: 4379: 4338: 4289: 4237: 4194: 4149: 4131: 4075: 4004: 3979: 3969: 3944: 3910: 3853: 3802: 3751: 3698: 3647: 3615: 3602:
Schulz-Vogt, Heide N; Angert, Esther R; Garcia-Pichel, Ferran (2007-09-28), "Giant Bacteria",
3582: 3543: 3535: 3485: 3477: 3442: 3424: 3385: 3367: 3328: 3310: 3271: 3253: 3201: 3135: 3073: 3065: 2995: 2977: 2926: 2913:
Gaysina, Lira A.; Saraf, Aniket; Singh, Prashant (2019). "Cyanobacteria in Diverse Habitats".
2895: 2877: 2825: 2807: 2786:"Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing" 2765: 2747: 2702: 2656: 2638: 2589: 2571: 2532: 2514: 2465: 2447: 2408: 2390: 2343: 2335: 2292: 2284: 2249: 2231: 2184: 2176: 2127: 2119: 2076: 2058: 2001: 1993: 1942: 1934: 1883: 1875: 1827: 1809: 1733: 1725: 1705: 1672: 1662: 1639: 1621: 1580: 1540: 1456: 1415: 1397: 1041: 820: 747: 697: 657: 560: 460: 3998: 1572: 6403: 6359: 6317: 6274: 6247: 6216: 6171: 6163: 6122: 6112: 6057: 6004: 5957: 5922: 5885: 5877: 5828: 5779: 5771: 5730: 5678: 5668: 5618: 5569: 5559: 5512: 5461: 5416: 5406: 5346: 5297: 5287: 5230: 5179: 5134: 5085: 5033: 4988: 4980: 4933: 4888: 4841: 4812: 4731: 4694: 4647: 4610: 4569: 4546: 4495: 4450: 4417: 4369: 4328: 4320: 4279: 4271: 4229: 4186: 4139: 4123: 4067: 3936: 3900: 3892: 3843: 3792: 3782: 3741: 3733: 3688: 3680: 3639: 3607: 3574: 3527: 3469: 3432: 3416: 3375: 3359: 3318: 3302: 3261: 3245: 3191: 3183: 3125: 3117: 3106:"Bacterial solutions to multicellularity: A tale of biofilms, filaments and fruiting bodies" 3057: 3022: 2985: 2967: 2918: 2885: 2867: 2815: 2797: 2755: 2739: 2692: 2646: 2628: 2579: 2563: 2522: 2504: 2455: 2439: 2398: 2382: 2327: 2276: 2239: 2223: 2166: 2111: 2066: 2048: 1985: 1926: 1867: 1817: 1799: 1717: 1629: 1613: 1530: 1520: 1448: 1405: 1387: 1206: 1142: 905: 456: 415: 406: 98: 71: 331:
in the respective organism. While one gene can be essential in one cyanobacterial organism/
1199: 1187: 1182:
biomats show some remarkably conserved macro-mechanical properties, typically behaving as
1056: 846: 570: 537: 279: 251: 6407: 4781:
Drews G. (1959) "Beitröge zur Kenntnis der phototaktischen Reaktionen der Cyanophyceen".
4398: 227:. However, unlike other Gram-negative bacteria, cyanobacteria contain an unusually thick 17: 6399: 6386:
Hangarter, Roger P.; Gest, Howard (2004). "Pictorial Demonstrations of Photosynthesis".
6212: 6108: 6053: 6000: 5961: 5873: 5824: 5767: 5726: 5664: 5614: 5598: 5555: 5508: 5457: 5402: 5342: 5283: 5226: 5175: 4884: 4727: 4683:"Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria" 4542: 4491: 4063: 3179: 2863: 2681:"Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria" 2624: 2500: 2107: 2044: 1981: 1922: 1863: 1795: 1516: 1225:
have two sets of pores for extruding slime. Each set is organized in a ring at the cell
6322: 6301: 6278: 6251: 6220: 5735: 5710: 5683: 5648: 5574: 5539: 5302: 5257: 5234: 4993: 4968: 4144: 4111: 3905: 3880: 3797: 3770: 3437: 3404: 3380: 3347: 3266: 3233: 2990: 2955: 2922: 2890: 2847: 2820: 2785: 2760: 2727: 2651: 2608: 2527: 2484: 2403: 2370: 2244: 2211: 1822: 1779: 1634: 1601: 1535: 1500: 1410: 1375: 1251: 1138: 958: 926: 795: 372: 328: 259: 243: 161: 6176: 6151: 6009: 5984: 5890: 5857: 5784: 5751: 4893: 4868: 4454: 4333: 4308: 4284: 4259: 4233: 3323: 3290: 2460: 2427: 2171: 2154: 359:
and subsequently in their death. Optimal light conditions may be defined by quantity (
6445: 6127: 6092: 5833: 5808: 5351: 5326: 4667: 4515: 3555: 3513:"How to get (a)round: mechanisms controlling growth and division of coccoid bacteria" 3497: 3403:
Typas, Athanasios; Banzhaf, Manuel; Gross, Carol A.; Vollmer, Waldemar (2011-12-28).
3306: 3085: 2940: 2584: 2551: 2071: 2028: 1153:, as the driving engines of motion. However, it is not clear how the action of these 983: 791: 380: 343: 317: 311: 296: 239: 228: 142: 126: 79: 52: 6286: 6228: 6167: 6026: 5881: 5775: 5430: 5411: 5386: 5368: 5242: 5199: 5055: 4953: 4910: 4853: 4591: 3865: 3710: 3147: 2567: 2443: 2304: 2196: 1745: 648:
Each individual cell (each single cyanobacterium) typically has a thick, gelatinous
6431: 6363: 6077: 5481: 5385:
Davies, Neil S.; Liu, Alexander G.; Gibling, Martin R.; Miller, Randall F. (2016).
5107: 4751: 4275: 4206: 4087: 3611: 3569:
Whitton, Brian A. (1992). "Diversity, Ecology, and Taxonomy of the Cyanobacteria".
3405:"From the regulation of peptidoglycan synthesis to bacterial growth and morphology" 3213: 3034: 2355: 2139: 2013: 1954: 1895: 1392: 1270: 1257: 1239: 1218: 1183: 1158: 1146: 1122: 829: 808:– climate-resistant spores that may form when environmental conditions become harsh 771: 730: 673: 543: 465: 434:. Understanding cyanobacterial morphogenesis is challenging, as there are numerous 235: 138: 5926: 5711:"Effects of tropical solar radiation on the motility of filamentous cyanobacteria" 5622: 4832:
Walsby, A. E. (1968). "Mucilage secretion and the movements of blue-green algae".
4550: 4324: 2607:
Schirrmeister, Bettina E; Antonelli, Alexandre; Bagheri, Homayoun C (2011-02-14).
523: 347:
Earth, ranging from freshwater to marine and terrestrial habitats, including even
250:. Subsection III comprises multicellular, non-cell differentiating cyanobacteria ( 5673: 4817: 4800: 4421: 4374: 4357: 2509: 1525: 4614: 3940: 3578: 3163: 1452: 1308: 1274: 1214: 1178: 1079:, in order to provide the cells in the filament with nitrogen for biosynthesis. 1076: 1023: 1006: 834: 816: 812: 575: 491: 452: 396: 384: 300: 172: 122: 87: 5752:"Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community" 5073: 4358:"Ultrafast photochemistry of Anabaena Sensory Rhodopsin: Experiment and theory" 4164: 3817: 2483:
Gumbart, James C.; Beeby, Morgan; Jensen, Grant J.; Roux, Benoît (2014-02-20).
1837: 1555: 1443:
Whitton, Brian A.; Potts, Malcolm (2012). "Introduction to the Cyanobacteria".
1430: 5540:"A Model of Filamentous Cyanobacteria Leading to Reticulate Pattern Formation" 4801:"Secretion of the slime substance in Oscillatoria in relation to its movement" 4573: 4190: 3787: 3643: 3473: 3249: 3061: 3026: 2872: 1721: 1708:(2015). "Cytoskeletal crosstalk: when three different personalities team up". 1676: 1333: 1328: 1286: 1126: 1037: 602: 531: 484: 476: 435: 388: 360: 332: 271: 263: 255: 209: 199: 160:. The eukaryotic cytoskeleton is historically divided into three classes: the 102: 83: 6415: 4699: 4682: 4507: 4135: 3539: 3481: 3428: 3371: 3314: 3257: 3205: 3069: 2981: 2881: 2811: 2751: 2706: 2697: 2680: 2642: 2575: 2518: 2451: 2394: 2339: 2331: 2288: 2235: 2180: 2123: 2062: 1997: 1938: 1879: 1813: 1729: 1625: 1401: 133:, internal structures must dynamically adapt to the current requirements. In 5292: 3983: 3737: 2972: 2802: 2633: 2053: 1617: 871: 842: 653: 649: 565: 431: 348: 336: 306: 134: 6423: 6136: 6117: 6069: 5934: 5899: 5842: 5793: 5692: 5630: 5583: 5473: 5360: 5327:"Undirected motility of filamentous cyanobacteria produces reticulate mats" 5311: 5148: 5099: 5047: 5002: 4945: 4743: 4659: 4383: 4241: 4198: 4153: 4127: 3914: 3857: 3806: 3755: 3702: 3547: 3489: 3446: 3389: 3275: 3139: 3077: 2999: 2899: 2829: 2769: 2660: 2593: 2536: 2412: 2347: 2296: 2253: 2227: 2188: 2131: 1831: 1737: 1643: 1544: 1419: 6185: 6061: 6018: 5969: 5750:
Garcia-Pichel, Ferran; Mechling, Margaret; Castenholz, Richard W. (1994).
5191: 4902: 4735: 4342: 4293: 4079: 4071: 3363: 3332: 2469: 2080: 2005: 1946: 1887: 1429:
Modified material was copied from this source, which is available under a
1307:
Photographic negative projected onto a Petri dish containing a culture of
451:
Cyanobacteria present remarkable variability in terms of morphology: from
5139: 5122: 3187: 2743: 1804: 1327:
can position themselves quite precisely within their environment through
1324: 1316: 1222: 1134: 1098: 1063: 979: 921: 678: 642: 480: 439: 323: 275: 156: 75: 56: 5564: 5465: 4984: 4220:
Golden JW, Yoon HS (December 1998). "Heterocyst formation in Anabaena".
3896: 3746: 3531: 3420: 3121: 2386: 1780:"Structural Determinants and Their Role in Cyanobacterial Morphogenesis" 5709:
Donkor, Victoria A.; Amewowor, Damina H.A.K.; Hã¤Der, Donat-P. (1993).
5524: 4937: 4845: 4159: 3812: 3693: 3196: 1550: 1425: 1174: 1118: 974: 838: 805: 267: 215:
Cyanobacteria are today's only known prokaryotes capable of performing
191: 176: 168: 150: 5597:
Shaw, T.; Winston, M.; Rupp, C. J.; Klapper, I.; Stoodley, P. (2004).
