Knowledge (XXG)

Free-radical theory of aging

Source đź“ť

471: 25: 327: 117: 358:
of radical production occurs. The free radicals produced in such reactions often terminate by removing an electron from a molecule which becomes changed or cannot function without it, especially in biology. Such an event causes damage to the molecule, and thus to the cell that contains it (since the
482:
The mitochondrial theory of aging was first proposed in 1978, and two years later, the mitochondrial free-radical theory of aging was introduced. The theory implicates the mitochondria as the chief target of radical damage, since there is a known chemical mechanism by which mitochondria can produce
353:
Damage occurs when the free radical encounters another molecule and seeks to find another electron to pair its unpaired electron. The free radical often pulls an electron off a neighboring molecule, causing the affected molecule to become a free radical itself. The new free radical can then pull an
519:
Contrary to the usually observed association between mitochondrial ROS (mtROS) and a decline in longevity, Yee et al. recently observed increased longevity mediated by mtROS signaling in an apoptosis pathway. This serves to support the possibility that observed correlations between ROS damage and
314:
and most importantly mitochondrial DNA. This damage then causes mutations which lead to an increase of ROS production and greatly enhance the accumulation of free radicals within cells. This mitochondrial theory has been more widely accepted that it could play a major role in contributing to the
515:
Afanas'ev suggests the superoxide dismutation activity of CuZnSOD demonstrates an important link between life span and free radicals. The link between CuZnSOD and life span was demonstrated by Perez et al. who indicated mice life span was affected by the deletion of the Sod1 gene which encodes
544:
The metabolic stability theory of aging suggests it is the cells ability to maintain stable concentration of ROS which is the primary determinant of lifespan. This theory criticizes the free radical theory because it ignores that ROS are specific signalling molecules which are necessary for
255:
could be explained by the same underlying phenomenon: oxygen free radicals. Noting that radiation causes "mutation, cancer and aging", Harman argued that oxygen free radicals produced during normal respiration would cause cumulative damage which would eventually lead to organismal loss of
589:. ROS production in heart, skeletal muscle, liver and intact erythrocytes was found to be similar in parrots and quail and showed no correspondence with longevity difference. These findings were concluded to cast doubt on the robustness of the oxidative stress theory of aging. 511:
This theory has been widely debated and it is still unclear how ROS induced mtDNA mutations develop. Conte et al. suggest iron-substituted zinc fingers may generate free radicals due to the zinc finger proximity to DNA and thus lead to DNA damage.
242:
in the 1950s, when prevailing scientific opinion held that free radicals were too unstable to exist in biological systems. This was also before anyone invoked free radicals as a cause of degenerative diseases. Two sources inspired Harman: 1) the
1396:
Gensler, H.L., Hall, J.J., and Bernstein, H. (1987). The DNA damage hypothesis of aging: Importance of oxidative damage. In “Review of Biological Research in Aging.” Vol. 3 (M. Rothstein, ed.), pp. 451–465. Alan R. Liss, New
520:
aging are not necessarily indicative of the causal involvement of ROS in the aging process but are more likely due to their modulating signal transduction pathways that are part of cellular responses to the aging process.
346:
in atoms or molecules. Free radicals, which contain only a single electron in any orbital, are usually unstable toward losing or picking up an extra electron, so that all electrons in the atom or molecule will be paired.
212:, there is evidence that reducing oxidative damage can extend lifespan. However, in mice, only 1 of the 18 genetic alterations (SOD-1 deletion) that block antioxidant defences, shortened lifespan. Similarly, in 567:
in humans (according to the theory, because they prevent the stimulation of the organism's natural response to the oxidant compounds which not only neutralizes them but provides other benefits as well).
487:
are not as well protected as nuclear DNA, and by studies comparing damage to nuclear and mtDNA that demonstrate higher levels of radical damage on the mitochondrial molecules. Electrons may escape from
2088:
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007). "Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis".
1428:
Bamm VV, Tsemakhovich VA, Shaklai N. Oxidation of low-density lipoprotein by hemoglobin–hemichrome. The International Journal of Biochemistry & Cell Biology. 2003;35(3) 349-58.
1415:
Pageon H, Asselineau D. An in Vitro Approach to the Chronological Aging of Skin by Glycation of the Collagen: The Biological Effect of Glycation on the Reconstructed Skin Model"
559:
by inducing a secondary response to initially increased levels of ROS. In mammals, the question of the net effect of reactive oxygen species on aging is even less clear. Recent
35: 436:
are helpful in reducing and preventing damage from free radical reactions because of their ability to donate electrons which neutralize the radical without forming another.
644:
Erbas M, Sekerci H. "Importance of Free Radicals and Occurring During Food Processing". Serbest Radïkallerïn Onemï Ve Gida Ïsleme Sirasinda Olusumu. 2011: 36(6) 349–56.
2396: 1145:"Oxidative stress induces protein and DNA radical formation in follicular dendritic cells of the germinal center and modulates its cell death patterns in late sepsis" 2355: 2127:
Montgomery MK, Hulbert AJ, Buttemer WA (2012). "Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production".
