Knowledge (XXG)

Fluorescence in the life sciences

Source 📝

26: 54: 62: 678:). Absorption of a photon by a fluorophore takes a few picoseconds. Before this energy is released (emission: 1–10 ns), the solvent molecules surrounding the fluorophore reorient (10–100 ps) due to the change in polarity in the excited singlet state; this process is called solvent relaxation. As a result of this relaxation, the energy of the excited state of the fluorophore is lowered (longer wavelength), hence fluorophores that have a large change in dipole moment have larger stokes shift changes in different solvents. The difference between the energy levels can be roughly determined with the Lipper-Mataga equation. 1055:. Most of these techniques rely on fluorescence microscopes, which use high intensity light sources, usually mercury or xenon lamps, LEDs, or lasers, to excite fluorescence in the samples under observation. Optical filters then separate excitation light from emitted fluorescence to be detected by eye or with a (CCD) camera or other light detector (e.g., photomultiplier tubes, spectrographs). Considerable research is underway to improve the capabilities of such microscopes, the fluorescent probes used, and the applications they are applied to. Of particular note are confocal microscopes, which use a pinhole to achieve 879: 784: 734: 833:
naturally localise inside the mitochondria due to the inner mitochondrial membrane matrix-face's negative charge (as the fluorophores are cationic). The temperature of these fluorophores is inversely proportional to their fluorescence emission, and thus by measuring the fluorescent output, the temperature of actively-respiring mitochondria can be deduced. The fluorophores used are typically lipophilic cations derived from
2196: 151: 34: 845: 604: 2208: 942: 648: 1307:
Christiansen, Eric M.; Yang, Samuel J.; Ando, D. Michael; Javaherian, Ashkan; Skibinski, Gaia; Lipnick, Scott; Mount, Elliot; O’Neil, Alison; Shah, Kevan; Lee, Alicia K.; Goyal, Piyush; Fedus, William; Poplin, Ryan; Esteva, Andre; Berndl, Marc; Rubin, Lee L.; Nelson, Philip; Finkbeiner, Steven (April
764:
Multiphoton excitation is a way of focusing the viewing plane of the microscope by taking advantage of the phenomenon where two simultaneous low energy photons are absorbed by a fluorescent moiety which normally absorbs one photon with double their individual energy: say two NIR photons (800 nm)
865:
inhibitor) to the mitochondria of human primary fibroblasts. This would suggest a sharp increase in mitochondrial temperature but is, in reality, explained by the hyperpolarisation of the mitochondrial inner membrane by oligomycin - leading to the breakdown of the positively-charged MTY fluorophore.
715:, which have much longer lifetimes due to the restricted states: lanthanides have lifetimes of 0.5 to 3 ms, while transition metal-ligand complexes have lifetimes of 10 ns to 10 μs. Note that fluorescent lifetime should not be confused with the photodestruction lifetime or the "shelf-life" of a dye. 856:
This temperature-measurement technique is, however, limited. These cationic fluorophores are heavily influenced by the charge of the inner mitochondrial membrane matrix-face, dependent on the cell type. For example, the thermosensitive fluorophore MTY (MitoTracker Yellow) shows a sudden and drastic
449:
The above techniques can be combined with computational methods to estimate staining levels without staining the cell. These approaches, generally, rely on training a deep-convolutional neural network to perform imaging remapping, converting the bright-field or phase image into a fluorescent image.
691:
in chemistry actually describes changes due to one of a variety of different environmental factors, such as pH or temperature, not just polarity; however, in biochemistry environment-sensitive fluorphore and solvatochromic fluorophore are used interchangeably: this convention is so widespread that
832:
Some fluorescent chemicals exhibit significant fluorescent quenching when exposed to increasing temperatures. This effect has been used to measure and examine the thermogenic properties of mitochondria. This involves placing mitochondria-targeting thermosensitive fluorophores inside cells, which
706:
Fluorescent moieties emit photons several nanoseconds after absorption following an exponential decay curve, which differs between dyes and depends on the surrounding solvent. When the dye is attached to a macromolecules the decay curve becomes multiexponential. Conjugated dyes generally have a
852:
The inverse relationship between fluorescence and temperature can be explained by the change in the number of atomic collisions in the fluorophore's environment, depending on the kinetic energy. Collisions promote radiationless decay and loss of extra energy as heat, so more collisions or more
194:
is an indicator of the efficiency of the dye (it is the ratio of emitted photons per absorbed photon), and the extinction coefficient is the amount of light that can be absorbed by a fluorophore. Both the quantum yield and extinction coefficient are specific for each fluorophore and multiplied
1018:
Also, many biological molecules have an intrinsic fluorescence that can sometimes be used without the need to attach a chemical tag. Sometimes this intrinsic fluorescence changes when the molecule is in a specific environment, so the distribution or binding of the molecule can be measured.