5183: 5090: 5038: 5017: 4764:
Hansgirg A. (1883) "Bemerkungen ĂĽber die Bewegungen der Oscillarien".
4651: 4163:
Modified text was copied from this source, which is available under a
3848: 3831: 3684: 3634:
Jasser, Iwona; Callieri, Cristiana (2017-02-11). "Picocyanobacteria".
2552:"Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope" 1836:
Modified text was copied from this source, which is available under a
1285:
forming long filaments of cells which can break into fragments called
2280: 2115: 1930: 1871: 1226: 1162: 1073: 410: 303: 274:). Whereas subsections III and IV form linear cell filaments (termed 146: 94: 5516: 3926: 3924: 208:
and even bacterial-specific cytoskeletal protein classes, including
5274: 3511:
Pinho, Mariana G.; Kjos, Morten; Veening, Jan-Willem (2013-08-16).
1247:
is seen to be composed of one-cell-wide strands of connected cells.
1989: 1296: 1250: 1232: 1154: 1150: 1086: 851: 426:
Despite their morphological complexity, cyanobacteria contain all
290: 165: 29: 4967:
Duggan, Paula S.; Gottardello, Priscila; Adams, David G. (2007).
4449:. Developments in Sedimentology. Vol. 20. pp. 273–310. 3816:
Material was copied from this source, which is available under a
2153:
Ausmees, Nora; Kuhn, Jeffrey R; Jacobs-Wagner, Christine (2003).
1554:
Material was copied from this source, which is available under a
4605:
Stal, Lucas J. (2012). "Cyanobacterial Mats and Stromatolites".
4416:. Advances in Photosynthesis and Respiration. pp. 769–823. 1141:
through pores on individual cells. Another theory suggests that
591: 195: 187: 6152:"Envelope structure of four gliding filamentous cyanobacteria" 5258:"Mechanisms for bacterial gliding motility on soft substrates" 3638:. Chichester, UK: John Wiley & Sons, Ltd. pp. 19–27. 2428:"Envelope structure of four gliding filamentous cyanobacteria" 982:
sheaths which can form tangles or mats, intermixed with other
6302:"A one-instant mechanism of phototaxis in the cyanobacterium 5072:
Khayatan, Behzad; Meeks, John C.; Risser, Douglas D. (2015).
5016:
Risser, Douglas D.; Chew, William G.; Meeks, John C. (2014).
3636:
Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis
1374:
Mehdizadeh Allaf, Malihe; Peerhossaini, Hassan (2022-03-24).
823:
in an anaerobic environment due to its sensitivity to oxygen.
6091:
Bhaya, D.; Watanabe, N.; Ogawa, T.; Grossman, A. R. (1999).
5948:
Reichenbach, H. (1981). "Taxonomy of the Gliding Bacteria".
858:
Microphotographs of bundle-forming filamentous cyanobacteria
4500:
10.1669/0883-1351(2002)017<0084:CSFGSN>2.0.CO;2
1704:
Huber, Florian; Boire, Adeline; LĂłpez, Magdalena Preciado;
1612:(11). American Society for Cell Biology (ASCB): 1615–1618. 1289:. The hormogonia can then grow into new, longer filaments. 1130:
and self-organize into collective patterns and structures.
145:
polymers that assemble into stable or dynamic filaments or
5647:
Tamulonis, Carlos; Postma, Marten; Kaandorp, Jaap (2011).
3935:. Cham: Springer International Publishing. pp. 3–46. 3234:"The Molecular Basis of Noncanonical Bacterial Morphology" 1976:(6663). Springer Science and Business Media LLC: 203–206. 1917:(6392). Springer Science and Business Media LLC: 254–256. 1858:(6349). Springer Science and Business Media LLC: 161–164. 1499:
Tamulonis, Carlos; Postma, Marten; Kaandorp, Jaap (2011).
490:
Many cyanobacteria form motile filaments of cells, called
6394:(1–3). Springer Science and Business Media LLC: 421–425. 1273:
is a genus of filamentous cyanobacterium named after the
4260:"Oxygen relations of nitrogen fixation in cyanobacteria" 4000:
Text Book of Botany Diversity of Microbes And Cryptogams
2102:(6851). Springer Science and Business Media LLC: 39–44. 3526:(9). Springer Science and Business Media LLC: 601–614. 3468:(8). Springer Science and Business Media LLC: 446–460. 3415:(2). Springer Science and Business Media LLC: 123–136. 3174:(8). Springer Science and Business Media LLC: 791–795. 2326:(4). Springer Science and Business Media LLC: 187–201. 1237:(a) Under ideal conditions active gliding specimens of 5856:
Richardson, Laurie L.; Castenholz, Richard W. (1987).
4165:
Creative Commons Attribution 4.0 International License
3818:
Creative Commons Attribution 4.0 International License
1838:
Creative Commons Attribution 4.0 International License
1556:
Creative Commons Attribution 4.0 International License
1431:
Creative Commons Attribution 4.0 International License
1205:
Many species of cyanobacteria are capable of gliding.
978:
species form long, unbranching filaments inside rigid
463:) up to 100 ÎĽm (some tropical forms in the genus 5599:"Commonality of Elastic Relaxation Times in Biofilms" 3056:(1). Springer Science and Business Media LLC: 37–50. 3301:(14). American Society for Microbiology: 4474–4481. 371:). The photosynthetically usable light range of the 4362:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4112:"Structural mechanics of filamentous cyanobacteria" 2858:(1). Springer Science and Business Media LLC: 209. 2562:(5). American Society for Microbiology: 1191–1199. 2438:(9). American Society for Microbiology: 2387–2395. 2381:(8). American Society for Microbiology: 1196–1206. 656:, but hormogonia of some species can move about by 2619:(1). Springer Science and Business Media LLC: 45. 3358:(3). American Society for Microbiology: 660–703. 2609:"The origin of multicellularity in cyanobacteria" 2495:(2). Public Library of Science (PLoS): e1003475. 1773: 1771: 1769: 1767: 1765: 1763: 1761: 1759: 1757: 1755: 1602:"An expanded view of the eukaryotic cytoskeleton" 794:species can differentiate into several different 4025:"Differences between Bacteria and Cyanobacteria" 3671:laminosus, a complex multicellular prokaryote". 1494: 1492: 1376:"Cyanobacteria: Model Microorganisms and Beyond" 1369: 1367: 769:Example of filamentous cyanobacteria structure ( 475:exhibit functional cell differentiation such as 6097:Proceedings of the National Academy of Sciences 5262:Proceedings of the National Academy of Sciences 4105: 4103: 4101: 4099: 4097: 3099: 3097: 3095: 2790:Proceedings of the National Academy of Sciences 2033:Proceedings of the National Academy of Sciences 1490: 1488: 1486: 1484: 1482: 1480: 1478: 1476: 1474: 1472: 827:Many of the multicellular filamentous forms of 5983:Hoiczyk, Egbert; Baumeister, Wolfgang (1998). 4867:Hoiczyk, Egbert; Baumeister, Wolfgang (1998). 3227: 3225: 3223: 2027:Bork, P; Sander, C; Valencia, A (1992-08-15). 677:forms rectangular colonies held together by a 5704: 5702: 5642: 5640: 3933:Modern Topics in the Phototrophic Prokaryotes 2674: 2672: 2670: 8: 4110:Faluweki, Mixon K.; Goehring, Lucas (2022). 2720: 2718: 2716: 137:, these manifold tasks are fulfilled by the 4253: 4251: 3830:Risser DD, Chew WG, Meeks JC (April 2014). 2841: 2839: 2738:(1). Oxford University Press (OUP): 31–44. 1048:by some filamentous cyanobacteria, such as 5538:Tamulonis, Carlos; Kaandorp, Jaap (2014). 3573:. Boston, MA: Springer US. pp. 1–51. 3352:Microbiology and Molecular Biology Reviews 3131:11370/0db66a9c-72ef-4e11-a75d-9d1e5827573d 1689:: CS1 maint: location missing publisher ( 1566: 1564: 1165:as the mechanism behind gliding motion in 383:light spectrum. This employs a variety of 6321: 6175: 6126: 6116: 6008: 5889: 5832: 5783: 5734: 5682: 5672: 5573: 5563: 5422:1983/bd67cb45-b022-4db0-be3d-b2977d2b81ab 5420: 5410: 5350: 5301: 5291: 5273: 5138: 5089: 5037: 4992: 4892: 4816: 4698: 4373: 4332: 4283: 4143: 3904: 3847: 3796: 3786: 3745: 3692: 3436: 3379: 3322: 3265: 3195: 3129: 2989: 2971: 2889: 2871: 2819: 2801: 2759: 2696: 2650: 2632: 2583: 2526: 2508: 2459: 2402: 2243: 2170: 2070: 2052: 1821: 1803: 1633: 1534: 1524: 1409: 1391: 254:) and subsection IV and V cyanobacteria ( 223:, cyanobacteria are generally considered 5380: 5378: 3348:"The Selective Value of Bacterial Shape" 3232:Caccamo, Paul D.; Brun, Yves V. (2018). 