283:. There has been some evidence to suggest that free radicals and some reactive nitrogen species trigger and increase cell death mechanisms within the body such as 362:
The chain reaction caused by free radicals can lead to cross-linking of atomic structures. In cases where the free radical-induced chain reaction involves
1091:
Speakman JR, Selman C (2011). "The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan".
504:. These radicals then damage the mitochondria's DNA and proteins, and these damage components in turn are more liable to produce ROS byproducts. Thus a 2269: 654:
Herrling T, Jung K, Fuchs J (2008). "The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair".
1720:
Afanas'ev I. Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR. Aging And Disease. 2010;1(2) 75–88.
448:
One of the main criticisms of the free radical theory of aging is directed at the suggestion that free radicals are responsible for the damage of
138:
damage over time. A free radical is any atom or molecule that has a single unpaired electron in an outer shell. While a few free radicals such as
440:, for example, can lose an electron to a free radical and remain stable itself by passing its unstable electron around the antioxidant molecule. 470: 2391: 146:, most biologically relevant free radicals are highly reactive. For most biological structures, free radical damage is closely associated with 430:. Specifically, an increase in superoxide affects aging whereas a decrease in nitric oxide formation, or its bioavailability, does the same. 230:
lifespan. Whether reducing oxidative damage below normal levels is sufficient to extend lifespan remains an open and controversial question.
603: 318:
Since Harman first proposed the free radical theory of aging, there have been continual modifications and extensions to his original theory.
2188: 96: 1284:
Orchin M, Macomber RS, Pinhas A, Wilson RM, editors. The Vocabulary and Concepts of Organic Chemistry. 2 ed: John Wiley & Sons; 2005.
68: 563:
findings support the process of mitohormesis in humans, and even suggest that the intake of exogenous antioxidants may increase disease
2214: 1936:"Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress" 1887:"Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging" 632:
Hekimi S, Lapointe J, Wen Y. Taking a "good" look at free radicals in the aging process. Trends In Cell Biology. 2011;21(10) 569-76.
536:
shift and impaired mitochondrial function". This mitochondrial impairment leads to more sedentary behaviour and accelerated aging.
75: 2335: 508:
of oxidative stress is established that, over time, can lead to the deterioration of cells and later organs and the entire body.
378: 247:, which holds that lifespan is an inverse function of metabolic rate which in turn is proportional to oxygen consumption, and 2) 82: 613: 465: 381:, and such damages have been proposed to play a key role in the aging of crucial tissues. DNA damage can result in reduced 64: 43: 2386: 1406:
Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radical Research. . 2012;46(4) 382–419.
456:
and organismal aging. Several modifications have been proposed to integrate current research into the overall theory.
350:
The unpaired electron does not imply charge; free radicals can be positively charged, negatively charged, or neutral.
532:
signalling effects in aging. Brewer's theory suggests "sedentary behaviour associated with age triggers an oxidized
263:, but also age-related diseases. Free radical damage within cells has been linked to a range of disorders including 2224: 1195:
Jang YC, Remmen HV (2009). "The mitochondrial theory of aging: Insight from transgenic and knockout mouse models".
1045:
Harman D (2009). "Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009".
415:. These are examples of how the free-radical theory of aging has been used to neatly "explain" the origin of many 54: 39: 2279: 1835:"Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories" 2181: 493: 195:
first proposed the free radical theory of aging in the 1950s, and in the 1970s extended the idea to implicate
2254: 475: 295: 170: 159: 2381: 2345: 2305: 1975:
Sohal R, Mockett R, Orr W (2002). "Mechanisms of aging: an appraisal of the oxidative stress hypothesis".
555: 505: 276: 218: 143: 89: 2264: 2249: 1781:"The Intrinsic Apoptosis Pathway Mediates the Pro-Longevity Response to Mitochondrial ROS in C. elegans" 244: 1133:
Clancy D, Birdsall J. Flies, worms and the Free Radical Theory of ageing. Ageing Research Reviews. (0).
165:
Strictly speaking, the free radical theory is only concerned with free radicals such as superoxide ( O
2350: 1626: 842: 663: 489: 223: 2376: 2325: 2229: 2174: 1504:"Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR" 453: 388: 1454:
Afanas'ev IB (2005). "Free radical mechanisms of aging processes under physiological conditions".
1143:
Chatterjee S, Lardinois O, Bhattacharjee S, Tucker J, Corbett J, Deterding L, et al. (2011).
