Knowledge (XXG)

Fresnel zone antenna

Source πŸ“

297:
shifting elements can be passive or active. Each phase shifting element can be designed to either produce a phase shift which is equal to that required at the element centre, or provide some quantised phase shifting values. Although the former does not seem to be commercially attractive, the latter proved to be practical antenna configuration. One potential advantage is that such an array can be reconfigured by changing the positions of the elements to produce different radiation patterns. A systematic theory of the phase efficiency of passive phase correcting array antennas and experimental results on an X-band
276:
printed flat reflector. This configuration bears much in common with the printed array antenna but it requires the use of a feed antenna instead of a corporate feed network. In contrast to the normal array antenna, the array elements are different and are arranged in a pseudo-periodic manner. The theory and design method of single layer printed flat reflectors incorporating conducting rings and experimental results on such an antenna operating in the X-band were given in. Naturally, this leads to a more general antenna concept, the phase correcting reflective array.
285: 253:
of an offset Fresnel lens antenna are presented in, where some experimental results are also reported. Although a simple Fresnel lens antenna has low efficiency, it serves as a very attractive indoor candidate when a large window or an electrically transparent wall is available. In the application of
105:
Compared with conventional reflector and lens antennas, reported research on microwave and millimetre-wave Fresnel zone antennas appears to be limited. In 1948, Maddaus published the design and experimental work on stepped half-wave lens antennas operating at 23 GHz and sidelobe levels of around
262:
To increase the efficiency of Fresnel zone plate antennas, one can divide each Fresnel zone into several sub-zones, such as quarter-wave sub-zones, and provide an appropriate phase shift in each of them, thus resulting in a sub-zone phase correcting zone plate. The problem with dielectric based zone
55:
property of the surface and allows for flat or arbitrary antenna shapes. For historical reasons, a flat Fresnel zone antenna is termed a Fresnel zone plate antenna. An offset Fresnel zone plate can be flush mounted to the wall or roof of a building, printed on a window, or made conformal to the body
267:
is providing a phase shift to the transmitted wave, it inevitably reflects some of the energy back, so the efficiency of such a lens is limited. However, the low efficiency problem for a zone plate reflector is less severe, as total reflection can be achieved by using a conducting reflector behind
93:
from each zone arrives at the focal point in phase within Β±Ο€/2 range. If the radiation from alternate zones is suppressed or shifted in phase by Ο€, an approximate focus is obtained and a feed can be placed there to collect the received energy effectively. Despite its simplicity, the half-wave zone
431:
Beamsteering can be applied by amplitude/phase control or amplitude-only control of the elements of an antenna array positioned in the focal point of the lens as antenna feed. With amplitude-only control, no bandwidth-limiting phase shifters are needed, saving complexity and alleviating bandwidth
275:
A problem with the multilayer zone plate reflector is the complexity introduced, which might offset the advantage of using Fresnel zone plate antennas. One solution is to print an inhomogeneous array of conducting elements on a grounded dielectric plate, thus leading to the so-called single-layer
110:
operation. Unfortunately, the sidelobe they achieved was as high as βˆ’7 dB. In 1987, Black and Wiltse published their theoretical and experimental work on the stepped quarter-wave zone plate at 35 GHz. A sidelobe level of about βˆ’17 dB was achieved. A year later a phase reversal zone
296:
A phase correcting reflective array consists of an array of phase shifting elements illuminated by a feed placed at the focal point. The word "reflective" refers to the fact that each phase shifting element reflects back the energy in the incident wave with an appropriate phase shift. The phase
254:
direct broadcasting services (DBS), for example, an offset Fresnel lens can be produced by simply painting a zonal pattern on a window glass or a blind with conducting material. The satellite signal passing through the transparent zones is then collected by using an indoor feed.
130:
services in the eighties, however, antenna engineers began to consider the use of Fresnel zone plates as candidate antennas for DBS reception, where antenna cost is an important factor. This, to some extent, provided a commercial push to the research on Fresnel zone antennas.