925:
of tissues, cells or subcellular structures is accomplished by labeling an antibody with a fluorophore and allowing the antibody to find its target antigen within the sample. Labeling multiple antibodies with different fluorophores allows visualization of multiple targets within a single
937:; each of four different chain terminating bases has its own specific fluorescent tag. As the labeled DNA molecules are separated, the fluorescent label is excited by a UV source, and the identity of the base terminating the molecule is identified by the wavelength of the emitted light. 136:, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies. 554:
Fluorescence is not necessarily more convenient to use because it requires specialized detection equipment of its own. For non-quantitative or relative quantification applications it can be useful but it is poorly suited for making absolute measurement because of fluorescence
651:
Example of an environmentally sensitive dye: Badan exhibits a large change in dipole moment upon excitation (due to internal charge transfer between the tertiary amine and ketone). This results in a significant lowering of the energy from solvent
969:, when free to change its conformation in solution, has very little fluorescence. Ethidium bromide's fluorescence is greatly enhanced when it binds to DNA, so this compound is very useful in visualising the location of DNA fragments in 550:
is similar to "colour" but distinct, it is the pair of excitation and emission filters specific for a dye, e.g. agilent microarrays are dual channel, working on cy3 and cy5, these are colloquially referred to as green and red.
1697: 1030:
The number of fluorescence applications in the biomedical, biological and related sciences continuously expands. Methods of analysis in these fields are also growing, often with nomenclature in the form of acronyms such as:
2212: 656:
Environment-sensitive dyes change their properties (intensity, half-life, and excitation and emission spectra) depending on the polarity (hydrophobicity and charge) of their environments. Examples include:
450:
By decoupling the training corpus from the cells under investigation, these approaches provide an avenue for using stains that are otherwise incompatible with live cell imaging, such as anti-body staining.
473:
properties, i.e. emission of light from a substance. Fluorescence is a property where light is absorbed and remitted within a few nanoseconds (approx. 10ns) at a lower energy (=higher wavelength), while
841:
probes. This technique has contributed significantly to the general scientific consensus that mitochondria are physiologically maintained at close to 50 ˚C, more than 10˚C above the rest of the cell.
429:, and several mutants have been created to span the visible spectra and fluoresce longer and more stably. Other proteins are fluorescent but require a fluorophore cofactor, and hence can only be used 1357:
Kandel, Mikhail E.; He, Yuchen R.; Lee, Young Jae; Chen, Taylor Hsuan-Yu; Sullivan, Kathryn Michele; Aydin, Onur; Saif, M. Taher A.; Kong, Hyunjoon; Sobh, Nahil; Popescu, Gabriel (7 December 2020).
987:
Immunology: An antibody has a fluorescent chemical group attached, and the sites (e.g., on a microscopic specimen) where the antibody has bound can be seen, and even quantified, by the fluorescence.
498:). Until recently, this was not applicable to life science research due to the size of the inorganic particles. However the boundary between the fluorescence and phosphorescence is not clean cut as 818:
will emit light which is also polarized. However, if a molecule is moving, it will tend to "scramble" the polarization of the light by radiating at a different direction from the incident light.
1638:
Chrétien, Dominique; Bénit, Paule; Ha, Hyung-Ho; Keipert, Susanne; El-Khoury, Riyad; Chang, Young-Tae; Jastroch, Martin; Jacobs, Howard T.; Rustin, Pierre; Rak, Malgorzata (January 2018).
618:
FRET (Förster resonance energy transfer) is a property in which the energy of the excited electron of one fluorphore, called the donor, is passed on to a nearby acceptor dye, either a
182:, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely proportional). The difference in the excitation and emission wavelengths is called the 1550:
Chrétien, Dominique; Bénit, Paule; Leroy, Christine; El-Khoury, Riyad; Park, Sunyou; Lee, Jung Yeol; Chang, Young-Tae; Lenaers, Guy; Rustin, Pierre; Rak, Malgorzata (2020-12-02).
663:
This change is most pronounced when electron-donating and electron-withdrawing groups are placed at opposite ends of an aromatic ring system, as this results in a large change in
1027:, formed in developing red blood cells instead of hemoglobin when iron is unavailable or lead is present, has a bright fluorescence and can be used to detect these problems. 622:
or another fluorophore, which has an excitation spectrum which overlaps with the emission spectrum of the donor dye resulting in a reduced fluorescence. This can be used to:
1052: 502:-ligand complexes, which combine a metal and several organic moieties, have long lifetimes, up to several microseconds (as they display mixed singlet-triplet states). 383:
that typically brighter than conventional stains. They are generally more expensive, toxic, do not permeate cell membranes, and cannot be manufactured by the cell.
1140: 707:
lifetime between 1–10 ns, a small amount of longer lived exceptions exist, notably pyrene with a lifetime of 400ns in degassed solvents or 100ns in lipids and
25: 1774: 401:, which spontaneously fluoresces upon folding via specific serine-tyrosine-glycine residues. The benefit that GFP and other fluorescent proteins have over 1044: 542:
due to different intensities) but require special machinery (a tritium screen and a regular phosphor-imaging screen or a specific dual channel detector).
711:
with 200ns. On a different category of fluorphores are the fluorescent organometals (lanthanides and transition metal-ligand complexes) which have been
53: 701: 305:
Organic fluorophores fluoresce thanks to delocalized electrons which can jump a band and stabilize the energy absorbed, hence most fluorophores are
1229:
Lamture, JB; Wensel, TG (1995). "Intensely luminescent immunoreactive conjugates of proteins and dipicolinate-based polymeric Tb (III) chelates".