2152: 2070: 1552:, Chemical abstracts. 1979 v. 91 N 25 91:208561v.Deposited Doc., VINITI 2172-78, 1978, p. 48 1479: 1220: 1116: 1070: 811: 497: 252: 2340: 2295: 2144: 2105: 2062: 2027: 1992: 1957: 1916: 1864: 1810: 1761: 1703: 1654: 1525: 1471: 1376: 1347:"Intrastrand G-U cross-links generated by the oxidation of guanine in 5′-d(GCU) and 5′-r(GCU)" 1327: 1264: 1212: 1174: 1108: 1062: 1022: 972: 917: 868: 803: 768: 723: 679: 174: 294:
In 1972, Harman modified his original theory. In its current form, this theory proposes that
2274: 2259: 2244: 2136: 2097: 2054: 2019: 1984: 1947: 1906: 1898: 1854: 1846: 1800: 1792: 1751: 1743: 1693: 1644: 1634: 1515: 1463: 1366: 1358: 1317: 1307: 1254: 1204: 1164: 1156: 1100: 1054: 1012: 1004: 962: 952: 907: 899: 858: 850: 795: 758: 750: 713: 671: 501: 370: 248: 147: 1546:
Role of mitochondrial processes in the development and aging of organism. Aging and cancer
560: 416: 382: 272: 1880: 1878: 1630: 1362: 1160: 846: 667: 2330: 2239: 2010:
Sohal R (2002). "Role of oxidative stress and protein oxidation in the aging process".
1911: 1886: 1859: 1834: 1805: 1780: 1756: 1731: 1649: 1614: 1520: 1503: 1371: 1346: 1322: 1295: 1169: 1144: 967: 936: 912: 887: 863: 830: 799: 598: 355: 343: 303: 155: 2023: 1988: 1615:"Stochastic drift in mitochondrial DNA point mutations: a novel perspective ex silico" 995:
Harman D (Jul 1956). "Aging: a theory based on free radical and radiation chemistry".
2370: 2045:
Rattan S (2006). "Theories of biological aging: genes, proteins, and free radicals".
718: 701: 408: 239: 192: 186: 2074: 1224: 1120: 1074: 528:
Brewer proposed a theory which integrates the free radical theory of aging with the
326: 2310: 1483: 1017: 763: 741:
Harman, D (1956). "Aging: a theory based on free radical and radiation chemistry".
427: 331: 299: 196: 135: 2156: 815: 2166: 1747: 1639: 1236: 1234: 957: 903: 2140: 1850: 1208: 449: 433: 151: 1952: 1935: 1796: 1438: 259:
In later years, the free radical theory was expanded to include not only aging
2320: 2219: 2206: 2197: 2058: 1902: 1564: 1467: 1058: 1008: 937:"Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in 754: 675: 608: 564: 423: 422:
Free radicals that are thought to be involved in the process of aging include
374: 213: 208: 1730:
PĂ©rez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, et al. (2009).
407:, and this is a key event in the formation of plaque in arteries, leading to 854: 437: 363: 284: 268: 2148: 2109: 2101: 2066: 2031: 1996: 1961: 1920: 1868: 1814: 1765: 1698: 1673: 1658: 1529: 1475: 1380: 1331: 1268: 1216: 1178: 1112: 1104: 1066: 1026: 976: 921: 872: 772: 727: 683: 496:, and these electrons may in turn react with water to form ROS such as the 169:), but it has since been expanded to encompass oxidative damage from other 1707: 1312: 935:
Van Rammsdonk, Jeremy M.; Hekimi, Siegfried (2009). Kim, Stuart K. (ed.).
886:
PĂ©rez VI, Bokov A, Remmen HV, Mele J, Ran Q, Ikeno Y, et al. (2009).
807: 339: 311: 288: 280: 1682:
iron-replaced zinc finger generates free radicals and causes DNA damage"
1544: 1439:"Normal oxidative damage to mitochondrial and nuclear DNA is extensive" 529: 400: 139: 53:
if you can. Unsourced or poorly sourced material may be challenged and
2300: 582: 412: 392: 307: 264: 1934:
Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007).
1598:
Weindruch, Richard (January 1996). "Calorie Restriction and Aging".
1243:"The mitochondrial free radical theory of ageing—where do we stand?" 829:
Fontana, Luigi; Partridge, Linda; Longo, Valter D. (16 April 2010).
338:
Free radicals are atoms or molecules containing unpaired electrons.
1086: 1084: 656:
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
2315: 586: 533: 484: 325: 222:), blocking the production of the naturally occurring antioxidant 203: 131: 1259: 1242: 1190: 1188: 1566:
Biogenesis of mitochondria during cell differentiation and aging
2170: 1449: 1447: 403:
molecules, which leads to wrinkles. Free radicals can oxidize
366:
molecules in a strand of DNA, the DNA can become cross-linked.
334:
is any atom, molecule or ion with an unpaired valence electron.
404: 396: 18: 1572:, Deposited Doc. VINITI 19.09.85, â„–6756-Đ’85, 1985, p. 28 1497: 1495: 1493: 1613:
Poovathingal SK, Gruber J, Halliwell B, Gunawan R (2009).
702:"Free radicals and antioxidants: updating a personal view" 786:
Harman, D (1972). "A biologic clock: the mitochondria?".