2550:Hoiczyk, Egbert; Hansel, Alfred (2000). 5067: 5065: 3964:Chorus, Ingrid; Bartram, Jamie (1999). 3164:"Greening of the Earth and its drivers" 1573:"Cyanobacterial Mats and Stromatolites" 1363: 995: 894: 759: 685: 662: 270:) or to spread and initiate symbiosis ( 59:defined by their unique combination of 6350:Castenholz, Richard W. (2015-09-14), " 5862:Applied and Environmental Microbiology 5756:Applied and Environmental Microbiology 5325:Shepard, R. N.; Sumner, D. Y. (2010). 4414:The Molecular Biology of Cyanobacteria 4116:Journal of the Royal Society Interface 1682: 1149:, polymeric assemblies of the protein 1068:. They fix nitrogen from atmospheric N 513:Unicellular and colonial cyanobacteria 101:along their long axis, and displaying 82:found in extreme environments such as 1292: 775:) showing a reticulate pattern  500:Diversity in cyanobacteria morphology 7: 6336:Häder, D.P. (1987) "Photomovement". 6150:Hoiczyk, E.; Baumeister, W. (1995). 5962:10.1146/annurev.mi.35.100181.002011 3289:Lange, R; Hengge-Aronis, R (1991). 1221:for gliding. Individual cells in a 377:photosynthetically active radiation 6408:10.1023/b:pres.0000030426.98007.6a 6323:10.1111/j.1574-6968.1985.tb00998.x 6279:10.1111/j.1751-1097.1987.tb04745.x 6252:10.1093/oxfordjournals.pcp.a076487 6221:10.1111/j.1529-8817.1971.tb01492.x 5736:10.1111/j.1574-6941.1993.tb00026.x 5235:10.1111/j.1529-8817.1971.tb01492.x 2923:10.1016/b978-0-12-814667-5.00001-5 2426:Hoiczyk, E; Baumeister, W (1995). 1161:generated by the contraction of a 1093:Modeling filamentous cyanobacteria 944:Helical filaments of cyanobacteria 786:Bacterial morphological plasticity 266:), during unfavorable conditions ( 93:Many filamentous species are also 55:are a large and diverse phylum of 25: 2691:(1). Microbiology Society: 1–61. 1323:In 1987, Häder demonstrated that 845:as such. They are not bounded by 375:is generally referred to as PAR ( 5834:10.1111/j.1574-6941.2006.00124.x 5352:10.1111/j.1472-4669.2010.00235.x 4158: 3811: 3307:10.1128/jb.173.14.4474-4481.1991 1549: 1424: 1014: 998: 966: 949: 937: 913: 897: 762: 738: 721: 706: 688: 665: 583: 551: 529:Simple cyanobacterial filaments 522: 506: 36:Different forms of cyanobacteria 6267:Photochemistry and Photobiology 6168:10.1128/jb.177.9.2387-2395.1995 5882:10.1128/aem.53.9.2142-2150.1987 5776:10.1128/aem.60.5.1500-1511.1994 5412:10.1016/j.earscirev.2016.01.005 4397:Basic Biology (18 March 2016). 4222:Current Opinion in Microbiology 2568:10.1128/jb.182.5.1191-1199.2000 2444:10.1128/jb.177.9.2387-2395.1995 1710:Current Opinion in Cell Biology 1347:Bacterial cellular morphologies 6364:10.1002/9781118960608.pbm00010 4564:Whitton, Brian A, ed. (2012). 4276:10.1128/MMBR.56.2.340-373.1992 3612:10.1002/9780470015902.a0020371 2954:Pospíšil, Pavel (2016-12-26). 1575:. In Whitton, Brian A. (ed.). 1571:Stal, Lucas J. (5 July 2012). 1393:10.3390/microorganisms10040696 1261:are capable of a waving motion 1021:True branching phenotype of a 782:Segmented filamentous bacteria 590:Cyanobacteria associated with 219:. Based on the presence of an 27:Form and structure of a phylum 1: 6010:10.1016/S0960-9822(07)00487-3 5950:Annual Review of Microbiology 5927:10.1146/annurev.micro.55.1.49 5915:Annual Review of Microbiology 5623:10.1103/PhysRevLett.93.098102 4894:10.1016/S0960-9822(07)00487-3 4551:10.2216/i0031-8884-22-4-355.1 4455:10.1016/S0070-4571(08)71140-3 4325:10.1128/MMBR.58.1.94-144.1994 4234:10.1016/s1369-5274(98)80106-9 2172:10.1016/s0092-8674(03)00935-8 1659:Molecular biology of the cell 1606:Molecular Biology of the Cell 1579:. Springer. pp. 65–126. 1303:Häder's cyanograph experiment 1293:Häder's cyanograph experiment 1133:All known cyanobacteria lack 756:Filamentous and multicellular 63:and their ability to perform 5674:10.1371/journal.pone.0022084 4818:10.15281/jplantres1887.64.14 4422:10.1007/978-94-011-0227-8_27 4375:10.1016/j.bbabio.2013.09.014 2966:. Frontiers Media SA: 1950. 2732:Genome Biology and Evolution 2510:10.1371/journal.pcbi.1003475 2155:"The Bacterial Cytoskeleton" 1526:10.1371/journal.pone.0022084 1108:Synechocystis run-and-tumble 70:Cyanobacteria often live in 4926:Nature Reviews Microbiology 4615:10.1007/978-94-007-3855-3_4 4607:Ecology of Cyanobacteria II 4566:Ecology of Cyanobacteria II 4356:Schapiro, Igor (May 2014). 3968:. London: E & FN Spon. 3941:10.1007/978-3-319-46261-5_1 3579:10.1007/978-1-4757-1332-9_1 3520:Nature Reviews Microbiology 3462:Nature Reviews Microbiology 3409:Nature Reviews Microbiology 3244:(3). Elsevier BV: 191–208. 3110:Nature Reviews Microbiology 3050:Nature Reviews Microbiology 2917:. Elsevier. pp. 1–28. 2320:Nature Reviews Microbiology 2165:(6). Elsevier BV: 705–713. 1577:Ecology of Cyanobacteria II 1453:10.1007/978-94-007-3855-3_1 1445:Ecology of Cyanobacteria II 1311:filamentous cyanobacteria ( 815:– which contain the enzyme 629:Drawings by Allan Pentecost 483:(resting stage cells), and 430:and so far known bacterial 6468: 4122:(192). The Royal Society. 3571:Photosynthetic Prokaryotes 2960:Frontiers in Plant Science 2489:PLOS Computational Biology 1600:Moseley, James B. (2013). 1105: 779: 113: 6310:FEMS Microbiology Letters 6244:Plant and Cell Physiology 5813:FEMS Microbiology Ecology 5715:FEMS Microbiology Ecology 4574:10.1007/978-94-007-3855-3 3788:10.3389/fmicb.2021.631654 3775:Frontiers in Microbiology 3726:FEMS Microbiology Reviews 3644:10.1002/9781119068761.ch3 3474:10.1038/s41579-020-0366-3 3250:10.1016/j.tim.2017.09.012 3062:10.1038/s41579-018-0110-4 3027:10.1007/s11099-018-0792-x 2873:10.1186/s12862-017-1053-5 1722:10.1016/j.ceb.2014.10.005 849:but by a protein sheath. 841:. These vesicles are not 745:Cyanobacterial colony of 479:(for nitrogen fixation), 45:Cyanobacterial morphology 18:Filamentous cyanobacteria 6042:Archives of Microbiology 4799:Hosoi, Akimitsu (1951). 4716:Archives of Microbiology 4700:10.1099/00221287-111-1-1 4307:Walsby AE (March 1994). 4052:Archives of Microbiology 4003:. Rastogi Publications. 3346:Young, Kevin D. (2006). 2852:BMC Evolutionary Biology 2698:10.1099/00221287-111-1-1 2613:BMC Evolutionary Biology 2332:10.1038/nrmicro.2017.153 863:Microcoleus steenstrupii 636:Colonial and unicellular 403:Morphological plasticity 234:While Cyanobacteria are 190:, a prokaryotic tubulin 116:Prokaryotic cytoskeleton 6388:Photosynthesis Research 6358:, Wiley, pp. 1–2, 6156:Journal of Bacteriology 5603:Physical Review Letters 5293:10.1073/pnas.1914678116 4973:Journal of Bacteriology 4313:Microbiological Reviews 4264:Microbiological Reviews 4191:10.1023/A:1013840025518 4179:Photosynthesis Research 3885:Journal of Bacteriology 3295:Journal of Bacteriology 2973:10.3389/fpls.2016.01950 2803:10.1073/pnas.1217107110 2634:10.1186/1471-2148-11-45 2556:Journal of Bacteriology 2432:Journal of Bacteriology 2375:Journal of Bacteriology 2054:10.1073/pnas.89.16.7290 1618:10.1091/mbc.e12-10-0732 731:Gloeotrichia echinulata 713:Colonial cyanobacteria 413:(and vice versa) as in 357:reactive oxygen species 217:oxygenic photosynthesis 65:oxygenic photosynthesis 6118:10.1073/pnas.96.6.3188 5078:Molecular Microbiology 5026:Molecular Microbiology 4640:Biotechnology Progress 4128:10.1098/rsif.2022.0268 3836:Molecular Microbiology 3673:Molecular Microbiology 3238:Trends in Microbiology 2228:10.1038/emboj.2009.358 1716:. Elsevier BV: 39–47. 