1186: 1010:
Fluorescence can be applied to study colocalization of various proteins of interest. It then can be analyzed using a specialized software, like
1040: 1004: 409:, a protein that is created by ligating the fluorescent gene (e.g., GFP) to another gene and whose expression is driven by a housekeeping gene 1164: 1118: 1048: 413:
or another specific promoter. This approach allows fluorescent proteins to be used as reporters for any number of biological events, such as
511: 598: 133: 1198:
Au-Yeung, Ho Yu; Tong, Ka Yan (2021). "Chapter 16. Transition Metals and Imaging Probes in Neurobiology and Neurodegenerative Diseases".
1799: 1036: 486:
is a property of materials to absorb light and emit the energy several milliseconds or more later (due to forbidden transitions to the
2118: 1821: 991: 2050: 89: 61: 530:
Several fluorescent molecules can be used simultaneously given that they do not overlap, cf. FRET, whereas with radioactivity two
724: 1591:
Arai, Satoshi; Suzuki, Madoka; Park, Sung-Jin; Yoo, Jung Sun; Wang, Lu; Kang, Nam-Young; Ha, Hyung-Ho; Chang, Young-Tae (2015).
2172: 2055: 1767: 664: 1481: 1264:
Chalfie, M; Tu, Y; Euskirchen, G; Ward, WW; Prasher, DC (1994). "Green fluorescent protein as a marker for gene expression".
1083: 418: 2177: 2167: 2154: 1032: 1000:(MST) uses fluorescence as readout to quantify the directed movement of biomolecules in microscopic temperature gradients. 1722:
Zinchuk, Grossenbacher-Zinchuk (2009). "Recent advances in quantitative colocalization analysis: Focus on neuroscience".
1794: 950: 970: 946: 626:
detect if two labelled protein or nucleic acids come into contact or a doubly labelled single molecules is hydrolysed;
1007:, which measures distance at the angstrom level. This is especially important in complexes of multiple biomolecules. 2234: 2200: 1760: 1424:
Kandel, Mikhail E.; Kim, Eunjae; Lee, Young Jae; Tracy, Gregory; Chung, Hee Jung; Popescu, Gabriel (28 May 2021).
1359:"Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments" 997: 586: 414: 392: 105: 1003:
Fluorescence has been used to study the structure and conformations of DNA and proteins with techniques such as
934: 556: 1839: 922: 774: 582: 547: 46: 581:
The basic property of fluorescence are extensively used, such as a marker of labelled components in cells (
1073: 324: 1998: 1993: 1935: 1849: 73: 589:), but other additional properties, not found with radioactivity, make it even more extensively used. 2098: 1955: 1804: 1380: 1273: 1078: 1011: 910: 827: 349: 179: 319:
Lanthanides (chelated) are uniquely fluorescent metals, which emit thanks to transitions involving 4
1967: 1962: 1940: 1886: 1426:"Multiscale Assay of Unlabeled Neurite Dynamics Using Phase Imaging with Computational Specificity" 1024: 1527: 1463: 1370: 1211: 1056: 410: 2139: 1783: 1739: 1679: 1661: 1620: 1612: 1573: 1455: 1406: 1339: 1289: 1246: 1160: 1114: 479: 462: 397: 391:
Several fluorescent protein exist in nature, but the most important one as a research tool is
306: 187: 155: 1552:"Pitfalls in Monitoring Mitochondrial Temperature Using Charged Thermosensitive Fluorophores" 1108: 1731: 1669: 1651: 1604: 1563: 1519: 1445: 1437: 1396: 1388: 1329: 1321: 1281: 1238: 1203: 966: 499: 434: 345: 335: 85: 1593:"Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient" 559:, whereas measuring radioactively labeled molecules is always direct and highly sensitive. 2103: 1829: 916: 815: 642: 483: 482:, a property where light is generated by a chemical reaction of an enzyme on a substrate. 475: 466: 438: 276: 1384: 1277: 1154: 2134: 2085: 2045: 1674: 1639: 1450: 1425: 1401: 1358: 1334: 1309: 981: 853:
forceful collisions will promote radiationless decay and reduce fluorescence emission.
406: 296: 288: 230: 81: 76:
generally as a non-destructive way of tracking or analysing biological molecules. Some
1023:, for instance, is highly fluorescent when bound to a specific site on serum albumin. 878: 783: 733: 661:, Cascade Yellow, prodan, Dansyl, Dapoxyl, NBD, PyMPO, Pyrene and diethylaminocumarin. 2239: 2228: 2144: 2035: 1950: 1467: 1215: 685:
dye is a dye which is insoluble in water, a property independent of solvatochromism.