391:
can in turn lead to various effects of aging, especially
158:, and limit oxidative damage to biological structures by 1296:"Oxidative Stress, Mitochondrial Dysfunction, and Aging" 1828: 1826: 1824: 50: 1736:
Biochimica et Biophysica Acta (BBA) - General Subjects
892:
Biochimica et Biophysica Acta (BBA) - General Subjects
2288: 2205: 1885:Brink TC, Demetrius L, Lehrach H, Adjaye J (2009). 251:'s observation that hyperbaric oxygen toxicity and 831:"Extending Healthy Life Span—From Yeast to Humans" 238:The free radical theory of aging was conceived by 1280: 1278: 1040: 1038: 1036: 553:Oxidative stress may promote life expectancy of 385:, cell death and ultimately tissue dysfunction. 2356:Strategies for engineered negligible senescence 2090:The Journal of the American Medical Association 1732:"Is the oxidative stress theory of aging dead?" 888:"Is the oxidative stress theory of aging dead?" 354:electron off the next molecule, and a chemical 1392: 1390: 49:Please review the contents of the article and 2182: 2122: 2120: 1672:Conte D, Narindrasorasak S, Sarkar B (1996). 1345:Crean C, Geacintov NE, Shafirovich V (2008). 990: 988: 986: 8: 695: 693: 640: 638: 2189: 2175: 2167: 1587:, Exp Gerontol, 15, 1980, pp. 575–591 1417:Annals of the New York Academy of Sciences 1241:Gruber J, Schaffer S, Halliwell B (2008). 788:Journal of the American Geriatrics Society 2270:Reliability theory of aging and longevity 1951: 1910: 1858: 1804: 1755: 1697: 1648: 1638: 1519: 1370: 1321: 1311: 1294:Cui Hang; Kong Yahui; Zhang Hong (2011). 1258: 1168: 1016: 966: 956: 911: 862: 762: 717: 395:. Other cross-linking can occur between 1582:Miquel J, Economos AC, Fleming J, et al. 469: 2397:Proximate theories of biological ageing 625: 492:processes in the mitochondria like the 359:molecule often becomes dysfunctional). 483:ROS, mitochondrial components such as 604:List of life extension-related topics 369:Oxidative free radicals, such as the 256:functionality, and ultimately death. 7: 342:normally exist in pairs in specific 1686:The Journal of Biological Chemistry 1363:10.1016/j.freeradbiomed.2008.07.008 1161:10.1016/j.freeradbiomed.2010.12.037 545:maintaining normal cell functions. 2215:Antagonistic pleiotropy hypothesis 800:10.1111/j.1532-5415.1972.tb00787.x 585:live about five times longer than 14: 1351:Free Radical Biology and Medicine 1149:Free Radical Biology and Medicine 202:In some model organisms, such as 2336:List of longest-living organisms 1779:Yee C, Yang W, Hekimi S (2014). 1585:Mitochondrial role in cell aging 719:10.1111/j.1753-4887.2012.00476.x 524:Epigenetic oxidative redox shift 452:, thus being a major reason for 115: 23: 500:, or via an indirect route the 298:(ROS) that are produced in the 1300:Journal of Signal Transduction 614:Mitochondrial theory of ageing 466:Mitochondrial theory of ageing 65:"Free-radical theory of aging" 51:add the appropriate references 1: 2392:Theories of biological ageing 2024:10.1016/S0891-5849(02)00856-0 1989:10.1016/S0891-5849(02)00886-9 1437:C. Richter, JW Park, BN Ames 2235:Free-radical theory of aging 1748:10.1016/j.bbagen.2009.06.003 1640:10.1371/journal.pcbi.1000572 958:10.1371/journal.pgen.1000361 904:10.1016/j.bbagen.2009.06.003 128:free radical theory of aging 2141:10.1016/j.exger.2011.11.006 1851:10.1016/j.exger.2009.11.007 1209:10.1016/j.exger.2008.12.006 444:Modifications of the theory 302:, causes damage to certain 36:reliable medical references 2413: 2225:DNA damage theory of aging 1953:10.1016/j.cmet.2007.08.011 1797:10.1016/j.cell.2014.02.055 1619:PLOS Computational Biology 463: 2280:Stem cell theory of aging 2059:10.1080/10715760600911303 1903:10.1007/s10522-008-9197-8 1468:10.1007/s10522-005-2626-z 1059:10.1007/s10522-009-9234-2 676:10.1016/j.saa.2007.09.030 162:them from free radicals. 