1320: 1263: 1248: 1103: 1097:Model components: (A) 956:Helical filament from 892: 867:Tolypothrix desertorum 728:Ball-shaped colony of 516:scale bars about 10 ÎĽm 340: 225:Gram-negative bacteria 205:Caulobacter crescentus 181:intermediate filaments 41: 6062:10.1007/s002030000187 5391:Earth-Science Reviews 4805:Shokubutsugaku Zasshi 4736:10.1007/s002030000187 4072:10.1007/s002030050378 3738:10.1093/femsre/fuw029 3364:10.1128/mmbr.00001-06 3168:Nature Climate Change 2275:(8). Wiley: 409–423. 2222:(2). Wiley: 327–339. 1300: 1254: 1236: 1090: 1024:Fischerella thermalis 855: 615:Microcoleus vaginatus 597:Schizothrix calcicola 421:pleomorphic lifestyle 294: 33: 6300:Gabai, V.L. (1985). 6201:Journal of Phycology 5215:Journal of Phycology 5140:10.1099/mic.0.000064 3188:10.1038/nclimate3004 1805:10.3390/life10120355 1790:(12). MDPI AG: 355. 1706:Koenderink, Gijsje H 1334:Phormidium uncinatum 1313:Phormidium uncinatum 1145:involves the use of 1044:cells formed during 131:cell differentiation 6400:2004PhoRe..80..421H 6213:1971JPcgy...7..133H 6109:1999PNAS...96.3188B 6054:2000ArMic.174...11H 6001:1998CBio....8.1161H 5874:1987ApEnM..53.2142R 5825:2006FEMME..57..367F 5768:1994ApEnM..60.1500G 5727:1993FEMME..12..143D 5665:2011PLoSO...622084T 5615:2004PhRvL..93i8102S 5565:10.3390/life4030433 5556:2014Life....4..433T 5509:1997Palai..12..302S 5466:10.1038/nature04764 5458:2006Natur.441..714A 5403:2016ESRv..154..210D 5343:2010Gbio....8..179S 5284:2019PNAS..11625087T 5268:(50): 25087–25096. 5227:1971JPcgy...7..133H 5176:1970Natur.225.1163H 5170:(5238): 1163–1165. 4985:10.1128/JB.01927-06 4885:1998CBio....8.1161H 4728:2000ArMic.174...11H 4609:. pp. 65–125. 4543:1983Phyco..22..355W 4492:2002Palai..17...84J 4258:Fay P (June 1992). 4064:1996ArMic.166..224P 3897:10.1128/JB.00075-17 3532:10.1038/nrmicro3088 3421:10.1038/nrmicro2677 3180:2016NatCC...6..791Z 3122:10.1038/nrmicro3178 2864:2017BMCEE..17..209K 2625:2011BMCEE..11...45S 2501:2014PLSCB..10E3475G 2387:10.1128/jb.01027-15 2108:2001Natur.413...39V 2045:1992PNAS...89.7290B 1982:1998Natur.391..203L 1923:1992Natur.359..254D 1864:1991Natur.354..161B 1796:2020Life...10..355S 1517:2011PLoSO...622084T 1386:(4). MDPI AG: 696. 1352:Colonial morphology 1046:nitrogen starvation 679:mucilaginous matrix 72:colonial aggregates 4938:10.1038/nrmicro885 4846:10.1007/BF01666380 4811:(751–752): 14–17. 4029:Microbiology Notes 2744:10.1093/gbe/evs117 1321: 1264: 1249: 1240:Oscillatoria lutea 1217:cyanobacteria use 1112:Bacterial motility 1104: 1051:Nostoc punctiforme 893: 772:Oscillatoria lutea 447:Diversity of forms 367:) and wavelength ( 341: 179:subunits) and the 51:of cyanobacteria. 42: 6338:The Cyanobacteria 5995:(21): 1161–1168. 5452:(7094): 714–718. 5184:10.1038/2251163a0 5091:10.1111/mmi.13205 5039:10.1111/mmi.12552 4979:(12): 4547–4551. 4879:(21): 1161–1168. 4652:10.1002/btpr.2835 4624:978-94-007-3854-6 4583:978-94-007-3854-6 4431:978-0-7923-3273-2 3950:978-3-319-46259-2 3849:10.1111/mmi.12552 3685:10.1111/mmi.12506 3588:978-1-4757-1334-3 2039:(16): 7290–7294. 1668:978-0-393-88482-1 1462:978-94-007-3854-6 1447:. pp. 1–13. 1190:of about 20 min. 1186:materials with a 890: 821:nitrogen fixation 748:Lyngbya majuscula 698:Nostoc pruniforme 517: 473:Filamentous forms 461:picocyanobacteria 329:gene essentiality 327:. Stars indicate 88:hypersaline water 16:(Redirected from 6459: 6436: 6435: 6383: 6377: 6376: 6347: 6341: 6334: 6328: 6327: 6325: 6316:(1–2): 125–129. 6297: 6291: 6290: 6262: 6256: 6255: 6239: 6233: 6232: 6196: 6190: 6189: 6179: 6162:(9): 2387–2395. 6147: 6141: 6140: 6130: 6120: 6103:(6): 3188–3193. 6088: 6082: 6081: 6037: 6031: 6030: 6012: 5980: 5974: 5973: 5945: 5939: 5938: 5910: 5904: 5903: 5893: 5868:(9): 2142–2150. 5853: 5847: 5846: 5836: 5804: 5798: 5797: 5787: 5762:(5): 1500–1511. 5747: 5741: 5740: 5738: 5706: 5697: 5696: 5686: 5676: 5644: 5635: 5634: 5594: 5588: 5587: 5577: 5567: 5535: 5529: 5528: 5492: 5486: 5485: 5441: 5435: 5434: 5424: 5414: 5382: 5373: 5372: 5354: 5322: 5316: 5315: 5305: 5295: 5277: 5253: 5247: 5246: 5210: 5204: 5203: 5159: 5153: 5152: 5142: 5118: 5112: 5111: 5093: 5084:(6): 1021–1036. 5069: 5060: 5059: 5041: 5013: 5007: 5006: 4996: 4964: 4958: 4957: 4921: 4915: 4914: 4896: 4864: 4858: 4857: 4840:(1–2): 223–238. 4829: 4823: 4822: 4820: 4796: 4790: 4783:Arch. Protistenk 4779: 4773: 4762: 4756: 4755: 4711: 4705: 4704: 4702: 4678: 4672: 4671: 4635: 4629: 4628: 4602: 4596: 4595: 4561: 4555: 4554: 4526: 4520: 4519: 4475: 4469: 4468: 4442: 4436: 4435: 4409: 4403: 4402: 4394: 4388: 4387: 4377: 4353: 4347: 4346: 4336: 4304: 4298: 4297: 4287: 4255: 4246: 4245: 4217: 4211: 4210: 4174: 4168: 4162: 4157: 4147: 4107: 4092: 4091: 4046: 4040: 4039: 4037: 4036: 4021: 4015: 4014: 3994: 3988: 3987: 3961: 3955: 3954: 3928: 3919: 3918: 3908: 3891:(9): e00075–17. 3876: 3870: 3869: 3851: 3827: 3821: 3815: 3810: 3800: 3790: 3766: 3760: 3759: 3749: 3721: 3715: 3714: 3696: 3664: 3658: 3657: 3631: 3625: 3624: 3599: 3593: 3592: 3566: 3560: 3559: 3517: 3508: 3502: 3501: 3457: 3451: 3450: 3440: 3400: 3394: 3393: 3383: 3343: 3337: 3336: 3326: 3286: 3280: 3279: 3269: 3229: 3218: 3217: 3199: 3158: 3152: 3151: 3133: 3101: 3090: 3089: 3045: 3039: 3038: 3010: 3004: 3003: 2993: 2975: 2951: 2945: 2944: 2910: 2904: 2903: 2893: 2875: 2843: 2834: 2833: 2823: 2805: 2796:(3): 1053–1058. 2780: 2774: 2773: 2763: 2722: 2711: 2710: 2700: 2676: 2665: 2664: 2654: 2636: 2604: 2598: 2597: 2587: 2547: 2541: 2540: 2530: 2512: 2480: 2474: 2473: 2463: 2423: 2417: 2416: 2406: 2366: 2360: 2359: 2315: 2309: 2308: 2281:10.1002/cm.21126 2264: 2258: 2257: 2247: 2216:The EMBO Journal 2207: 2201: 2200: 2174: 2150: 2144: 2143: 2116:10.1038/35092500 2091: 2085: 2084: 2074: 2056: 2024: 2018: 2017: 1965: 1959: 1958: 1931:10.1038/359254a0 1906: 1900: 1899: 1872:10.1038/354161a0 1847: 1841: 1835: 1825: 1807: 1775: 1750: 1749: 1701: 1695: 1694: 1688: 1680: 1661:. New York, NY. 1654: 1648: 1647: 1637: 1597: 1591: 1590: 1568: 1559: 1553: 1548: 1538: 1528: 1496: 1467: 1466: 1440: 1434: 1428: 1423: 1413: 1395: 1371: 1040:are specialized 1018: 1002: 970: 953: 941: 917: 906:Anabaena sperica 901: 889:Scale bar =10 ÎĽm 888: 766: 742: 725: 710: 692: 669: 660:along surfaces. 587: 555: 526: 515: 510: 416:Escherichia coli 21: 6467: 6466: 6462: 6461: 6460: 6458: 6457: 6456: 6442: 6441: 6440: 6439: 6385: 6384: 6380: 6374: 6349: 6348: 6344: 6335: 6331: 6299: 6298: 6294: 6264: 6263: 6259: 6241: 6240: 6236: 6198: 6197: 6193: 6149: 6148: 6144: 6090: 6089: 6085: 6039: 6038: 6034: 5989:Current Biology 5982: 5981: 5977: 5947: 5946: 5942: 5912: 5911: 5907: 5855: 5854: 5850: 5806: 5805: 5801: 5749: 5748: 5744: 5708: 5707: 5700: 5646: 5645: 5638: 5596: 5595: 5591: 5537: 5536: 5532: 5517:10.2307/3515333 5494: 5493: 5489: 5443: 5442: 5438: 5384: 5383: 5376: 5324: 5323: 5319: 5255: 5254: 5250: 5212: 5211: 5207: 5161: 5160: 5156: 5120: 5119: 5115: 5071: 5070: 5063: 5015: 5014: 5010: 4966: 4965: 4961: 4923: 4922: 4918: 4873:Current Biology 4866: 4865: 4861: 4831: 4830: 4826: 4798: 4797: 4793: 4780: 4776: 4763: 4759: 4713: 4712: 4708: 4680: 4679: 4675: 4637: 4636: 4632: 4625: 4604: 4603: 4599: 4584: 4563: 4562: 4558: 4528: 4527: 4523: 4477: 4476: 4472: 4465: 4444: 4443: 4439: 4432: 4411: 4410: 4406: 4396: 4395: 4391: 4355: 4354: 4350: 4306: 4305: 4301: 4257: 4256: 4249: 4219: 4218: 4214: 4176: 4175: 4171: 4109: 4108: 4095: 4048: 4047: 4043: 4034: 4032: 4023: 4022: 4018: 4011: 3996: 3995: 3991: 3976: 3963: 3962: 3958: 3951: 3930: 3929: 3922: 3878: 3877: 3873: 3829: 3828: 3824: 3768: 3767: 3763: 3723: 3722: 3718: 3666: 3665: 3661: 3654: 3633: 3632: 3628: 3622: 3601: 3600: 3596: 3589: 3568: 3567: 3563: 3515: 3510: 3509: 3505: 3459: 3458: 3454: 3402: 3401: 3397: 3345: 3344: 3340: 3288: 3287: 3283: 3231: 3230: 3221: 3160: 3159: 3155: 3103: 3102: 3093: 3047: 3046: 3042: 3015:Photosynthetica 3012: 3011: 3007: 2953: 2952: 2948: 2933: 2912: 2911: 2907: 2845: 2844: 2837: 2782: 2781: 2777: 2724: 2723: 2714: 2678: 2677: 2668: 2606: 2605: 2601: 2549: 2548: 2544: 2482: 2481: 2477: 2425: 2424: 2420: 2368: 2367: 2363: 2317: 2316: 2312: 2266: 2265: 2261: 2209: 2208: 2204: 2152: 2151: 2147: 2093: 2092: 2088: 2026: 2025: 2021: 1967: 1966: 1962: 1908: 1907: 1903: 1849: 1848: 1844: 1777: 1776: 1753: 1703: 1702: 1698: 1681: 1669: 1656: 1655: 1651: 1599: 1598: 1594: 1587: 1570: 1569: 1562: 1498: 1497: 1470: 1463: 1442: 1441: 1437: 1373: 1372: 1365: 1360: 1343: 1306: 1295: 1262: 1200:Salin-de-Giraud 1188:relaxation time 1139:polysaccharides 1114: 1096: 1085: 1071: 1057:Cylindrospermum 1042:nitrogen-fixing 1035: 1028: 1019: 1010: 1003: 994: 987: 971: 962: 954: 945: 942: 933: 918: 909: 902: 891: 887: 860: 847:lipid membranes 788: 776: 767: 758: 751: 743: 734: 726: 717: 711: 702: 693: 682: 670: 638: 633: 632: 631: 630: 626: 625: 624: 594: 588: 580: 579: 559: 556: 548: 547: 538:Oscillatoriales 527: 519: 518: 514: 511: 502: 501: 449: 365:day–night cycle 351:interactions. 