619: 539: 517: 495: 491: 380: 191: 175: 101: 1531: 2080: 1988: 1983: 1489: 862: 487: 470: 458: 376: 244: 183: 145: 109: 69: 42: 20: 214:
Fluorophores can be attached to proteins via specific functional groups, such as:
33: 1735: 1656: 405:
or quantum dots is that they can be expressed exogenously in cells alone or as a
2162: 1891: 1568: 1551: 1088: 1068: 957: 834: 682: 608: 402: 314: 226: 209: 163: 129: 125: 117: 97: 38: 1441: 1392: 1325: 844: 150: 1918: 1913: 1908: 1207: 974: 858: 93: 84:
in cells are naturally fluorescent, which is called intrinsic fluorescence or
1665: 1616: 1577: 973:. Ethidium bromide can be toxic – a purportedly safer alternative is the dye 186:, and the time that an excited electron takes to emit the photon is called a 1945: 1285: 1020: 612: 603: 357: 328: 262: 167: 1743: 1683: 1624: 1523: 1459: 1410: 1343: 1293: 1250: 941: 2008: 2003: 1896: 708: 688: 670:
When a fluorophore is excited, it generally has a larger dipole moment (μ
531: 426: 310: 236: 1592: 1242: 566:
Significantly changes the properties of a fluorescently-labeled molecule
527:
Fluorescence is safer to use and does not require radiological controls.
302:
These fluorophores are either small molecules, protein or quantum dots.
2114: 2089: 2064: 2060: 2040: 1853: 1608: 1310:"In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images" 607:
Cartoon of FRET between two protein interacting protein, labelled with
535: 523:
The advantages of fluorescence over radioactive labels are as follows:
361: 339: 77: 692:
suppliers describe them as environment-sensitive over solvatochromic.
1925: 1903: 1187:
Animation for the principle of fluorescence and UV-visible absorbance
658: 365: 327:
and slow emissions, requiring excitation through fluorescent organic
280: 171: 113: 65:
Example uses of fluorescent proteins for imaging in the life sciences
1752: 1375: 2127: 940: 843: 602: 422: 268: 254: 248: 218: 149: 60: 52: 32: 24: 1930: 647: 353: 195:
together calculates the brightness of the fluorescent molecule.
1756: 1640:"Mitochondria are physiologically maintained at close to 50 °C" 356:
which is partially forbidden, these are generally complexes of
128:. Several techniques exist to exploit additional properties of 1843: 1833: 953: 930: 873: 778: 728: 309:. Several families exist and their excitations range from the 121: 1510:
Evanko, Daniel (2005). "A 'flaky' but useful fluorophore".
344:
A third class of small molecule fluorophore is that of the
433:; these are often found in plants and algae (phytofluors, 1698:"3.6: Variables that Influence Fluorescence Measurements" 814:
A perfectly immobile fluorescent moiety when exited with
1059:, which affords a quantitative, 3D view of the sample. 890: 795: 745: 178:
before either dispersing the energy non-radiatively or
116:
or small molecules can be "labelled" with an extrinsic
1153:
Juan Carlos Stockert, Alfonso Blázquez-Castro (2017).
516:
Prior to its widespread use in the past three decades
323:
orbits, which are forbidden, hence they have very low
632:
measure concentration by a competitive binding assay.
2153: 2073: 2028: 2021: 1976: 1863: 1820: 1813: 1051:, PFRAP, smFRET, FIONA, FRIPS, SHREK, SHRIMP or 108:). Alternatively, specific or general proteins, 29:Distribution of fluorescent proteins in animals. 57:Biofluorescent emission spectra from amphibians 352:, which display molecular fluorescence from a 162:The principle behind fluorescence is that the 1768: 569:Interference with normal biological processes 8: 857:drop in fluorescence after the addition of 2025: 1817: 1775: 1761: 1753: 1143:. Invitrogen.com. Retrieved on 2011-06-25. 949:. Ethidium bromide fluoresces orange when 124:which can be a small molecule, protein or 1673: 1655: 1567: 1449: 1400: 1374: 1333: 421:. A variant of GFP is naturally found in 158:illustrating the change of energy levels. 