134:because cells accumulate 42:or relies too heavily on 16:Free-radical aging theory 1839:Experimental Gerontology 1197:Experimental Gerontology 494:Electron transport chain 2255:Network theory of aging 1247:Frontiers in Bioscience 1018:2027/mdp.39015086547422 1009:10.1093/geronj/11.3.298 855:10.1126/science.1172539 764:2027/mdp.39015086547422 755:10.1093/geronj/11.3.298 476:reactive oxygen species 296:reactive oxygen species 171:reactive oxygen species 2346:Regeneration (biology) 2306:Biological immortality 2102:10.1001/jama.297.8.842 1699:10.1074/jbc.271.9.5125 1105:10.1002/bies.201000132 939:Caenorhabditis elegans 743:Journal of Gerontology 556:Caenorhabditis elegans 506:positive feedback loop 479: 335: 219:Caenorhabditis elegans 130:states that organisms 2265:Programmed cell death 2250:Negligible senescence 473: 329: 287:and in extreme cases 245:rate of living theory 2351:Rejuvenation (aging) 1502:Afanas'ev I (2010). 1419:2005;1043(1) 529-32. 700:Halliwell B (2012). 224:superoxide dismutase 2326:Indefinite lifespan 2230:Evolution of ageing 2200:(biology of ageing) 2012:Free Radic Biol Med 1977:Free Radic Biol Med 1631:2009PLSCB...5E0572P 1600:Scientific American 1313:10.1155/2012/646354 847:2010Sci...328..321F 668:2008AcSpA..69.1429H 540:Metabolic stability 454:cellular senescence 377:radical, can cause 277:Alzheimer's disease 199:production of ROS. 144:chemically reactive 2387:Theories of ageing 1833:Brewer GJ (2010). 498:superoxide radical 480: 336: 253:radiation toxicity 226:has been shown to 2364: 2363: 2341:Maximum life span 2296:Adaptive mutation 1508:Aging and Disease 841:(5976): 321–326. 706:Nutrition Reviews 478:in living systems 474:Major sources of 389:DNA cross-linking 175:hydrogen peroxide 124: 123: 100: 2404: 2275:Selection shadow 2260:Plant senescence 2245:Immunosenescence 2191: 2184: 2177: 2168: 2161: 2160: 2124: 2115: 2113: 2085: 2079: 2078: 2042: 2036: 2035: 2007: 2001: 2000: 1972: 1966: 1965: 1955: 1931: 1925: 1924: 1914: 1882: 1873: 1872: 1862: 1830: 1819: 1818: 1808: 1776: 1770: 1769: 1759: 1727: 1721: 1718: 1712: 1711: 1701: 1669: 1663: 1662: 1652: 1642: 1625:(11): e1000572. 1610: 1604: 1603: 1595: 1589: 1588: 1580: 1574: 1573: 1571: 1560: 1554: 1553: 1551: 1540: 1534: 1533: 1523: 1499: 1488: 1487: 1451: 1442: 1435: 1429: 1426: 1420: 1413: 1407: 1404: 1398: 1394: 1385: 1384: 1374: 1342: 1336: 1335: 1325: 1315: 1291: 1285: 1282: 1273: 1272: 1262: 1238: 1229: 1228: 1192: 1183: 1182: 1172: 1140: 1134: 1131: 1125: 1124: 1088: 1079: 1078: 1042: 1031: 1030: 1020: 992: 981: 980: 970: 960: 932: 926: 925: 915: 883: 877: 876: 866: 826: 820: 819: 783: 777: 776: 766: 738: 732: 731: 721: 697: 688: 687: 651: 645: 642: 633: 630: 502:hydroxyl radical 417:chronic diseases 371:hydroxyl radical 330:In chemistry, a 249:Rebeca Gerschman 119: 118: 110: 107: 101: 99: 58: 27: 26: 19: 2412: 2411: 2407: 2406: 2405: 2403: 2402: 2401: 2367: 2366: 2365: 2360: 2284: 2201: 2195: 2165: 2164: 2126: 2125: 2118: 2087: 2086: 2082: 2044: 2043: 2039: 2009: 2008: 2004: 1974: 1973: 1969: 1940:Cell Metabolism 1933: 1932: 1928: 1884: 1883: 1876: 1832: 1831: 1822: 1778: 1777: 1773: 1742:(10): 1005–14. 1729: 1728: 1724: 1719: 1715: 1671: 1670: 1666: 1612: 1611: 1607: 1597: 1596: 1592: 1583: 1581: 1577: 1569: 1563: 1561: 1557: 1549: 1543: 1541: 1537: 1501: 1500: 1491: 1453: 1452: 1445: 1436: 1432: 1427: 1423: 1414: 1410: 1405: 1401: 1395: 1388: 1344: 1343: 1339: 1293: 1292: 1288: 1283: 1276: 1253:(13): 6554–79. 1240: 1239: 1232: 1194: 1193: 1186: 1142: 1141: 1137: 1132: 1128: 1090: 1089: 1082: 1044: 1043: 1034: 994: 993: 984: 951:(2): e1000361. 