440:
In order to increase the focusing, resolving and scanning properties and to create different shaped radiation patterns the Fresnel zone plate and antenna can be assembled conformable to a curvilinear natural or man-made formation and used as a diffractive
422:
So, when it is possible to modulate the signal by changing the material properties dynamically, the modulation of the side lobes is much less than that of the main lobe and so they disappear on demodulation, leaving a cleaner and more private signal.
268:
the zone plate. Based on the focal field analysis, it is demonstrated that high efficiency zone plate reflectors can be obtained by employing the multilayer phase correcting technique, which is to use a number of dielectric slabs of low
417: 232: 111:
plate reflector operating at 94 GHz was reported by Huder and Menzel, and 25% efficiency and βˆ’19 dB sidelobe level were obtained. An experiment on a similar antenna at 11.8 GHz was reported by
59:
The advantages of the Fresnel zone plate antenna are numerous. It is normally cheap to manufacture and install, easy to transport and package and can achieve high gain. Owing to its flat nature, the
143:
was first reported in. In contrast to the symmetrical Fresnel zone plate which consists of a set of circular zones, the offset Fresnel zone plate consists of a set of elliptical zones defined by
272:
and print different metallic zonal patterns on the different interfaces. The design and experiments of circular and offset multilayer phase correcting zone plate reflectors were presented in.
323: 35:
or "Reflectarray" antennas and 3 Dimensional Fresnel antennas. They are a class of diffractive antennas and have been used from radio frequencies to X rays.
106:βˆ’17 dB were achieved. In 1961, Buskirk and Hendrix reported an experiment on simple circular phase reversal zone plate reflector antennas for 785:
Singh, N.; Choure, K.K.; Chauhan, S.; Singh, H. (2014). "Performance comparison of phase shifting surface lens antenna with other lens antennas".
927:
Webb, G. W.; Minin, I. V.; Minin, O. V. (2011-04-01). "Variable Reference Phase in Diffractive Antennas: Review, Applications, New Results".
876: 802: 672: 625: 555: 517: 492: 1015: 728:"Millimeter-wavelength: Transmission-Mode Fresnel-Zone Plate Lens Antennas using Plastic Material Porosity Control in Homogeneous Medium" 149: 51:. Unlike traditional reflector and lens antennas, however, the focusing effect in a Fresnel zone antenna is achieved by controlling the 642: 587: 292:, shown standing next to it. It consists of a 10 ft Γ— 10 ft vertical lattice of parallel metal strips in the form of a Fresnel lens. 317:, a constant path length or phase added to the formula for the zones, but that the phase of the side lobes is much less sensitive. 612:. Chen Z., Liu D., Nakano H., Qing X., Zwick T. (eds) Handbook of Antenna Technologies. Springer, Singapore. pp. 1187–1248. 85:
invented in the nineteenth century. The basic idea is to divide a plane aperture into circular zones with respect to a chosen
828:"Three-dimensional-printed W-band high-gain reflector Fresnel lens antenna based on acrylonitrile butadiene styrene plastic" 23:
that focus the signal by using the phase shifting property of the antenna surface or its shape. There are several types of
116: 72: 241:
and the zone index. This feature introduces some new problems to the analysis of offset Fresnel zone plate antennas. The
127: 1020: 582:. Advances on Antennas, Reflectors and Beam Control, Editor Antonio TazΓ³n. Research Signpost. pp. 115–148. 32: 284: 123: 936: 302: 978:
Peter Smulders (2013). "The Road to 100 Gb/s Wireless and Beyond: Basic Issues and Key Directions".
44: 991: 960: 808: 952: 909: 872: 849: 798: 767: 749: 708: 668: 621: 583: 551: 513: 488: 250: 892:
Minin, I. V.; Minin, O. V. (1990). "Control of focusing properties of diffraction elements".
412:{\displaystyle r_{n}={\sqrt {(n+\alpha )\lambda f+{\frac {(n+\alpha )^{2}\lambda ^{2}}{4}}}}} 288:
Prototype metallic lens antenna for 6 GHz microwaves, developed at Bell Labs in 1946 by
983: 944: 901: 839: 790: 757: 739: 700: 613: 543: 480: 102:
level of its radiation pattern is too high to compete with conventional reflector antennas.