1156:Fluorescence Microscopy in Life Sciences 646: 1110:Principles of fluorescence spectroscopy 1099: 562:Disadvantages of fluorophores include: 494:, while fluorescence occurs in excited 1005:Fluorescence resonance energy transfer 134:fluorescence resonance energy transfer 1545: 1543: 1541: 354:metal-to-ligand charge transfer state 7: 1200:Metal Ions in Bio-Imaging Techniques 512:Radioactivity in biological research 2207: 1482:"The Micro Imager by Biospace Lab" 992:fluorescent-activated cell sorting 765:to excite a UV dye (400 nm). 712: 585:) or as an indicator in solution ( 16:Scientific investigative technique 14: 2051:Post-transcriptional modification 599:Förster resonance energy transfer 538:and a low energy isotope such as 2206: 2195: 2194: 877: 782: 732: 725:Two-photon excitation microscopy 454:Bioluminescence and fluorescence 2056:Post-translational modification 629:detect changes in conformation; 1202:. Springer. pp. 437–456. 1159:. Bentham Science Publishers. 1084:Fluorescent glucose biosensors 848:Structure of MitoThermo Yellow 379:are fluorescent semiconductor 1: 2178:Post-translational regulation 674:) than in the ground state (μ 506:Comparison with radioactivity 247:and subsequent coupling with 2126:High-throughput technique (" 1736:10.1016/j.proghi.2009.03.001 1657:10.1371/journal.pbio.2003992 965:DNA detection: the compound 577:Additional useful properties 2004:Functional biology/medicine 1569:10.3390/chemosensors8040124 1107:Joseph R. Lakowicz (2006). 971:agarose gel electrophoresis 520:was the most common label. 2256: 1442:10.1021/acssensors.1c00100 1393:10.1038/s41467-020-20062-x 1326:10.1016/j.cell.2018.03.040 1113:. Springer. pp. 26–. 914: 908: 825: 772: 722: 699: 640: 637:Sensitivity to environment 596: 509: 207: 143: 18: 2190: 1790: 1208:10.1515/9783110685701-022 1141:Fluorescence Fundamentals 998:Microscale Thermophoresis 945:Ethidium bromide stained 837:, such as ThermoFisher's 587:Fluorescence spectroscopy 469:are 3 different types of 415:sub-cellular localization 395:(GFP) from the jellyfish 393:Green Fluorescent Protein 106:green fluorescent protein 935:chain termination method 929:Automated sequencing of 445:Computational techniques 1724:Prog Histochem Cytochem 1597:Chemical Communications 1286:10.1126/science.8303295 923:Fluorescence microscopy 822:Fluorescent thermometry 775:Fluorescence anisotropy 769:Fluorescence anisotropy 687:Additionally, The term 583:fluorescence microscopy 325:absorption coefficients 180:emitting it as a photon 47:fluorescence microscopy 1524:10.1038/nmeth0305-160b 1231:Bioconjugate Chemistry 1074:Fluorescent microscopy 961: 849: 719:Multiphoton excitation 653: 615: 287:or non-specificately ( 159: 66: 58: 50: 30: 1999:Developmental biology 1994:Computational biology 1363:Nature Communications 944: 915:Further information: 909:Further information: 847: 696:Fluorescence lifetime 689:environment-sensitive 650: 606: 291:) or non-covalently ( 174:and briefly enter an 153: 64: 56: 36: 28: 2173:Post-transcriptional 1702:Chemistry LibreTexts 1079:Fluorescence imaging 956:and when exposed to 911:Nucleic acid methods 828:Phosphor thermometry 713:previously described 702:Fluorescent lifetime 387:Fluorescent proteins 243:via activation with 1968:Histone methylation 1385:2020NatCo..11.6256K 1278:1994Sci...263..802C 1243:10.1021/bc00031a010 1025:Zinc protoporphyrin 425:, specifically the 419:expression patterns 265:or iodoacetamides); 170:which can absorb a 1609:10.1039/c5cc01088h 1320:(3): 792–803.e19. 1057:optical sectioning 962: 889:. You can help by 850: 794:. You can help by 744:. You can help by 654: 616: 307:conjugated systems 164:fluorescent moiety 160: 67: 59: 51: 31: 2235:Molecular biology 2222: 2221: 2201:Molecular biology 2186: 2185: 2140:Mass spectrometry 2017: 2016: 1784:Molecular biology 1603:(38): 8044–8047. 1166:978-1-68108-519-7 1120:978-0-387-31278-1 907: 906: 812: 811: 762: 761: 480:chemiluminescence 463:chemiluminescence 398:Aequorea victoria 156:Jablonski diagram 2247: 2210: 2209: 2198: 2197: 2131: 2026: 1879: 1874: 1818: 1777: 1770: 1763: 1754: 1748: 1747: 1719: 1713: 1712: 1710: 1709: 1694: 1688: 1687: 1677: 1659: 1635: 1629: 1628: 1588: 1582: 1581: 1571: 1547: 1536: 1535: 1507: 1501: 1500: 1498: 1497: 1488:. Archived from 1478: 1472: 1471: 1453: 1436:(5): 1864–1874. 