934: 933: 929: 898:(10): 1005–14. 885: 884: 880: 828: 827: 823: 785: 784: 780: 740: 739: 735: 699: 698: 691: 653: 652: 648: 643: 636: 631: 627: 622: 595: 579: 574: 561:epidemiological 551: 542: 526: 468: 462: 446: 383:gene expression 324: 315:aging process. 273:atherosclerosis 236: 184: 180: 168: 156:reducing agents 120: 116: 111: 105: 102: 59: 48: 44:primary sources 28: 24: 17: 12: 11: 5: 2410: 2408: 2400: 2399: 2394: 2389: 2384: 2379: 2369: 2368: 2362: 2361: 2359: 2358: 2353: 2348: 2343: 2338: 2333: 2331:Life extension 2328: 2323: 2318: 2313: 2308: 2303: 2298: 2292: 2290: 2289:Related topics 2286: 2285: 2283: 2282: 2277: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2240:Hayflick limit 2237: 2232: 2227: 2222: 2217: 2211: 2209: 2203: 2202: 2196: 2194: 2193: 2186: 2179: 2171: 2163: 2162: 2116: 2080: 2053:(12): 1230–8. 2047:Free Radic Res 2037: 2002: 1967: 1926: 1891:Biogerontology 1874: 1820: 1791:(4): 897–909. 1771: 1722: 1713: 1692:(9): 5125–30. 1664: 1605: 1590: 1575: 1555: 1535: 1489: 1456:Biogerontology 1443: 1430: 1421: 1408: 1399: 1386: 1357:(8): 1125–34. 1337: 1286: 1274: 1230: 1184: 1135: 1126: 1080: 1047:Biogerontology 1032: 1003:(3): 298–300. 982: 927: 878: 821: 794:(4): 145–147. 778: 749:(3): 298–300. 733: 689: 662:(5): 1429–35. 646: 634: 624: 623: 621: 618: 617: 616: 611: 606: 601: 599:Life extension 594: 591: 578: 575: 573: 570: 550: 547: 541: 538: 525: 522: 464:Main article: 461: 458: 445: 442: 356:chain reaction 323: 320: 304:macromolecules 235: 232: 182: 178: 173:(ROS) such as 166: 122: 121: 114: 112: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2409: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2382:Free radicals 2380: 2378: 2375: 2374: 2372: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2293: 2291: 2287: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2212: 2210: 2208: 2204: 2199: 2192: 2187: 2185: 2180: 2178: 2173: 2172: 2169: 2158: 2154: 2150: 2146: 2142: 2138: 2135:(3): 203–10. 2134: 2130: 2129:Exp. Gerontol 2123: 2121: 2117: 2111: 2107: 2103: 2099: 2096:(8): 842–57. 2095: 2091: 2084: 2081: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2041: 2038: 2033: 2029: 2025: 2021: 2017: 2013: 2006: 2003: 1998: 1994: 1990: 1986: 1983:(5): 575–86. 1982: 1978: 1971: 1968: 1963: 1959: 1954: 1949: 1946:(4): 280–93. 1945: 1941: 1937: 1930: 1927: 1922: 1918: 1913: 1908: 1904: 1900: 1897:(5): 549–64. 1896: 1892: 1888: 1881: 1879: 1875: 1870: 1866: 1861: 1856: 1852: 1848: 1844: 1840: 1836: 1829: 1827: 1825: 1821: 1816: 1812: 1807: 1802: 1798: 1794: 1790: 1786: 1782: 1775: 1772: 1767: 1763: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1723: 1717: 1714: 1709: 1705: 1700: 1695: 1691: 1687: 1683: 1681: 1677: 1668: 1665: 1660: 1656: 1651: 1646: 1641: 1636: 1632: 1628: 1624: 1620: 1616: 1609: 1606: 1601: 1594: 1591: 1586: 1579: 1576: 1568: 1567: 1562:Lobachev A.N. 1559: 1556: 1548: 1547: 1542:Lobachev A.N. 1539: 1536: 1531: 1527: 1522: 1517: 1513: 1509: 1505: 1498: 1496: 1494: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1462:(4): 283–90. 1461: 1457: 1450: 1448: 1444: 1441:"PNAS", 1988. 1440: 1434: 1431: 1425: 1422: 1418: 1412: 1409: 1403: 1400: 1393: 1391: 1387: 1382: 1378: 1373: 1368: 1364: 1360: 1356: 1352: 1348: 1341: 1338: 1333: 1329: 1324: 1319: 1314: 1309: 1305: 1301: 1297: 1290: 1287: 1281: 1279: 1275: 1270: 1266: 1261: 1256: 1252: 1248: 1244: 1237: 1235: 1231: 1226: 1222: 1218: 1214: 1210: 1206: 1203:(4): 256–60. 1202: 1198: 1191: 1189: 1185: 1180: 1176: 1171: 1166: 1162: 1158: 1155:(8): 988–99. 1154: 1150: 1146: 1139: 1136: 1130: 1127: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1087: 1085: 1081: 1076: 1072: 1068: 1064: 1060: 1056: 1053:(6): 773–81. 