542:. Lecture Notes in Electrical Engineering. Springer-Verlag Berlin Heidelberg. p. 199. 289: 107: 81: 68: 20: 940: 762: 727: 95: 86: 63:
force of a Fresnel zone plate can be as little as 1/8 of that of conventional solid or
52: 1009: 838:(7). The Institute of Electronics, Information and Communication Engineers: 275–280. 577: 122:
Until the 1980s, the Fresnel zone plate antenna was regarded as a poor candidate for
98:
for a long time, primarily because its efficiency is too low (less than 20%) and the
995: 964: 905: 812: 269: 238: 60: 48: 24: 301:
were reported in. In recent years, it became common to call this type of antennas
71:
frequencies, a Fresnel zone antenna can be an integrated with the millimetre-wave
617: 537: 794: 641:
Stout-Grandy, S.; Petosa, A.; Minin, I.V.; Minin, O.V.; Wight, J. (March 2008).
744: 987: 844: 827: 547: 484: 314: 313:
It has been shown that the phase of the main lobe of a zone plate follows its
264: 28: 956: 948: 913: 853: 787:
2014 International Conference on Power, Control and Embedded Systems (ICPCES)
753: 712: 298: 246: 90: 75:(MMIC) and thus becomes even more competitive than a printed antenna array. 64: 771: 704: 99: 242: 691:
Guo, Y.J.; Barton, S.K. (1994). "Offset Fresnel zone plate antennas".
442: 227:{\displaystyle {\frac {x^{2}}{b^{2}}}+{\frac {(y-c)^{2}}{a^{2}}}=1} 283: 112: 510:
Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas
432:
constraints at the cost of limited beamsteering capability.
643:"Recent Advances in Fresnel Zone Plate Antenna Technology" 237:
where a, b and c are determined by the offset angle and
31:, offset Fresnel zone plate antennas, phase correcting 326: 152: 608:Hristov, H. (2016). "Fresnel Zone Plate Antenna". 411: 226: 693:International Journal of Satellite Communications 826:Futatsumori, S.; Sakamoto, N.; Soga, T. (2019). 43:Fresnel zone antennas belong to the category of 78:The simplest Fresnel zone plate antenna is the 119:and βˆ’16 dB sidelobe level were measured. 982:. Vol. 51, no. 12. pp. 86–91. 8: 539:Basic Principles of Fresnel Antenna Arrays 843: 761: 743: 726:Pourahmadazar, J.; Denidni, T.A. (2018). 699:(4). John Wiley & Sons Ltd: 381–385. 571: 569: 567: 395: 385: 366: 340: 331: 325: 210: 199: 180: 169: 159: 153: 151: 67:reflectors of similar size. When used at 686: 684: 665:Diffractional Optics of Millimetre Waves 531: 529: 454: 929:IEEE Antennas and Propagation Magazine 603: 601: 599: 470: 468: 466: 464: 462: 460: 458: 7: 738:(1). Springer Nature Limited: 5300. 263:plate lens antenna is that whilst a 579:Three Dimensional Fresnel Antennas 436:Three-dimensional Fresnel antennas 115:researchers in 1989. 5% 3 dB 14: 867:Huang, J.; Encinar, J.S. (2008). 663:Minin, O.V.; Minin, I.V. (2004). 576:Minin, I.V.; Minin, O.V. (2005). 536:Minin, I.V.; Minin, O.V. (2008). 610:Handbook of Antenna Technologies 475:Guo, Y.J.; Barton, S.K. (2002). 906:10.1070/QE1990v020n02ABEH005584 126:. Following the development of 382: 369: 354: 342: 196: 183: 1: 652:. Horizon House Publications. 479:. Kluwer Academic Publisher. 