1421: 1415: 1414: 1404: 1378: 1354: 1348: 1347: 1337: 1304: 1298: 1297: 1261: 1255: 1254: 1226: 1220: 1219: 1195: 1189: 1184: 1178: 1177: 1175: 1173: 1150: 1144: 1138: 1132: 1131: 1129: 1127: 1104: 967:ethidium bromide 902: 899: 881: 874: 807: 804: 786: 779: 757: 754: 736: 729: 500:transition metal 435:phycobiliprotein 346:transition metal 120:, a fluorescent 86:autofluorescence 2255: 2254: 2250: 2249: 2248: 2246: 2245: 2244: 2225: 2224: 2223: 2218: 2182: 2155:Gene regulation 2149: 2125: 2086:Model organisms 2069: 2046:Cell signalling 2013: 1972: 1877: 1872: 1859: 1830:DNA replication 1809: 1786: 1781: 1751: 1721: 1720: 1716: 1707: 1705: 1696: 1695: 1691: 1650:(1): e2003992. 1637: 1636: 1632: 1590: 1589: 1585: 1549: 1548: 1539: 1509: 1508: 1504: 1495: 1493: 1486:Biospacelab.com 1480: 1479: 1475: 1423: 1422: 1418: 1356: 1355: 1351: 1306: 1305: 1301: 1272:(5148): 802–5. 1263: 1262: 1258: 1228: 1227: 1223: 1197: 1196: 1192: 1185: 1181: 1171: 1169: 1167: 1152: 1151: 1147: 1139: 1135: 1125: 1123: 1121: 1106: 1105: 1101: 1097: 1065: 1012:CoLocalizer Pro 919: 917:Protein methods 913: 903: 897: 894: 887:needs expansion 872: 830: 824: 816:polarized light 808: 802: 799: 792:needs expansion 777: 771: 758: 752: 749: 742:needs expansion 727: 721: 704: 698: 686: 677: 673: 662: 645: 643:Solvatochromism 639: 611:and tetramethyl 601: 595: 579: 514: 508: 484:Phosphorescence 476:bioluminescence 467:phosphorescence 456: 447: 439:allophycocyanin 389: 374: 343: 318: 277:click chemistry 212: 206: 201: 148: 142: 82:small molecules 72:is used in the 23: 17: 12: 11: 5: 2253: 2251: 2243: 2242: 2237: 2227: 2226: 2220: 2219: 2217: 2216: 2204: 2191: 2188: 2187: 2184: 2183: 2181: 2180: 2175: 2170: 2165: 2159: 2157: 2151: 2150: 2148: 2147: 2142: 2137: 2135:DNA microarray 2132: 2122: 2121: 2108: 2107: 2106: 2101: 2093: 2083: 2077: 2075: 2071: 2070: 2068: 2067: 2058: 2053: 2048: 2043: 2038: 2032: 2030: 2023: 2019: 2018: 2015: 2014: 2012: 2011: 2006: 2001: 1996: 1991: 1986: 1980: 1978: 1974: 1973: 1971: 1970: 1965: 1960: 1959: 1958: 1953: 1943: 1938: 1933: 1928: 1923: 1922: 1921: 1916: 1911: 1901: 1900: 1899: 1894: 1883: 1882: 1881: 1880: 1875: 1867: 1865: 1861: 1860: 1858: 1857: 1847: 1837: 1826: 1824: 1815: 1811: 1810: 1808: 1807: 1802: 1797: 1791: 1788: 1787: 1782: 1780: 1779: 1772: 1765: 1757: 1750: 1749: 1730:(3): 125–172. 1714: 1689: 1630: 1583: 1537: 1518:(3): 160–161. 1512:Nature Methods 1502: 1473: 1416: 1349: 1299: 1256: 1221: 1190: 1179: 1165: 1145: 1133: 1119: 1098: 1096: 1093: 1092: 1091: 1086: 1081: 1076: 1071: 1064: 1061: 1039:, CALI, FLIE, 1016: 1015: 1008: 1001: 995: 988: 985: 982:DNA microarray 978: 939: 938: 927: 905: 904: 884: 882: 871: 868: 826:Main article: 823: 820: 810: 809: 789: 787: 773:Main article: 770: 767: 760: 759: 739: 737: 723:Main article: 720: 717: 700:Main article: 697: 694: 675: 671: 667:when excited. 638: 635: 634: 633: 630: 627: 597:Main article: 594: 591: 578: 575: 574: 573: 570: 567: 544: 543: 528: 507: 504: 496:singlet states 478:is biological 455: 452: 446: 443: 407:fusion protein 388: 385: 373: 370: 297:hydrophobicity 289:glutaraldehyde 285: 284: 279:with terminal 266: 252: 234: 231:Isothiocyanate 208:Main article: 205: 202: 200: 197: 144:Main article: 141: 138: 96:or endogenous 19:Main article: 15: 13: 10: 9: 6: 4: 3: 2: 2252: 2241: 2238: 2236: 2233: 2232: 2230: 2215: 2214: 2205: 2203: 2202: 2193: 2192: 2189: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2160: 2158: 2156: 2152: 2146: 2145:Lab-on-a-chip 2143: 2141: 2138: 2136: 2133: 2129: 2124: 2123: 2120: 2119:Radioactivity 2116: 2112: 2109: 2105: 2102: 2100: 2097: 2096: 2094: 2091: 2087: 2084: 2082: 2079: 2078: 2076: 2072: 2066: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2036:Cultured meat 2034: 2033: 2031: 2027: 2024: 2020: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1981: 1979: 1975: 1969: 1966: 1964: 1961: 1957: 1956:trp repressor 1954: 1952: 1951:lac repressor 1949: 