295:Cyanobacterial 289: 252:Oscillatoriales 175:(consisting of 164:(consisting of 162:actin filaments 118: 112: 39: 28: 23: 22: 15: 12: 11: 5: 6465: 6463: 6455: 6454: 6444: 6443: 6438: 6437: 6378: 6372: 6342: 6329: 6292: 6257: 6234: 6207:(2): 133–145. 6191: 6142: 6083: 6048:(1–2): 11–17. 6032: 5975: 5940: 5905: 5848: 5819:(3): 367–377. 5799: 5742: 5721:(2): 143–147. 5698: 5636: 5589: 5550:(3): 433–456. 5530: 5503:(4): 302–318. 5487: 5436: 5374: 5337:(3): 179–190. 5317: 5248: 5221:(2): 133–145. 5205: 5154: 5133:(5): 960–966. 5113: 5061: 5032:(2): 222–233. 5008: 4959: 4932:(5): 363–378. 4916: 4859: 4824: 4791: 4774: 4757: 4722:(1–2): 11–17. 4706: 4673: 4630: 4623: 4597: 4582: 4556: 4537:(4): 355–365. 4521: 4470: 4463: 4437: 4430: 4404: 4389: 4368:(5): 589–597. 4348: 4309:"Gas vesicles" 4299: 4247: 4212: 4169: 4093: 4058:(4): 224–233. 4041: 4016: 4010:978-8171338894 4009: 3989: 3974: 3956: 3949: 3920: 3871: 3822: 3761: 3732:(6): 831–854. 3716: 3679:(5): 935–949. 3659: 3652: 3626: 3620: 3594: 3587: 3561: 3503: 3452: 3395: 3338: 3281: 3219: 3153: 3116:(2): 115–124. 3091: 3040: 3005: 2946: 2931: 2905: 2835: 2775: 2712: 2666: 2599: 2542: 2475: 2418: 2361: 2310: 2259: 2202: 2145: 2086: 2019: 1960: 1901: 1842: 1751: 1696: 1667: 1649: 1592: 1585: 1560: 1468: 1461: 1435: 1380:Microorganisms 1362: 1361: 1359: 1356: 1355: 1354: 1349: 1342: 1339: 1301: 1294: 1291: 1255: 1143:gliding motion 1121:, biomats and 1091: 1084: 1081: 1069: 1034: 1031: 1030: 1029: 1020: 1013: 1011: 1004: 997: 993: 990: 989: 988: 972: 965: 963: 959:Dolichospermum 955: 948: 946: 943: 936: 934: 927:model organism 919: 912: 910: 903: 896: 856: 825: 824: 809: 803: 778: 777: 768: 761: 757: 754: 753: 752: 744: 737: 735: 727: 720: 718: 712: 705: 703: 694: 687: 684: 683: 671: 664: 637: 634: 628: 627: 589: 582: 581: 558:Branched forms 557: 550: 549: 528: 521: 520: 512: 505: 504: 503: 499: 498: 497: 496: 448: 445: 393:photoreceptors 373:solar spectrum 369:color of light 288: 285: 260:Stigonematales 244:Pleurocapsales 221:outer membrane 111: 108: 80:microbial mats 47:refers to the 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6464: 6453: 6452:Cyanobacteria 6450: 6449: 6447: 6433: 6429: 6425: 6421: 6417: 6413: 6409: 6405: 6401: 6397: 6393: 6389: 6382: 6379: 6375: 6373:9781118960608 6369: 6365: 6361: 6357: 6356:Cyanobacteria 6353: 6352:Cyanobacteria 6346: 6343: 6339: 6333: 6330: 6324: 6319: 6315: 6311: 6307: 6305: 6296: 6293: 6288: 6284: 6280: 6276: 6272: 6268: 6261: 6258: 6253: 6249: 6245: 6238: 6235: 6230: 6226: 6222: 6218: 6214: 6210: 6206: 6202: 6195: 6192: 6187: 6183: 6178: 6173: 6169: 6165: 6161: 6157: 6153: 6146: 6143: 6138: 6134: 6129: 6124: 6119: 6114: 6110: 6106: 6102: 6098: 6094: 6087: 6084: 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6051: 6047: 6043: 6036: 6033: 6028: 6024: 6020: 6016: 6011: 6006: 6002: 5998: 5994: 5990: 5986: 5979: 5976: 5971: 5967: 5963: 5959: 5955: 5951: 5944: 5941: 5936: 5932: 5928: 5924: 5920: 5916: 5909: 5906: 5901: 5897: 5892: 5887: 5883: 5879: 5875: 5871: 5867: 5863: 5859: 5852: 5849: 5844: 5840: 5835: 5830: 5826: 5822: 5818: 5814: 5810: 5803: 5800: 5795: 5791: 5786: 5781: 5777: 5773: 5769: 5765: 5761: 5757: 5753: 5746: 5743: 5737: 5732: 5728: 5724: 5720: 5716: 5712: 5705: 5703: 5699: 5694: 5690: 5685: 5680: 5675: 5670: 5666: 5662: 5659:(7): e22084. 5658: 5654: 5650: 5643: 5641: 5637: 5632: 5628: 5624: 5620: 5616: 5612: 5609:(9): 098102. 5608: 5604: 5600: 5593: 5590: 5585: 5581: 5576: 5571: 5566: 5561: 5557: 5553: 5549: 5545: 5541: 5534: 5531: 5526: 5522: 5518: 5514: 5510: 5506: 5502: 5498: 5491: 5488: 5483: 5479: 5475: 5471: 5467: 5463: 5459: 5455: 5451: 5447: 5440: 5437: 5432: 5428: 5423: 5418: 5413: 5408: 5404: 5400: 5396: 5392: 5388: 5381: 5379: 5375: 5370: 5366: 5362: 5358: 5353: 5348: 5344: 5340: 5336: 5332: 5328: 5321: 5318: 5313: 5309: 5304: 5299: 5294: 5289: 5285: 5281: 5276: 5271: 5267: 5263: 5259: 5252: 5249: 5244: 5240: 5236: 5232: 5228: 5224: 5220: 5216: 5209: 5206: 5201: 5197: 5193: 5189: 5185: 5181: 5177: 5173: 5169: 5165: 5158: 5155: 5150: 5146: 5141: 5136: 5132: 5128: 5124: 5117: 5114: 5109: 5105: 5101: 5097: 5092: 5087: 5083: 5079: 5075: 5068: 5066: 5062: 5057: 5053: 5049: 5045: 5040: 5035: 5031: 5027: 5023: 5021: 5012: 5009: 5004: 5000: 4995: 4990: 4986: 4982: 4978: 4974: 4970: 4963: 4960: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4927: 4920: 4917: 4912: 4908: 4904: 4900: 4895: 4890: 4886: 4882: 4878: 4874: 4870: 4863: 4860: 4855: 4851: 4847: 4843: 4839: 4835: 4828: 4825: 4819: 4814: 4810: 4806: 4802: 4795: 4792: 4788: 4784: 4778: 4775: 4771: 4767: 4761: 4758: 4753: 4749: 4745: 4741: 4737: 4733: 4729: 4725: 4721: 4717: 4710: 4707: 4701: 4696: 4692: 4688: 4684: 4677: 4674: 4669: 4665: 4661: 4657: 4653: 4649: 4645: 4641: 4634: 4631: 4626: 4620: 4616: 4612: 4608: 4601: 4598: 4593: 4589: 4585: 4579: 4575: 4571: 4567: 4560: 4557: 4552: 4548: 4544: 4540: 4536: 4532: 4525: 4522: 4517: 4513: 4509: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4474: 4471: 4466: 4464:9780444413765 4460: 4456: 4452: 4448: 4447:Stromatolites 4441: 4438: 4433: 4427: 4423: 4419: 4415: 4408: 4405: 4400: 4393: 4390: 4385: 4381: 4376: 4371: 4367: 4363: 4359: 4352: 4349: 4344: 4340: 4335: 4330: 4326: 4322: 4319:(1): 94–144. 4318: 4314: 4310: 4303: 4300: 4295: 4291: 4286: 4281: 4277: 4273: 4270:(2): 340–73. 4269: 4265: 4261: 4254: 4252: 4248: 4243: 4239: 4235: 4231: 4227: 4223: 4216: 4213: 4208: 4204: 4200: 4196: 4192: 4188: 4185:(1): 85–106. 4184: 4180: 4173: 4170: 4166: 4161: 4155: 4151: 4146: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4113: 4106: 4104: 4102: 4100: 4098: 4094: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4053: 4045: 4042: 4030: 4026: 4020: 4017: 4012: 4006: 4002: 4001: 3993: 3990: 3985: 3981: 3977: 3975:0-419-23930-8 3971: 3967: 3960: 3957: 3952: 3946: 3942: 3938: 3934: 3927: 3925: 3921: 3916: 3912: 3907: 3902: 3898: 3894: 3890: 3886: 3882: 3875: 3872: 3867: 3863: 3859: 3855: 3850: 3845: 3842:(2): 222–33. 