427:Beamsteering Fresnel antennas 73:monolithic integrated circuit 980:IEEE Communications Magazine 832:IEICE Communications Express 618:10.1007/978-981-4560-44-3_42 94:plate remained mainly as an 1016:Radio frequency propagation 795:10.1109/ICPCES.2014.7062821 1037: 745:10.1038/s41598-018-23179-8 667:. CRC Press. p. 396. 309:Reference phase modulation 27:antennas, namely, Fresnel 988:10.1109/MCOM.2013.6685762 845:10.1587/comex.2019XBL0020 548:10.1007/978-3-540-79559-9 485:10.1007/978-1-4757-3611-3 141:offset Fresnel zone plate 949:10.1109/MAP.2011.5949329 894:Sov. J. Quantum Electron 258:Phase correcting antenna 900:(2). IOPScience: 198. 789:. IEEE. pp. 1–6. 705:10.1002/sat.4600120405 413: 293: 228: 135:Offset Fresnel antenna 124:microwave applications 89:on the basis that all 869:Reflectarray antennas 477:Fresnel zone antennas 414: 287: 229: 17:Fresnel zone antennas 324: 280:Reflectarray antenna 150: 82:half-wave zone plate 941:2011IAPM...53...77W 508:Hristov, H (2000). 249:for predicting the 409: 294: 224: 878:978-0-470-08491-5 804:978-1-4799-5910-5 674:978-0-367-45432-6 650:Microwave Journal 627:978-981-4560-44-3 557:978-3-540-79558-2 519:978-0-89006-849-6 494:978-1-4419-5294-3 407: 405: 251:radiation pattern 216: 175: 1028: 1021:Antennas (radio) 1000: 999: 975: 969: 968: 924: 918: 917: 889: 883: 882: 864: 858: 857: 847: 823: 817: 816: 782: 776: 775: 765: 747: 723: 717: 716: 688: 679: 678: 660: 654: 653: 647: 638: 632: 631: 605: 594: 593: 573: 562: 561: 533: 524: 523: 512:. Artech House. 505: 499: 498: 472: 418: 416: 415: 410: 408: 406: 401: 400: 399: 390: 389: 367: 341: 336: 335: 233: 231: 230: 225: 217: 215: 214: 205: 204: 203: 181: 176: 174: 173: 164: 163: 154: 33:reflective array 1036: 1035: 1031: 1030: 1029: 1027: 1026: 1025: 1006: 1005: 1004: 1003: 977: 976: 972: 926: 925: 921: 891: 890: 886: 879: 866: 865: 861: 825: 824: 820: 805: 784: 783: 779: 725: 724: 720: 690: 689: 682: 675: 662: 661: 657: 645: 640: 639: 635: 628: 607: 606: 597: 590: 575: 574: 565: 558: 535: 534: 527: 520: 507: 506: 502: 495: 474: 473: 456: 451: 438: 429: 391: 381: 368: 327: 322: 321: 315:reference phase 311: 303:"reflectarrays" 290:Winston E. Kock 282: 260: 206: 195: 182: 165: 155: 148: 147: 137: 108:radio frequency 69:millimetre wave 41: 39:Fresnel antenna 12: 11: 5: 1034: 1032: 1024: 1023: 1018: 1008: 1007: 1002: 1001: 970: 919: 884: 877: 871:. IEEE Press. 859: 818: 803: 777: 718: 680: 673: 655: 633: 626: 595: 588: 563: 556: 525: 518: 500: 493: 453: 452: 450: 447: 437: 434: 428: 425: 420: 419: 404: 398: 394: 388: 384: 380: 377: 374: 371: 365: 362: 359: 356: 353: 350: 347: 344: 339: 334: 330: 310: 307: 281: 278: 259: 256: 235: 234: 223: 220: 213: 209: 202: 198: 194: 191: 188: 185: 179: 172: 168: 162: 158: 136: 133: 96:optical device 56:of a vehicle. 