1948: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1920: 1917: 1915: 1912: 1910: 1907: 1906: 1905: 1902: 1898: 1895: 1893: 1890: 1889: 1888: 1885: 1884: 1876: 1871: 1870: 1869: 1868: 1866: 1862: 1855: 1851: 1848: 1845: 1841: 1840:Transcription 1838: 1835: 1831: 1828: 1827: 1825: 1823: 1822:Central dogma 1819: 1816: 1812: 1806: 1803: 1801: 1798: 1796: 1793: 1792: 1789: 1785: 1778: 1773: 1771: 1766: 1764: 1759: 1758: 1755: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1715: 1703: 1699: 1693: 1690: 1685: 1681: 1676: 1671: 1667: 1663: 1658: 1653: 1649: 1645: 1641: 1634: 1631: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1587: 1584: 1579: 1575: 1570: 1565: 1561: 1557: 1553: 1546: 1544: 1542: 1538: 1533: 1529: 1525: 1521: 1517: 1513: 1506: 1503: 1492:on 2009-01-05 1491: 1487: 1483: 1477: 1474: 1469: 1465: 1461: 1457: 1452: 1447: 1443: 1439: 1435: 1431: 1427: 1420: 1417: 1412: 1408: 1403: 1398: 1394: 1390: 1386: 1382: 1377: 1372: 1368: 1364: 1360: 1353: 1350: 1345: 1341: 1336: 1331: 1327: 1323: 1319: 1315: 1311: 1303: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1260: 1257: 1252: 1248: 1244: 1240: 1236: 1232: 1225: 1222: 1217: 1213: 1209: 1205: 1201: 1194: 1191: 1188: 1183: 1180: 1168: 1162: 1158: 1157: 1149: 1146: 1142: 1137: 1134: 1122: 1116: 1112: 1111: 1103: 1100: 1094: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1066: 1062: 1060: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1028: 1026: 1022: 1013: 1009: 1006: 1002: 999: 996: 993: 989: 986: 983: 979: 976: 972: 968: 964: 963: 959: 955: 952: 951:intercalating 948: 943: 936: 932: 928: 924: 921: 920: 918: 912: 901: 898:December 2009 892: 888: 885:This section 883: 880: 876: 875: 869: 867: 864: 860: 854: 846: 842: 840: 836: 829: 821: 819: 817: 806: 803:December 2009 797: 793: 790:This section 788: 785: 781: 780: 776: 768: 766: 756: 753:December 2009 747: 743: 740:This section 738: 735: 731: 730: 726: 718: 716: 714: 710: 703: 695: 693: 690: 684: 679: 668: 666: 665:dipole moment 660: 649: 644: 636: 631: 628: 625: 624: 623: 621: 620:dark quencher 614: 610: 605: 600: 592: 590: 588: 584: 576: 571: 568: 565: 564: 563: 560: 558: 552: 549: 541: 537: 534:can be used ( 533: 529: 526: 525: 524: 521: 519: 518:radioactivity 513: 505: 503: 501: 497: 493: 492:triplet state 489: 485: 481: 477: 472: 468: 464: 460: 453: 451: 444: 442: 440: 436: 432: 428: 424: 420: 416: 412: 408: 404: 400: 399: 394: 386: 384: 382: 381:nanoparticles 378: 371: 369: 367: 363: 359: 355: 351: 347: 341: 340:Terbium (III) 337: 334: 330: 326: 322: 316: 312: 308: 303: 300: 298: 294: 290: 282: 278: 274: 270: 267: 264: 260: 256: 253: 250: 246: 242: 238: 235: 232: 228: 224: 220: 217: 216: 215: 211: 204:Reactive dyes 203: 198: 196: 193: 192:quantum yield 189: 185: 181: 177: 176:excited state 173: 169: 165: 157: 154:A simplified 152: 147: 139: 137: 135: 131: 127: 123: 119: 115: 111: 110:nucleic acids 107: 103: 102:phycoerythrin 99: 95: 91: 87: 83: 79: 75: 74:life sciences 71: 63: 55: 48: 44: 40: 35: 27: 22: 2211: 2199: 2111:Fluorescence 2110: 2099:Nucleic acid 2090:C57BL/6 mice 2081:Cell culture 1989:Biochemistry 1984:Cell biology 1727: 1723: 1717: 1706:. Retrieved 1704:. 2018-10-26 1701: 1692: 1647: 1644:PLOS Biology 1643: 1633: 1600: 1596: 1586: 1559: 1556:Chemosensors 1555: 1515: 1511: 1505: 1494:. Retrieved 1490:the original 1485: 1476: 1433: 1429: 1419: 1366: 1362: 1352: 1317: 1313: 1302: 1269: 1265: 1259: 1237:(1): 88–92. 1234: 1230: 1224: 1199: 1193: 1182: 1170:. Retrieved 1155: 1148: 1136: 1124:. Retrieved 1109: 1102: 1029: 1017: 895: 891:adding to it 886: 863:ATP synthase 855: 851: 838: 831: 813: 800: 796:adding to it 791: 763: 750: 746:adding to it 741: 705: 680: 669: 655: 617: 580: 561: 553: 545: 522: 515: 488:ground state 471:luminescence 459:Fluorescence 457: 448: 430: 403:organic dyes 396: 390: 377:Quantum dots 375: 372:Quantum dots 342:chelators). 336:dipicolinate 332: 320: 304: 301: 292: 286: 272: 258: 245:carbodiimide 240: 222: 213: 184:Stokes shift 161: 146:Fluorescence 140:Fluorescence 130:fluorophores 70:Fluorescence 68: 21:Fluorescence 2213:WikiProject 2022:Engineering 1977:Linked life 1892:Pribnow box 1850:Translation 1430:ACS Sensors 1369:(1): 6256. 