3841: 3837: 3833: 3826: 3823: 3819: 3814: 3808: 3804: 3799: 3794: 3789: 3784: 3780: 3776: 3772: 3765: 3762: 3757: 3753: 3748: 3743: 3739: 3735: 3731: 3727: 3720: 3717: 3712: 3708: 3704: 3700: 3695: 3690: 3686: 3682: 3678: 3674: 3670: 3669:Mastigocladus 3663: 3660: 3655: 3653:9781119068761 3649: 3645: 3641: 3637: 3630: 3627: 3623: 3621:9780470016176 3617: 3613: 3609: 3605: 3598: 3595: 3590: 3584: 3580: 3576: 3572: 3565: 3562: 3557: 3553: 3549: 3545: 3541: 3537: 3533: 3529: 3525: 3521: 3514: 3507: 3504: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3467: 3463: 3456: 3453: 3448: 3444: 3439: 3434: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3399: 3396: 3391: 3387: 3382: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3342: 3339: 3334: 3330: 3325: 3320: 3316: 3312: 3308: 3304: 3300: 3296: 3292: 3285: 3282: 3277: 3273: 3268: 3263: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3228: 3226: 3224: 3220: 3215: 3211: 3207: 3203: 3198: 3193: 3189: 3185: 3181: 3177: 3173: 3169: 3165: 3157: 3154: 3149: 3145: 3141: 3137: 3132: 3127: 3123: 3119: 3115: 3111: 3107: 3100: 3098: 3096: 3092: 3087: 3083: 3079: 3075: 3071: 3067: 3063: 3059: 3055: 3051: 3044: 3041: 3036: 3032: 3028: 3024: 3020: 3016: 3009: 3006: 3001: 2997: 2992: 2987: 2983: 2979: 2974: 2969: 2965: 2961: 2957: 2950: 2947: 2942: 2938: 2934: 2932:9780128146675 2928: 2924: 2920: 2916: 2915:Cyanobacteria 2909: 2906: 2901: 2897: 2892: 2887: 2883: 2879: 2874: 2869: 2865: 2861: 2857: 2853: 2849: 2842: 2840: 2836: 2831: 2827: 2822: 2817: 2813: 2809: 2804: 2799: 2795: 2791: 2787: 2779: 2776: 2771: 2767: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2721: 2719: 2717: 2713: 2708: 2704: 2699: 2694: 2690: 2686: 2682: 2675: 2673: 2671: 2667: 2662: 2658: 2653: 2648: 2644: 2640: 2635: 2630: 2626: 2622: 2618: 2614: 2610: 2603: 2600: 2595: 2591: 2586: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2553: 2546: 2543: 2538: 2534: 2529: 2524: 2520: 2516: 2511: 2506: 2502: 2498: 2494: 2490: 2486: 2479: 2476: 2471: 2467: 2462: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2422: 2419: 2414: 2410: 2405: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2365: 2362: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2314: 2311: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2263: 2260: 2255: 2251: 2246: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2206: 2203: 2198: 2194: 2190: 2186: 2182: 2178: 2173: 2168: 2164: 2160: 2156: 2149: 2146: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2090: 2087: 2082: 2078: 2073: 2068: 2064: 2060: 2055: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1990:10.1038/34472 1987: 1983: 1979: 1975: 1971: 1964: 1961: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1905: 1902: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1846: 1843: 1839: 1833: 1829: 1824: 1819: 1815: 1811: 1806: 1801: 1797: 1793: 1789: 1785: 1781: 1774: 1772: 1770: 1768: 1766: 1764: 1762: 1760: 1758: 1756: 1752: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1697: 1692: 1686: 1678: 1674: 1670: 1664: 1660: 1653: 1650: 1645: 1641: 1636: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1596: 1593: 1588: 1586:9789400738553 1582: 1578: 1574: 1567: 1565: 1561: 1557: 1552: 1546: 1542: 1537: 1532: 1527: 1522: 1518: 1514: 1511:(7): e22084. 1510: 1506: 1502: 1495: 1493: 1491: 1489: 1487: 1485: 1483: 1481: 1479: 1477: 1475: 1473: 1469: 1464: 1458: 1454: 1450: 1446: 1439: 1436: 1432: 1427: 1421: 1417: 1412: 1407: 1403: 1399: 1394: 1389: 1385: 1381: 1377: 1370: 1368: 1364: 1357: 1353: 1350: 1348: 1345: 1344: 1340: 1338: 1336: 1335: 1330: 1329:photomovement 1326: 1318: 1314: 1310: 1304: 1299: 1290: 1288: 1284: 1283:fragmentation 1280: 1276: 1272: 1268: 1260: 1259: 1253: 1246: 1242: 1241: 1235: 1231: 1228: 1224: 1220: 1216: 1212: 1208: 1203: 1201: 1195: 1191: 1189: 1185: 1180: 1176: 1170: 1168: 1164: 1160: 1159:surface waves 1156: 1152: 1148: 1144: 1140: 1136: 1131: 1128: 1124: 1123:stromatolites 1120: 1113: 1109: 1100: 1094: 1089: 1082: 1080: 1078: 1075: 1067: 1065: 1060: 1058: 1053: 1052: 1047: 1043: 1039: 1032: 1026: 1025: 1017: 1012: 1009: 1008: 1001: 996: 991: 985: 984:phytoplankton 981: 977: 976: 969: 964: 961: 960: 952: 947: 940: 935: 932: 931:simple vision 928: 925:is used as a 924: 923: 916: 911: 908: 907: 900: 895: 886: 882: 878: 874: 873: 868: 864: 859: 854: 850: 848: 844: 840: 836: 832: 831: 822: 818: 814: 811:thick-walled 810: 807: 804: 801: 800: 799: 797: 793: 787: 783: 774: 773: 765: 760: 755: 750: 749: 741: 736: 733: 732: 724: 719: 716: 709: 704: 701:"jelly balls" 700: 699: 691: 686: 680: 676: 675: 668: 663: 661: 659: 655: 651: 646: 644: 635: 623: 622: 617: 616: 611: 610: 605: 604: 599: 598: 593: 586: 578: 577: 572: 568: 567: 562: 554: 546: 545: 540: 539: 534: 533: 525: 509: 495: 493: 488: 486: 482: 478: 474: 470: 468: 467: 462: 458: 454: 446: 444: 441: 437: 433: 429: 424: 422: 418: 417: 412: 408: 404: 400: 399:superfamily. 398: 394: 390: 386: 382: 381:near-infrared 378: 374: 370: 366: 363:), duration ( 362: 358: 355:formation of 352: 350: 345: 344:Morphogenesis 338: 334: 330: 326: 325: 320: 319: 318:Synechococcus 314: 313: 312:Synechocystis 308: 305: 302: 298: 297:cell division 293: 287:Morphogenesis 286: 284: 281: 277: 273: 269: 265: 261: 257: 253: 249: 245: 241: 240:Chroococcales 237: 232: 230: 229:peptidoglycan 226: 222: 218: 213: 211: 207: 206: 201: 197: 193: 189: 184: 182: 178: 174: 170: 167: 163: 159: 158: 153: 152: 148: 144: 143:proteinaceous 140: 136: 132: 128: 127:cell division 124: 117: 109: 107: 104: 103:photomovement 100: 96: 91: 89: 85: 81: 77: 73: 68: 66: 62: 58: 54: 53:Cyanobacteria 50: 49:form or shape 46: 37: 32: 19: 6391: 6387: 6381: 6355: 6351: 6345: 6337: 6332: 6313: 6309: 6303: 6295: 6270: 6266: 6260: 6243: 6237: 6204: 6200: 6194: 6159: 6155: 6145: 6100: 6096: 6086: 6045: 6041: 6035: 5992: 5988: 5978: 5953: 5949: 5943: 5918: 5914: 5908: 5865: 5861: 5851: 5816: 5812: 5802: 5759: 5755: 5745: 5718: 5714: 5656: 5652: 5606: 5602: 5592: 5547: 5543: 5533: 5500: 5496: 5490: 5449: 5445: 5439: 5394: 5390: 5334: 5330: 5320: 5265: 5261: 5251: 5218: 5214: 5208: 5167: 5163: 5157: 5130: 5127:Microbiology 5126: 5116: 5081: 5077: 5029: 5025: 5022:punctiforme" 5019: 5011: 4976: 4972: 4962: 4929: 4925: 4919: 4876: 4872: 4862: 4837: 4833: 4827: 4808: 4804: 4794: 4786: 4782: 4777: 4769: 4765: 4760: 4719: 4715: 4709: 4690: 4687:Microbiology 4686: 4676: 4646:(5): e2835. 4643: 4639: 4633: 4606: 4600: 4565: 4559: 4534: 4530: 4524: 4483: 4479: 4473: 4446: 4440: 4413: 4407: 4392: 4365: 4361: 4351: 4316: 4312: 4302: 4267: 4263: 4228:(6): 623–9. 4225: 4221: 4215: 4182: 4178: 4172: 4119: 4115: 4055: 4051: 4044: 4033:. Retrieved 4031:. 2015-10-29 4028: 4019: 3999: 3992: 3965: 3959: 3932: 3888: 3884: 3874: 3839: 3835: 3825: 3778: 3774: 3764: 3747:10261/140753 3729: 3725: 3719: 3676: 3672: 3668: 3662: 3635: 3629: 3603: 3597: 3570: 3564: 3523: 3519: 3506: 3465: 3461: 3455: 3412: 3408: 3398: 3355: 3351: 3341: 3298: 3294: 3284: 3241: 3237: 3171: 3167: 3156: 3113: 3109: 3053: 3049: 3043: 3018: 3014: 3008: 2963: 2959: 2949: 2914: 2908: 2855: 2851: 2793: 2789: 2778: 2735: 2731: 2688: 2685:Microbiology 2684: 2616: 2612: 2602: 2559: 2555: 2545: 2492: 2488: 2478: 2435: 2431: 2421: 2378: 2374: 2364: 2323: 2319: 2313: 2272: 2269:Cytoskeleton 2268: 2262: 2219: 2215: 2205: 2162: 2158: 2148: 2099: 2095: 2089: 2036: 2032: 2022: 1973: 1969: 1963: 1914: 1910: 1904: 1855: 1851: 1845: 1787: 1783: 1713: 1709: 1699: 1658: 1652: 1609: 1605: 1595: 1576: 1508: 1504: 1444: 1438: 1383: 1379: 1332: 1322: 1312: 1302: 1279:Oscillatoria 1278: 1271:Oscillatoria 1269: 1265: 1258:Oscillatoria 1256: 1244: 1238: 1219:type IV pili 1204: 1196: 1192: 1184:viscoelastic 1171: 1167:Oscillatoria 1166: 1163:fibril layer 1147:type IV pili 1132: 1115: 1092: 1062: 1055: 1049: 1036: 1022: 1005: 980:mucilaginous 973: 957: 920: 904: 884: 883:H: S. cf. c 880: 876: 870: 866: 862: 857: 835:gas vesicles 830:Oscillatoria 828: 826: 789: 770: 746: 729: 715:Stratonostoc 714: 696: 695:Colonies of 674:Merismopedia 672: 652:. They lack 647: 639: 619: 613: 609:Coccochloris 607: 601: 595: 574: 564: 544:Spirulinales 542: 536: 530: 489: 471: 466:Oscillatoria 464: 450: 425: 414: 401: 389:phototrophic 385:chlorophylls 353: 342: 322: 316: 310: 280:multiseriate 247: 236:monophyletic 233: 214: 203: 185: 173:microtubules 155: 149: 139:cytoskeleton 119: 92: 69: 44: 43: 35: 6273:: 121–126. 