1052: 1048: 1041: 1039: 1037: 1033: 1028: 1024: 1019: 1014: 1010: 1006: 1002: 998: 991: 989: 987: 983: 978: 974: 969: 964: 959: 954: 950: 946: 945:PLOS Genetics 942: 940: 931: 928: 923: 919: 914: 909: 905: 901: 897: 893: 889: 882: 879: 874: 870: 865: 860: 856: 852: 848: 844: 840: 836: 832: 825: 822: 817: 813: 809: 805: 801: 797: 793: 789: 782: 779: 774: 770: 765: 760: 756: 752: 748: 744: 737: 734: 729: 725: 720: 715: 712:(5): 257–65. 711: 707: 703: 696: 694: 690: 685: 681: 677: 673: 669: 665: 661: 657: 650: 647: 641: 639: 635: 629: 626: 619: 615: 612: 610: 607: 605: 602: 600: 597: 596: 592: 590: 588: 584: 581:Among birds, 576: 571: 569: 566: 562: 558: 557: 548: 546: 539: 537: 535: 531: 523: 521: 517: 513: 509: 507: 503: 499: 495: 491: 486: 477: 472: 467: 459: 457: 455: 451: 443: 441: 439: 435: 431: 429: 425: 420: 418: 414: 410: 409:heart disease 406: 402: 398: 394: 390: 386: 384: 380: 376: 372: 367: 365: 360: 357: 351: 348: 345: 341: 333: 328: 321: 319: 316: 313: 309: 305: 301: 297: 292: 290: 286: 282: 278: 274: 270: 266: 262: 257: 254: 250: 246: 241: 240:Denham Harman 233: 231: 229: 225: 221: 220: 215: 211: 210: 205: 200: 198: 197:mitochondrial 194: 193:Denham Harman 190: 188: 187:peroxynitrite 176: 172: 163: 161: 157: 153: 149: 145: 141: 137: 133: 129: 113: 109: 98: 95: 91: 88: 84: 81: 77: 74: 70: 67: â€“  66: 62: 61:Find sources: 56: 52: 46: 45: 41: 37: 32:This article 30: 21: 20: 2311:CGK733 fraud 2234: 2132: 2128: 2093: 2089: 2083: 2050: 2046: 2040: 2018:(1): 37–44. 2015: 2011: 2005: 1980: 1976: 1970: 1943: 1939: 1929: 1894: 1890: 1845:(3): 173–9. 1842: 1838: 1788: 1784: 1774: 1739: 1735: 1725: 1716: 1689: 1685: 1679: 1675: 1667: 1622: 1618: 1608: 1599: 1593: 1584: 1578: 1565: 1558: 1545: 1538: 1514:(2): 75–88. 1511: 1507: 1459: 1455: 1433: 1424: 1416: 1411: 1402: 1354: 1350: 1340: 1303: 1299: 1289: 1260:10.2741/3174 1250: 1246: 1200: 1196: 1152: 1148: 1138: 1129: 1099:(4): 255–9. 1096: 1092: 1050: 1046: 1000: 996: 948: 944: 938: 930: 895: 891: 881: 838: 834: 824: 791: 787: 781: 746: 742: 736: 709: 705: 659: 655: 649: 628: 580: 554: 552: 549:Mitohormesis 543: 527: 518: 514: 510: 481: 460:Mitochondria 450:biomolecules 447: 434:Antioxidants 432: 428:nitric oxide 421: 387: 368: 361: 352: 349: 337: 332:free radical 317: 300:mitochondria 293: 260: 258: 237: 227: 217: 207: 201: 191: 164: 152:Antioxidants 136:free radical 127: 125: 103: 93: 86: 79: 72: 60: 40:verification 33: 379:DNA damages 160:passivating 34:needs more 2377:Senescence 2371:Categories 2321:DNA repair 2220:Catabiosis 2207:Senescence 2198:Senescence 1306:: 646354. 997:J Gerontol 620:References 609:Senescence 572:Challenges 565:prevalence 424:superoxide 375:superoxide 306:including 234:Background 214:roundworms 209:Drosophila 76:newspapers 1093:BioEssays 516:CuZnSOD. 490:metabolic 438:Vitamin C 364:base pair 340:Electrons 322:Processes 285:apoptosis 269:arthritis 148:oxidative 2149:22123429 2110:17327526 2075:11125090 2067:17090411 2032:12086680 1997:12208343 1962:17908557 1921:19031007 1869:19945522 1815:24813612 1766:19524016 1680:in vitro 1659:19936024 1602:: 49–52. 1530:22396858 1476:16333762 1381:18692567 1332:21977319 1269:18508680 1225:19815246 1217:19171187 1179:21215311 1121:13720843 1113:21290398 1075:13512659 1067:19466577 1027:13332224 977:19197346 922:19524016 873:20395504 773:13332224 728:22537212 684:17988942 593:See also 373:and the 344:orbitals 312:proteins 289:necrosis 281:diabetes 228:increase 189:(OONO). 150:damage. 