1172:17 December 1089:Fluoroscopy 1069:Fluorophore 947:agarose gel 839:MitoTracker 835:Rhodamine-B 683:hydrophobic 652:relaxation. 609:fluorescein 315:ultraviolet 227:succinimide 210:fluorophore 126:quantum dot 118:fluorophore 98:chlorophyll 45:imaged via 39:hippocampus 2229:Categories 2163:Epigenetic 2074:Techniques 1936:Terminator 1919:trp operon 1914:lac operon 1909:gal operon 1708:2022-06-08 1562:(4): 124. 1496:2011-06-25 1376:2002.08361 1095:References 975:SYBR Green 859:oligomycin 641:See also: 510:See also: 132:, such as 94:tryptophan 2088:(such as 1946:Repressor 1666:1545-7885 1617:1359-7345 1578:2227-9040 1468:220936922 1216:233678495 1021:Bilirubin 613:rhodamine 557:quenching 358:Ruthenium 350:complexes 329:chelators 299:, etc.). 263:maleimide 199:Labelling 168:electrons 166:contains 88:(such as 2095:Methods 2029:Concepts 2009:Genetics 1963:Silencer 1941:Enhancer 1897:TATA box 1887:Promoter 1878:Heredity 1814:Overview 1805:Glossary 1744:19822255 1684:29370167 1625:25865069 1532:33954899 1460:33882232 1411:33288761 1344:29656897 1063:See also 709:coronene 572:Toxicity 546:Note: a 532:isotopes 437:such as 431:in vitro 427:Anthozoa 411:promoter 348:-ligand 311:infrared 239:groups ( 237:carboxyl 221:groups ( 188:lifetime 78:proteins 2168:Genetic 2115:Pigment 2104:Protein 2065:Wet lab 2061:Dry lab 2041:Mitosis 1873:Genetic 1864:Element 1854:protein 1795:History 1675:5784887 1451:8815662 1402:7721808 1381:Bibcode 1335:6309178 1308:2018). 1294:8303295 1274:Bibcode 1266:Science 1251:7711110 1126:25 June 1035:, FLI, 933:by the 870:Methods 548:channel 536:tritium 362:Rhenium 338:-based 313:to the 2128:-omics 2117:& 1926:Intron 1904:Operon 1742:  1682:  1672:  1664:  1623:  1615:  1576:  1530:  1466:  1458:  1448:  1409:  1399:  1342:  1332:  1292:  1249:  1214:  1163:  1117:  990:FACS ( 960:light. 926:image. 659:Indole 423:corals 366:Osmium 281:alkyne 190:. The 172:photon 114:lipids 1800:Index 1528:S2CID 1464:S2CID 1371:arXiv 1212:S2CID 490:of a 269:azide 255:thiol 249:amine 219:amino 43:mouse 41:of a 2240:Dyes 1931:Exon 1740:PMID 1680:PMID 1662:ISSN 1621:PMID 1613:ISSN 1574:ISSN 1456:PMID 1407:PMID 1340:PMID 1314:Cell 1290:PMID 1247:PMID 1174:2017 1161:ISBN 1128:2011 1115:ISBN 1053:TIRF 1045:FRAP 1041:FRET 1037:FLIP 1033:FLIM 980:The 861:(an 593:FRET 465:and 417:and 333:e.g. 295:via 293:e.g. 275:via 273:e.g. 261:via 259:e.g. 241:e.g. 225:via 223:e.g. 90:NADH 37:The 1844:RNA 1834:DNA 1732:doi 1670:PMC 1652:doi 1605:doi 1564:doi 1520:doi 1446:PMC 1438:doi 1397:PMC 1389:doi 1330:PMC 1322:doi 1318:173 1282:doi 1270:263 1239:doi 1204:doi 1049:FCS 954:DNA 931:DNA 893:. 798:. 748:. 441:). 364:or 229:or 122:dye 104:or 80:or 2231:: 2130:") 2113:, 2063:/ 1738:. 1728:44 1726:. 1700:. 1678:. 1668:. 1660:. 1648:16 1646:. 1642:. 1619:. 1611:. 1601:51 1599:. 1595:. 1572:. 1558:. 1554:. 1540:^ 1526:. 1514:. 1484:. 1462:. 1454:. 1444:. 1432:. 1428:. 1405:. 1395:. 1387:. 1379:. 1367:11 1365:. 1361:. 1338:. 1328:. 1316:. 1312:. 1288:. 1280:. 1268:. 1245:. 1233:. 1210:. 1047:, 1043:, 994:). 958:UV 681:A 461:, 368:. 360:, 317:. 283:); 251:); 233:); 112:, 100:, 92:, 2092:) 1856:) 1852:( 1846:) 1842:( 1836:) 1832:( 1776:e 1769:t 1762:v 1746:. 1734:: 1711:. 1686:. 1654:: 1627:. 1607:: 1580:. 1566:: 1560:8 1534:. 1522:: 1516:2 1499:. 1470:. 1440:: 1434:6 1413:. 1391:: 1383:: 1373:: 1346:. 1324:: 1296:. 1284:: 1276:: 1253:. 1241:: 1235:6 1218:. 1206:: 1176:. 1130:. 1014:. 984:. 977:. 900:) 896:( 805:) 801:( 755:) 751:( 676:G 672:E 540:P 331:( 321:f 271:( 257:( 49:.

Index

Fluorescence


hippocampus
mouse
fluorescence microscopy


Fluorescence
life sciences
proteins
small molecules
autofluorescence
NADH
tryptophan
chlorophyll
phycoerythrin
green fluorescent protein
nucleic acids
lipids
fluorophore
dye
quantum dot
fluorophores
fluorescence resonance energy transfer
Fluorescence

Jablonski diagram
fluorescent moiety
electrons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.