5956:: 339–364. 5397:: 210–246. 4834:Protoplasma 3694:10261/99110 3197:10871/22651 1309:photophobic 1275:oscillation 1215:unicellular 1127:bioreactors 1077:nitrogenase 1038:Heterocysts 1033:Heterocysts 1007:Fischerella 817:nitrogenase 813:heterocysts 792:filamentous 576:Fischerella 561:Tolypothrix 477:heterocysts 453:unicellular 436:morphotypes 397:phytochrome 387:and allows 301:cell growth 264:heterocysts 210:bactofilins 123:cell growth 84:hot springs 6340:: 325-345. 6306:uncinatum" 6304:Phormidium 5331:Geobiology 5275:1807.07529 4789:: 389–430. 4531:Phycologia 4399:"Bacteria" 4035:2018-01-21 3781:: 631654. 1677:1276902141 1358:References 1287:hormogonia 1179:reticulate 1106:See also: 1072:using the 879:G: S. cf. 843:organelles 819:vital for 780:See also: 603:Gloeocapsa 532:Nostocales 492:hormogonia 485:hormogonia 432:morphogens 361:irradiance 333:morphotype 307:phenotypes 272:hormogonia 256:Nostocales 200:Crescentin 135:eukaryotes 114:See also: 6416:0166-8595 5921:: 49–75. 4766:Bot. Ztg. 4668:147705730 4516:130120737 4508:0883-1351 4486:(1): 84. 4136:1742-5662 3606:, Wiley, 3556:205498610 3540:1740-1526 3498:256745837 3482:1740-1526 3429:1740-1526 3372:1092-2172 3315:0021-9193 3258:0966-842X 3206:1758-678X 3086:256744429 3070:1740-1526 3021:: 11–43. 2982:1664-462X 2941:135429562 2882:1471-2148 2812:0027-8424 2752:1759-6653 2707:1350-0872 2643:1471-2148 2576:0021-9193 2519:1553-7358 2452:0021-9193 2395:0021-9193 2340:1740-1526 2289:1949-3584 2236:0261-4189 2181:0092-8674 2124:0028-0836 2063:0027-8424 1998:0028-0836 1939:0028-0836 1880:0028-0836 1814:2075-1729 1730:0955-0674 1685:cite book 1626:1059-1524 1402:2076-2607 1325:trichomes 1317:trichomes 1211:substrate 1099:Trichomes 1066:sphaerica 929:to study 881:calcicola 877:calcicola 872:Scytonema 650:cell wall 621:Rivularia 571:Stigonema 566:Scytonema 428:conserved 349:symbiotic 337:wild type 276:trichomes 248:baeocytes 76:trichomes 6446:Category 6424:16328838 6287:97100233 6246:. 1982. 6229:86115246 6137:10077659 6070:10985737 6027:14384308 5935:11544349 5900:16347435 5843:16907751 5794:16349251 5693:21789215 5653:PLOS ONE 5631:15447143 5584:25370380 5474:16760969 5431:56345018 5369:24452272 5361:20345889 5312:31767758 5243:86115246 5200:10399610 5149:25721851 5100:26331359 5056:37479716 5048:24533832 5003:17416648 4954:10654430 4946:15100690 4911:14384308 4854:20310025 4744:10985737 4693:: 1–61. 4660:31063628 4592:46736903 4384:24099700 4242:10066546 4199:16228364 4154:35892203 3984:40395794 3915:28242721 3866:37479716 3858:24533832 3807:33746925 3756:28204529 3711:25479970 3703:24383541 3548:23949602 3490:32424210 3447:22203377 3390:16959965 3276:29056293 3148:20154495 3140:24384602 3078:30410070 3000:28082998 2900:28859625 2830:23277585 2770:23221676 2661:21320320 2594:10671437 2537:24586129 2413:26811320 2348:29355854 2305:40504066 2297:23852773 2254:19959992 2197:14459851 2189:14675535 2132:11544518 1832:33348886 1746:40360166 1738:25460780 1644:23722945 1545:21789215 1505:PLOS ONE 1420:35456747 1341:See also 1245:O. lutea 1223:trichome 1175:vortices 1135:flagella 1119:biofilms 1083:Movement 1064:Anabaena 1059:stagnale 992:Branched 922:Anabaena 885:alcicola 837:, as in 806:akinetes 654:flagella 643:mucilage 481:akinetes 457:colonial 440:trichome 324:Anabaena 268:akinetes 169:monomers 157:in vitro 110:Overview 61:pigments 57:bacteria 6432:9453250 6396:Bibcode 6209:Bibcode 6186:7730269 6105:Bibcode 6078:9927312 6050:Bibcode 6019:9799733 5997:Bibcode 5970:6794424 5870:Bibcode 5821:Bibcode 5764:Bibcode 5723:Bibcode 5684:3138769 5661:Bibcode 5611:Bibcode 5575:4206854 5552:Bibcode 5525:3515333 5505:Bibcode 5497:PALAIOS 5482:4417746 5454:Bibcode 5399:Bibcode 5339:Bibcode 5303:6911197 5280:Bibcode 5223:Bibcode 5192:4984867 5172:Bibcode 5108:8749419 4994:1913353 4903:9799733 4881:Bibcode 4752:9927312 4724:Bibcode 4539:Bibcode 4488:Bibcode 4480:PALAIOS 4343:8177173 4294:1620069 4207:8752382 4145:9326267 4088:3022844 4080:8824145 4060:Bibcode 3997:Singh. 3906:5388816 3798:7965980 3438:5433867 3381:1594593 3333:1648559 3267:5834356 3214:7980894 3176:Bibcode 3035:4907693 2991:5183610 2891:5580265 2860:Bibcode 2821:3549136 2761:3595030 2652:3271361 2621:Bibcode 2528:3930494 2497:Bibcode 2470:7730269 2404:4859589 2356:3537215 2245:2824468 2140:4427828 2104:Bibcode 2081:1323828 2041:Bibcode 2014:4330857 2006:9428770 1978:Bibcode 1955:2748757 1947:1528268 1919:Bibcode 1896:4329947 1888:1944597 1860:Bibcode 1823:7766704 1792:Bibcode 1635:3667716 1536:3138769 1513:Bibcode 1411:9025173 1315:). The 1305:  1207:Gliding 1095:  986:species 975:Lyngbya 839:archaea 798:types: 658:gliding 411:coccoid 395:of the 192:homolog 177:tubulin 171:), the 151:in vivo 147:tubules 99:gliding 38:  6430:  6422:  6414:  6370:  6285:  6227:  6184:  6177:176896 6174:  6135:  6125:  6076:  6068:  6025:  6017:  5968:  5933:  5898:  5891:204072 5888:  5841:  5792:  5785:201509 5782:  5691:  5681:  5629:  5582:  5572:  5523:  5480:  5472:  5446:Nature 5429:  5367:  5359:  5310:  5300:  5241:  5198:  5190:  5164:Nature 5147:  5106:  5098:  5054:  5046:  5020:Nostoc 5001:  4991:  4952:  4944:  4909:  4901:  4852:  4772:: 831. 4750:  4742:  4666:  4658:  4621:  4590:  4580:  4514:  4506:  4461:  4428:  4382:  4341:  4334:372955 4331:  4292:  4285:372871 4282:  4240:  4205:  4197:  4152:  4142:  4134:  4086:  4078:  4007:  3982:  3972:  3947:  3913:  3903:  3864:  3856:  3805:  3795:  3754:  3709:  3701:  3650:  3618:  3585:  3554:  3546:  3538:  3496:  3488:  3480:  3445:  3435:  3427:  3388:  3378:  3370:  3331:  3324:208111 3321:  3313:  3274:  3264:  3256:  3212:  3204:  3146:  3138:  3084:  3076:  3068:  3033:  2998:  2988:  2980:  2939:  2929:  2898:  2888:  2880:  2828:  2818:  2810:  2768:  2758:  2750:  2705:  2659:  2649:  2641:  2592:  2582:  2574:  2535:  2525:  2517:  2468:  2461:176896 2458:  2450:  2411:  2401:  2393:  2354:  2346:  2338:  2303:  2295:  2287:  2252:  2242:  2234:  2195:  2187:  2179:  2138:  2130:  2122:  2096:Nature 2079:  2069:  2061:  2012:  2004:  1996:  1970:Nature 1953:  1945:  1937:  1911:Nature 1894:  1886:  1878:  1852:Nature 1830:  1820:  1812:  1744:  1736:  1728:  1675:  1665:  1642:  1632:  1624:  1583:  1543:  1533:  1459:  1418:  1408:  1400:  1227:septae 1074:enzyme 1061:, and 1027:colony 321:, and 304:mutant 194:, and 95:motile 6428:S2CID 6283:S2CID 6225:S2CID 6128:15917 6074:S2CID 6023:S2CID 5521:JSTOR 5478:S2CID 5427:S2CID 5365:S2CID 5270:arXiv 5239:S2CID 5196:S2CID 5104:S2CID 5052:S2CID 4950:S2CID 4907:S2CID 4850:S2CID 4748:S2CID 4664:S2CID 4588:S2CID 4512:S2CID 4203:S2CID 4084:S2CID 3862:S2CID 3707:S2CID 3552:S2CID 3516:(PDF) 3494:S2CID 3210:S2CID 3144:S2CID 3082:S2CID 3031:S2CID 2937:S2CID 2585:94402 2352:S2CID 2301:S2CID 2193:S2CID 2136:S2CID 2072:49695 2010:S2CID 1951:S2CID 1892:S2CID 1742:S2CID 1151:pilin 865:D–E: 861:A–C: 790:Some 202:from 166:actin 6420:PMID 6412:ISSN 6368:ISBN 6182:PMID 6133:PMID 6066:PMID 6015:PMID 5966:PMID 5931:PMID 5896:PMID 5839:PMID 5790:PMID 5689:PMID 5627:PMID 5580:PMID 5544:Life 5470:PMID 5357:PMID 5308:PMID 5188:PMID 5145:PMID 5096:PMID 5044:PMID 4999:PMID 4942:PMID 4899:PMID 4740:PMID 4656:PMID 4619:ISBN 4578:ISBN 4504:ISSN 4459:ISBN 4426:ISBN 4380:PMID 4366:1837 4339:PMID 4290:PMID 4238:PMID 4195:PMID 4150:PMID 4132:ISSN 4076:PMID 4005:ISBN 3980:OCLC 3970:ISBN 3945:ISBN 3911:PMID 3854:PMID 3803:PMID 3752:PMID 3699:PMID 3648:ISBN 3616:ISBN 3583:ISBN 3544:PMID 3536:ISSN 3486:PMID 3478:ISSN 3443:PMID 3425:ISSN 3386:PMID 