142:are not 106:May 2015 1912:2730443 1860:2826600 1806:4454526 1757:2789432 1708:8617792 1676:In vivo 1650:2771766 1627:Bibcode 1521:3295029 1484:7661778 1372:2577587 1323:3184498 1170:3051032 968:2628729 913:2789432 864:3607354 843:Bibcode 835:Science 808:5016631 664:Bibcode 583:parrots 530:insulin 401:protein 140:melanin 90:scholar 55:removed 2301:Ageing 2157:984298 2155:  2147:  2108:  2073:  2065:  2030:  1995:  1960:  1919:  1909:  1867:  1857:  1813:  1803:  1764:  1754:  1706:  1657:  1647:  1528:  1518:  1482:  1474:  1379:  1369:  1330:  1320:  1267:  1223:  1215:  1177:  1167:  1119:  1111:  1073:  1065:  1025:  975:  965:  920:  910:  871:  861:  816:396830 814:  806:  771:  726:  682:  413:stroke 393:cancer 308:lipids 279:, and 265:cancer 261:per se 185:), or 92:  85:  78:  71:  63:  2316:Death 2153:S2CID 2071:S2CID 1570:(PDF) 1550:(PDF) 1480:S2CID 1221:S2CID 1117:S2CID 1071:S2CID 812:S2CID 587:quail 577:Birds 534:redox 485:mtDNA 204:yeast 97:JSTOR 83:books 2145:PMID 2106:PMID 2063:PMID 2028:PMID 1993:PMID 1958:PMID 1917:PMID 1865:PMID 1811:PMID 1785:Cell 1762:PMID 1740:1790 1704:PMID 1678:and 1655:PMID 1526:PMID 1472:PMID 1397:York 1377:PMID 1328:PMID 1304:2012 1265:PMID 1213:PMID 1175:PMID 1109:PMID 1063:PMID 1023:PMID 973:PMID 918:PMID 896:1790 869:PMID 804:PMID 769:PMID 724:PMID 680:PMID 426:and 411:and 399:and 206:and 154:are 126:The 69:news 38:for 2137:doi 2098:doi 2094:297 2055:doi 2020:doi 1985:doi 1948:doi 1907:PMC 1899:doi 1855:PMC 1847:doi 1801:PMC 1793:doi 1789:157 1752:PMC 1744:doi 1694:doi 1690:271 1645:PMC 1635:doi 1516:PMC 1464:doi 1367:PMC 1359:doi 1318:PMC 1308:doi 1255:doi 1205:doi 1165:PMC 1157:doi 1101:doi 1055:doi 1013:hdl 1005:doi 963:PMC 953:doi 908:PMC 900:doi 859:PMC 851:doi 839:328 796:doi 759:hdl 751:doi 714:doi 672:doi 405:LDL 397:fat 132:age 2373:: 2151:. 2143:. 2133:47 2131:. 2119:^ 2104:. 2092:. 2069:. 2061:. 2051:40 2049:. 2026:. 2016:33 2014:. 1991:. 1981:33 1979:. 1956:. 1942:. 1938:. 1915:. 1905:. 1895:10 1893:. 1889:. 1877:^ 1863:. 1853:. 1843:45 1841:. 1837:. 1823:^ 1809:. 1799:. 1787:. 1783:. 1760:. 1750:. 1738:. 1734:. 1702:. 1688:. 1684:. 1653:. 1643:. 1633:. 1621:. 1617:. 1524:. 1510:. 1506:. 1492:^ 1478:. 1470:. 1458:. 1446:^ 1389:^ 1375:. 1365:. 1355:45 1353:. 1349:. 1326:. 1316:. 1302:. 1298:. 1277:^ 1263:. 1251:13 1249:. 1245:. 1233:^ 1219:. 1211:. 1201:44 1199:. 1187:^ 1173:. 1163:. 1153:50 1151:. 1147:. 1115:. 1107:. 1097:33 1095:. 1083:^ 1069:. 1061:. 1051:10 1049:. 1035:^ 1021:. 1011:. 1001:11 999:. 985:^ 971:. 961:. 947:. 943:. 916:. 906:. 894:. 890:. 867:. 857:. 849:. 837:. 833:. 810:. 802:. 792:20 790:. 767:. 757:. 747:11 745:. 722:. 710:70 708:. 704:. 692:^ 678:. 670:. 660:69 658:. 637:^ 419:. 310:, 291:. 275:, 271:, 267:, 177:(H 57:. 2190:e 2183:t 2176:v 2159:. 2139:: 2114:. 2112:. 2100:: 2077:. 2057:: 2034:. 2022:: 1999:. 1987:: 1964:. 1950:: 1944:6 1923:. 1901:: 1871:. 1849:: 1817:. 1795:: 1768:. 1746:: 1710:. 1696:: 1674:" 1661:. 1637:: 1629:: 1623:5 1532:. 1512:1 1486:. 1466:: 1460:6 1383:. 1361:: 1334:. 1310:: 1271:. 1257:: 1227:. 1207:: 1181:. 1159:: 1123:. 1103:: 1077:. 1057:: 1029:. 1015:: 1007:: 979:. 955:: 949:5 941:" 924:. 902:: 875:. 853:: 845:: 818:. 798:: 775:. 761:: 753:: 730:. 716:: 686:. 674:: 666:: 216:( 183:2 181:O 179:2 167:2 108:) 104:( 94:· 87:· 80:· 73:· 47:.

Index

reliable medical references
verification
primary sources
add the appropriate references
removed
"Free-radical theory of aging"
news
newspapers
books
scholar
JSTOR
age
free radical
melanin
chemically reactive
oxidative
Antioxidants
reducing agents
passivating
reactive oxygen species
hydrogen peroxide
peroxynitrite
Denham Harman
mitochondrial
yeast
Drosophila
roundworms
Caenorhabditis elegans
superoxide dismutase
Denham Harman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