53:phase shifting 40: 37: 13: 10: 9: 6: 4: 3: 2: 1033: 1022: 1019: 1017: 1014: 1013: 1011: 997: 993: 989: 985: 981: 974: 971: 966: 962: 958: 954: 950: 946: 942: 938: 934: 930: 923: 920: 915: 911: 907: 903: 899: 895: 888: 885: 880: 874: 870: 863: 860: 855: 851: 846: 841: 837: 833: 829: 822: 819: 814: 810: 806: 800: 796: 792: 788: 781: 778: 773: 769: 764: 759: 755: 751: 746: 741: 737: 733: 729: 722: 719: 714: 710: 706: 702: 698: 694: 687: 685: 681: 676: 670: 666: 659: 656: 651: 644: 637: 634: 629: 623: 619: 615: 611: 604: 602: 600: 596: 591: 589:81-308-0067-5 585: 581: 580: 572: 570: 568: 564: 559: 553: 549: 545: 541: 540: 532: 530: 526: 521: 515: 511: 504: 501: 496: 490: 486: 482: 478: 471: 469: 467: 465: 463: 461: 459: 455: 448: 446: 444: 435: 433: 426: 424: 402: 396: 392: 386: 378: 375: 372: 363: 360: 357: 351: 348: 345: 337: 332: 328: 320: 319: 318: 316: 308: 306: 304: 300: 291: 286: 279: 277: 273: 271: 266: 257: 255: 252: 248: 244: 240: 221: 218: 211: 207: 200: 192: 189: 186: 177: 170: 166: 160: 156: 146: 145: 144: 142: 134: 132: 129: 125: 120: 118: 114: 109: 103: 101: 97: 92: 88: 84: 83: 76: 74: 70: 66: 62: 57: 54: 50: 49:lens antennas 46: 38: 36: 34: 30: 26: 22: 18: 979: 973: 935:(2): 77–94. 932: 928: 922: 897: 893: 887: 868: 862: 835: 831: 821: 786: 780: 735: 731: 721: 696: 692: 664: 658: 649: 636: 609: 578: 538: 509: 503: 476: 439: 430: 421: 312: 295: 274: 270:permittivity 261: 239:focal length 236: 140: 138: 121: 104: 79: 77: 61:wind loading 58: 42: 25:Fresnel zone 16: 15: 87:focal point 65:wire-meshed 1010:Categories 265:dielectric 247:algorithms 29:zone plate 957:1045-9243 914:0049-1748 854:2187-0136 754:2045-2322 713:1542-0981 449:Footnotes 393:λ 379:α 358:λ 352:α 299:prototype 190:− 117:bandwidth 91:radiation 80:circular 45:reflector 996:12358456 965:33799080 813:12037056 772:29593220 441:antenna- 243:formulae 100:sidelobe 21:antennas 937:Bibcode 763:5871768 732:Sci Rep 994:  963:  955:  912:  875:  852:  811:  801:  770:  760:  752:  711:  671:  624:  586:  554:  516:  491:  443:Radome 992:S2CID 961:S2CID 809:S2CID 646:(PDF) 953:ISSN 910:ISSN 873:ISBN 850:ISSN 799:ISBN 768:PMID 750:ISSN 709:ISSN 669:ISBN 622:ISBN 584:ISBN 552:ISBN 514:ISBN 489:ISBN 245:and 139:The 113:NASA 47:and 19:are 984:doi 945:doi 902:doi 840:doi 791:doi 758:PMC 740:doi 701:doi 614:doi 544:doi 481:doi 128:DBS 1012:: 990:. 959:. 951:. 943:. 933:53 931:. 908:. 898:20 896:. 848:. 834:. 830:. 807:. 797:. 766:. 756:. 748:. 734:. 730:. 707:. 697:12 695:. 683:^ 648:. 620:. 598:^ 566:^ 550:. 528:^ 487:. 457:^ 445:. 305:. 998:. 986:: 967:. 947:: 939:: 916:. 904:: 881:. 856:. 842:: 836:8 815:. 793:: 774:. 742:: 736:8 715:. 703:: 677:. 630:. 616:: 592:. 560:. 546:: 522:. 497:. 483:: 403:4 397:2 387:2 383:) 376:+ 373:n 370:( 364:+ 361:f 355:) 349:+ 346:n 343:( 338:= 333:n 329:r 222:1 219:= 212:2 208:a 201:2 197:) 193:c 187:y 184:( 178:+ 171:2 167:b 161:2 157:x

Index

antennas
Fresnel zone
zone plate
reflective array
reflector
lens antennas
phase shifting
wind loading
wire-meshed
millimetre wave
monolithic integrated circuit
half-wave zone plate
focal point
radiation
optical device
sidelobe
radio frequency
NASA
bandwidth
microwave applications
DBS
focal length
formulae
algorithms
radiation pattern
dielectric
permittivity

Winston E. Kock
prototype

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