3368:ISSN 3329:PMID 3311:ISSN 3272:PMID 3254:ISSN 3202:ISSN 3136:PMID 3074:PMID 3066:ISSN 2996:PMID 2978:ISSN 2927:ISBN 2896:PMID 2878:ISSN 2826:PMID 2808:ISSN 2766:PMID 2748:ISSN 2703:ISSN 2657:PMID 2639:ISSN 2590:PMID 2572:ISSN 2533:PMID 2515:ISSN 2466:PMID 2448:ISSN 2409:PMID 2391:ISSN 2344:PMID 2336:ISSN 2293:PMID 2285:ISSN 2250:PMID 2232:ISSN 2185:PMID 2177:ISSN 2159:Cell 2128:PMID 2120:ISSN 2077:PMID 2059:ISSN 2002:PMID 1994:ISSN 1943:PMID 1935:ISSN 1884:PMID 1876:ISSN 1828:PMID 1810:ISSN 1784:Life 1734:PMID 1726:ISSN 1691:link 1673:OCLC 1663:ISBN 1640:PMID 1622:ISSN 1581:ISBN 1541:PMID 1457:ISBN 1416:PMID 1398:ISSN 1177:and 1155:pili 1110:and 875:cf. 796:cell 784:and 618:and 592:tufa 573:and 541:and 455:and 299:and 258:and 196:MreB 188:FtsZ 154:and 6404:doi 6360:doi 6354:", 6318:doi 6275:doi 6248:doi 6217:doi 6172:PMC 6164:doi 6160:177 6123:PMC 6113:doi 6058:doi 6046:174 6005:doi 5958:doi 5923:doi 5886:PMC 5878:doi 5829:doi 5780:PMC 5772:doi 5731:doi 5679:PMC 5669:doi 5619:doi 5570:PMC 5560:doi 5513:doi 5462:doi 5450:441 5417:hdl 5407:doi 5395:154 5347:doi 5298:PMC 5288:doi 5266:116 5231:doi 5180:doi 5168:225 5135:doi 5131:161 5086:doi 5034:doi 4989:PMC 4981:doi 4977:189 4934:doi 4889:doi 4842:doi 4813:doi 4787:104 4732:doi 4720:174 4695:doi 4691:111 4648:doi 4611:doi 4570:doi 4547:doi 4496:doi 4451:doi 4418:doi 4370:doi 4329:PMC 4321:doi 4280:PMC 4272:doi 4230:doi 4187:doi 4140:PMC 4124:doi 4068:doi 4056:166 3937:doi 3901:PMC 3893:doi 3889:199 3844:doi 3793:PMC 3783:doi 3742:hdl 3734:doi 3689:hdl 3681:doi 3640:doi 3608:doi 3604:eLS 3575:doi 3528:doi 3470:doi 3433:PMC 3417:doi 3376:PMC 3360:doi 3319:PMC 3303:doi 3299:173 3262:PMC 3246:doi 3192:hdl 3184:doi 3126:hdl 3118:doi 3058:doi 3023:doi 2986:PMC 2968:doi 2919:doi 2886:PMC 2868:doi 2816:PMC 2798:doi 2794:110 2756:PMC 2740:doi 2693:doi 2689:111 2647:PMC 2629:doi 2580:PMC 2564:doi 2560:182 2523:PMC 2505:doi 2456:PMC 2440:doi 2436:177 2399:PMC 2383:doi 2379:198 2328:doi 2277:doi 2240:PMC 2224:doi 2167:doi 2163:115 2112:doi 2100:413 2067:PMC 2049:doi 1986:doi 1974:391 1927:doi 1915:359 1868:doi 1856:354 1818:PMC 1800:doi 1718:doi 1630:PMC 1614:doi 1531:PMC 1521:doi 1449:doi 1406:PMC 1388:doi 869:F: 409:to 407:rod 309:in 129:or 6448:: 6426:. 6418:. 6410:. 6402:. 6392:80 6390:. 6366:, 6314:30 6312:. 6308:. 6281:. 6271:46 6269:. 6223:. 6215:. 6203:. 6180:. 6170:. 6158:. 6154:. 6131:. 6121:. 6111:. 6101:96 6099:. 6095:. 6072:. 6064:. 6056:. 6044:. 6021:. 6013:. 6003:. 5991:. 5987:. 5964:. 5954:35 5952:. 5929:. 5919:55 5917:. 5894:. 5884:. 5876:. 5866:53 5864:. 5860:. 5837:. 5827:. 5817:57 5815:. 5811:. 5788:. 5778:. 5770:. 5760:60 5758:. 5754:. 5729:. 5719:12 5717:. 5713:. 5701:^ 5687:. 5677:. 5667:. 5655:. 5651:. 5639:^ 5625:. 5617:. 5607:93 5605:. 5601:. 5578:. 5568:. 5558:. 5546:. 5542:. 5519:. 5511:. 5501:12 5499:. 5476:. 5468:. 5460:. 5448:. 5425:. 5415:. 5405:. 5393:. 5389:. 5377:^ 5363:. 5355:. 5345:. 5333:. 5329:. 5306:. 5296:. 5286:. 5278:. 5264:. 5260:. 5237:. 5229:. 5217:. 5194:. 5186:. 5178:. 5166:. 5143:. 5129:. 5125:. 5102:. 5094:. 5082:98 5080:. 5076:. 5064:^ 5050:. 5042:. 5030:92 5028:. 5024:. 4997:. 4987:. 4975:. 4971:. 4948:. 4940:. 4928:. 4905:. 4897:. 4887:. 4875:. 4871:. 4848:. 4838:65 4836:. 4809:64 4807:. 4803:. 4785:. 4770:41 4768:, 4746:. 4738:. 4730:. 4718:. 4689:. 4685:. 4662:. 4654:. 4644:35 4642:. 4617:. 4586:. 4576:. 4568:. 4545:. 4535:22 4533:. 4510:. 4502:. 4494:. 4484:17 4482:. 4457:. 4424:. 4378:. 4364:. 4360:. 4337:. 4327:. 4317:58 4315:. 4311:. 4288:. 4278:. 4268:56 4266:. 4262:. 4250:^ 4236:. 4224:. 4201:. 4193:. 4183:70 4181:. 4148:. 4138:. 4130:. 4120:19 4118:. 4114:. 4096:^ 4082:. 4074:. 4066:. 4054:. 4027:. 3978:. 3943:. 3923:^ 3909:. 3899:. 3887:. 3883:. 3860:. 3852:. 3840:92 3838:. 3834:. 3801:. 3791:. 3779:12 3777:. 3773:. 3750:. 3740:. 3730:40 3728:. 3705:. 3697:. 3687:. 3677:91 3675:. 3646:. 3614:, 3581:. 3550:. 3542:. 3534:. 3524:11 3522:. 3518:. 3492:. 3484:. 3476:. 3466:18 3464:. 3441:. 3431:. 3423:. 3413:10 3411:. 3407:. 3384:. 3374:. 3366:. 3356:70 3354:. 3350:. 3327:. 3317:. 3309:. 3297:. 3293:. 3270:. 3260:. 3252:. 3242:26 3240:. 3236:. 3222:^ 3208:. 3200:. 3190:. 3182:. 3170:. 3166:. 3142:. 3134:. 3124:. 3114:12 3112:. 3108:. 3094:^ 3080:. 3072:. 3064:. 3054:17 3052:. 3029:. 3019:56 3017:. 2994:. 2984:. 2976:. 2962:. 2958:. 2935:. 2925:. 2894:. 2884:. 2876:. 2866:. 2856:17 2854:. 2850:. 2838:^ 2824:. 2814:. 2806:. 2792:. 2788:. 2764:. 2754:. 2746:. 2734:. 2730:. 2715:^ 2701:. 2687:. 2683:. 2669:^ 2655:. 2645:. 2637:. 2627:. 2617:11 2615:. 2611:. 2588:. 2578:. 2570:. 2558:. 2554:. 2531:. 2521:. 2513:. 2503:. 2493:10 2491:. 2487:. 2464:. 2454:. 2446:. 2434:. 2430:. 2407:. 2397:. 2389:. 2377:. 2373:. 2350:. 2342:. 2334:. 2324:16 2322:. 2299:. 2291:. 2283:. 2273:70 2271:. 2248:. 2238:. 2230:. 2220:29 2218:. 2214:. 2191:. 2183:. 2175:. 2161:. 2157:. 2134:. 2126:. 2118:. 2110:. 2098:. 2075:. 2065:. 2057:. 2047:. 2037:89 2035:. 2031:. 2008:. 2000:. 1992:. 1984:. 1972:. 1949:. 1941:. 1933:. 1925:. 1913:. 1890:. 1882:. 1874:. 1866:. 1854:. 1826:. 1816:. 1808:. 1798:. 1788:10 1786:. 1782:. 1754:^ 1740:. 1732:. 1724:. 1714:32 1712:. 1687:}} 1683:{{ 1671:. 1638:. 1628:. 1620:. 1610:24 1608:. 1604:. 1563:^ 1539:. 1529:. 1519:. 1507:. 1503:. 1471:^ 1455:. 1414:. 1404:. 1396:. 1384:10 1382:. 1378:. 1366:^ 1054:, 612:, 606:, 600:, 569:, 563:, 535:, 469:) 315:, 141:: 125:, 97:, 86:, 67:. 6434:. 6406:: 6398:: 6362:: 6326:. 6320:: 6289:. 6277:: 6254:. 6250:: 6231:. 6219:: 6211:: 6205:7 6188:. 6166:: 6139:. 6115:: 6107:: 6080:. 6060:: 6052:: 6029:. 6007:: 5999:: 5993:8 5972:. 5960:: 5937:. 5925:: 5902:. 5880:: 5872:: 5845:. 5831:: 5823:: 5796:. 5774:: 5766:: 5739:. 5733:: 5725:: 5695:. 5671:: 5663:: 5657:6 5633:. 5621:: 5613:: 5586:. 5562:: 5554:: 5548:4 5527:. 5515:: 5507:: 5484:. 5464:: 5456:: 5433:. 5419:: 5409:: 5401:: 5371:. 5349:: 5341:: 5335:8 5314:. 5290:: 5282:: 5272:: 5245:. 5233:: 5225:: 5219:7 5202:. 5182:: 5174:: 5151:. 5137:: 5110:. 5088:: 5058:. 5036:: 5005:. 4983:: 4956:. 4936:: 4930:2 4913:. 4891:: 4883:: 4877:8 4856:. 4844:: 4821:. 4815:: 4754:. 4734:: 4726:: 4703:. 4697:: 4670:. 4650:: 4627:. 4613:: 4594:. 4572:: 4553:. 4549:: 4541:: 4518:. 4498:: 4490:: 4467:. 4453:: 4434:. 4420:: 4401:. 4386:. 4372:: 4345:. 4323:: 4296:. 4274:: 4244:. 4232:: 4226:1 4209:. 4189:: 4167:. 4156:. 4126:: 4090:. 4070:: 4062:: 4038:. 4013:. 3986:. 3953:. 3939:: 3917:. 3895:: 3868:. 3846:: 3820:. 3809:. 3785:: 3758:. 3744:: 3736:: 3713:. 3691:: 3683:: 3656:. 3642:: 3610:: 3591:. 3577:: 3558:. 3530:: 3500:. 3472:: 3449:. 3419:: 3392:. 3362:: 3335:. 3305:: 3278:. 3248:: 3216:. 3194:: 3186:: 3178:: 3172:6 3150:. 3128:: 3120:: 3088:. 3060:: 3037:. 3025:: 3002:. 2970:: 2964:7 2943:. 2921:: 2902:. 2870:: 2862:: 2832:. 2800:: 2772:. 2742:: 2736:5 2709:. 2695:: 2663:. 2631:: 2623:: 2596:. 2566:: 2539:. 2507:: 2499:: 2472:. 2442:: 2415:. 2385:: 2358:. 2330:: 2307:. 2279:: 2256:. 2226:: 2199:. 2169:: 2142:. 2114:: 2106:: 2083:. 2051:: 2043:: 2016:. 1988:: 1980:: 1957:. 1929:: 1921:: 1898:. 1870:: 1862:: 1840:. 1834:. 1802:: 1794:: 1748:. 1720:: 1693:) 1679:. 1646:. 1616:: 1589:. 1558:. 1547:. 1523:: 1515:: 1509:6 1465:. 1451:: 1433:. 1422:. 1390:: 1070:2 641:( 339:. 20:)

Index

Filamentous cyanobacteria

form or shape
Cyanobacteria
bacteria
pigments
oxygenic photosynthesis
colonial aggregates
trichomes
microbial mats
hot springs
hypersaline water
motile
gliding
photomovement
Prokaryotic cytoskeleton
cell growth
cell division
cell differentiation
eukaryotes
cytoskeleton
proteinaceous
tubules
in vivo
in vitro
actin filaments
actin
monomers
microtubules
tubulin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