Knowledge (XXG)

Frost diagram

Source 📝

869:
middle oxidation state will either be in a “hill” or in a “valley” shape. A hill is formed when the left slope is steeper than the right, and a valley is formed when the right slope is steeper than the left. An oxidation state that is on “top of the hill” tends to favor disproportionation into the adjacent oxidation states. The adjacent oxidation states, however, will favor comproportionation if the middle oxidation state is in the “bottom of a valley”. By
343: 882: 34: 283:
axis of the Frost diagram. Oxidation states are unitless and are also scaled in positive and negative integers. Most often, the Frost diagram displays oxidation state in increasing order, but in some cases it is displayed in decreasing order. The neutral species of the pure element with a free energy
973:
The Frost diagram is also a useful tool for comparing the trends of standard potentials (slope) of acidic and basic solutions. The pure, neutral element transitions to different compounds depending whether the species is in acidic and basic pHs. Though the value and amount of oxidation states remain
868:
Using a Frost diagram, one can predict whether one oxidation state would undergo disproportionation, or two oxidation states would undergo comproportionation. Looking at two slopes among a set of three oxidation states on the diagram, assuming the two standard potentials (slopes) are not equal, the
303:
between two oxidation states. In other words, the steepness of the line shows the tendency for those two reactants to react and to form the lowest-energy product. There is a possibility of having either a positive or a negative slope. A positive slope between two species indicates a tendency for an
982:
Arthur Frost stated in his own original publication that there may be potential criticism for his Frost diagram. He predicts that “the slopes may not be as easily or accurately recognized as they are the direct numerical values of the oxidation potentials ”. Many inorganic chemists use both the
983:
Latimer and Frost diagrams in tandem, using the Latimer for quantitative data, and then converting those data into a Frost diagram for visualization. Frost suggested that the numerical values of standard potentials could be added next to the slopes to provide supplemental information.
873:, drawing the line between the oxidation state to the left and the one to the right and seeing if the species lies above or below this line is a quick way to determine concavity/convexity (concavity would indicate comproportionation, for example). 1015:
However, in some textbooks the Frost diagram of an element may be confusing for the reader, because the redox potential depends on pH and some notations, or conventions, may differ from the standard conditions and be unclear.
271:
axis of the graph displays the free energy. Increasing stability (lower free energy) is lower on the graph, so the higher free energy and higher on the graph a species of an element is, the more unstable and reactive it is.
1080:), while also discussing redox processes occurring in a basic-solution. To attempt to overcome the problem, in the Phillips and Williams Inorganic Chemistry textbook, however, the reduction potentials for 1143:
value (0 or 14) for which the Frost diagrams have been constructed, or even better, to present both curves (for pH 0 and 14) on the same diagram to put in evidence the effect of pH on the
962:
exchanged. Electrons are always exchanged in electrochemistry, but not necessarily protons. If there is no proton exchange in the reaction equilibrium, the reaction is said to be
1354: 802:
is the opposite reaction, in which two equivalents of an element, identical in oxidation state, react to form two products with differing oxidation states.
974:
unchanged, the free energies can vary greatly. The Frost diagram allows the superimposition of acidic and basic graphs for easy and convenient comparison.
594: 413:: as not all chemical species are necessarily indicated on a given Frost diagram, these diagrams can easily exhibit significant differences: 1139:
So, to avoid confusion for the reader, it is important to use clear conventions and notations, and to also systematically indicate the
1084:
solutions are calculated with non-standard conditions and unusual conventions ( = 1 M, pH = 14) according to the following formula:
259:° = 0 value is usually the neutral species of the pure element. The Frost diagram normally shows free-energy values above and below 279:(sometimes also called oxidation number as on the x axis of two illustrating figures on this page) of the species is shown on the 1069:
Some textbooks present the reduction potentials calculated under standard conditions, so with = 1 M (pH = 0, acid-solution),
620:
A species located above the line between two surrounding species (thus shown at the top of a peak), is unstable and prone to
684:) are both located at the top of a peak and so can easily disproportionate towards the two more stable surrounding species: 158:, who originally invented it as a way to "show both free energy and oxidation potential data conveniently" in a 1951 paper. 987: 434:), also a quite unstable compound and the next Frost diagram for nitrogen, here below, does not present the azide species. 89: 304:
oxidation reaction, while a negative slope between two species indicates a tendency for reduction. For example, if the
970:
in question change oxidation states are the same whatever the pH conditions under which the procedure is carried out.
1039: 334:
is 4/2 = 2, yielding a standard potential of +2. The stability of any terms can be similarly found by this graph.
1386: 790:
In regards to electrochemical reactions, two main types of reactions can be visualized using the Frost diagram.
1038:
anions released in solution during reduction, or at the contrary consumed by oxidation reactions, according to
966:. This means that the values for the electrochemical potential rendered in a redox half-reaction, whereby the 74: 624:(↙↘), while a species located below the line joining two surrounding species (thus shown in a dip) lies in a 1031: 870: 148: 439:
The slope of the line between any two points on a Frost diagram gives the standard reduction potential,
178: 167: 80:. The Frost diagram allows easier comprehension of these reduction potentials than the earlier-designed 1296:
MartĂ­nez de Illarduya, JesĂșs M.; Villafane, Fernando (June 1994). "A Warning for Frost Diagram Users".
1305: 1265: 1147: 606: 601:
than nitrate, the Gibbs free energy of the half-reaction for nitrate reduction is more important (∆
20: 1348: 1023: 1007: 799: 791: 633: 621: 404: 300: 232: 153: 1340: 25: 1164: 316: 185: 62: 1313: 1273: 1206: 1159: 1081: 990:, Martinez de Ilarduya and Villafañe (1994) warn users of Frost diagrams to be aware of the 967: 712: 197: 130: 54: 1043: 795: 598: 276: 174: 81: 66: 58: 1309: 1269: 342: 1333: 1055: 922: 917: 640: 374: 881: 1380: 660: 625: 387: 382: 252: 77: 590: 84:, because the “lack of additivity of potentials” was confusing. The free energy Δ 1371: 994:
conditions (acid or basic) considered to construct the diagrams. Frost diagrams
73:, so this parameter also must be included. The free energy is determined by the 701: 504:° determined for their respective half-reactions of reduction towards gaseous 288:° = 0) also has an oxidation state equal to zero. However, the energy of some 978:
Possible confusion related to non-standard conventions / pH used in textbooks
959: 423: 418: 309: 305: 289: 38: 33: 886: 685: 614: 447: 347: 228: 1210: 951: 482: 478: 458: 264: 1317: 1278: 1253: 16:
Graph showing the free energy vs oxidation state of a chemical species
1197:
Frost, Arthur (1951). "Oxidation Potential–Free Energy Diagrams".
1144: 1027: 904: 899: 880: 798:, combine to form a product with an intermediate oxidation state. 749: 360: 355: 296: 193: 32: 929:), presented here above in the former Frost diagram for nitrogen. 898:: This Frost diagram for nitrogen is also incomplete as it lacks 240: 719:– under acidic conditions, hydrazoic acid disproportionates as: 196:
of the species multiplied by the sign minus and divided by the
57:
to illustrate the relative stability of a number of different
338:
Species thermodynamical stability indicated by peaks and dips
1140: 991: 935: 890: 351: 70: 1372:
Diagrams providing useful oxidation-reduction information
1013:°, implicitly refers to acid conditions ( = 1 M, pH = 0). 231:
exchanged in the reduction reaction multiplied by the
61:
of a particular substance. The graph illustrates the
794:
is when two equivalents of an element, differing in
450:here below, the slope of the straight line between 69:of a chemical species. This effect is dependent on 1332: 748:– under neutral, or basic, conditions, the azide 617:transferred in the half-reaction (10 versus 6). 53:is a type of graph used by inorganic chemists in 609:releasing energy) because of the larger number ( 1291: 1289: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 251:The standard free-energy scale is measured in 30:, invented by and named after the same person. 8: 1232: 1230: 1228: 1226: 1224: 1222: 1220: 125:is the number of transferred electrons, and 1353:: CS1 maint: location missing publisher ( 477:) being slightly more pronounced than for 1277: 786:Disproportionation and comproportionation 443:°, for the corresponding half-reaction. 1199:Journal of the American Chemical Society 1122: 1118: 1076: 1061: 1049: 1046:is exacerbated under acidic conditions ( 938:dependence is given by the factor −0.059 924: 777: 773: 769: 731: 727: 707: 679: 666: 646: 569: 565: 529: 525: 517: 507: 464: 453: 429: 425: 398: 389: 376: 354:= 0 illustrating the instability of the 341: 177:of the species in question, and on its 1176: 1058:is exacerbated under basic conditions ( 481:, indicates that nitrite is a stronger 1346: 1254:"Where Is Ozone in the Frost Diagram?" 299:of the line therefore represents the 95:° shown in the graph by the formula: 7: 1006:, classically constructed with the 639:On the Frost diagram for nitrogen, 575:      535:      500:This is confirmed by the values of 147:. The Frost diagram is named after 14: 403:) and their spontaneous trend to 311:has an oxidation state of +6 and 37:Example of Frost diagram for the 593:is located above nitrate in the 457:(at the origin of the plot) and 166:The Frost diagram shows on its 1339:. Oxford University. pp.  1054:) while the reducing power of 322:the oxidation state is +4 and 1: 1298:Journal of Chemical Education 1258:Journal of Chemical Education 988:Journal of Chemical Education 417:, this diagram does not show 162:X,Y axes of the Frost diagram 986:In a paper published in the 90:standard electrode potential 1331:Phillips, C. S. G. (1965). 1403: 18: 1241:. W. H. Freeman & Co. 1042:, the oxidizing power of 950:relates to the number of 446:On the Frost diagram for 1040:Le Chatelier's principle 19:Not to be confused with 806:Disproportionation: 2 M 326:° = 0, then the slope Δ 263:° = 0 and is scaled in 194:half-reduction reaction 1252:Villafañe, F. (2009). 1026:ions participate into 931: 605:° < 0 indicates an 436: 138:≈ 96,485 coulomb/(mol 51:Frost–Ebsworth diagram 42: 1030:reactions to balance 954:in the equation, and 884: 829:Comproportionation: M 752:disproportionates as: 597:and so is a stronger 372:, here protonated as 345: 36: 630:intrinsically stable 149:Arthur Atwater Frost 88:° is related to the 1335:Inorganic Chemistry 1310:1994JChEd..71..480M 1270:2009JChEd..86..432V 1239:Inorganic Chemistry 1211:10.1021/ja01150a074 1032:acid–base reactions 946:per pH unit, where 893:values (0 and 14). 871:Jensen's inequality 607:exothermic reaction 564:+ 12 H + 10 e ⇌ N 75:oxidation–reduction 1008:standard potential 932: 885:Frost diagram for 800:Disproportionation 792:Comproportionation 702:molecular nitrogen 634:comproportionation 622:disproportionation 437: 405:disproportionation 346:Frost diagram for 301:standard potential 233:standard potential 184:the difference in 43: 1318:10.1021/ed071p480 1279:10.1021/ed086p432 1165:Ellingham diagram 930: 864:in both examples. 632:, giving rise to 585:° = –1 206 J/mol) 435: 292:may not be zero. 186:Gibbs free energy 1394: 1387:Electrochemistry 1359: 1358: 1352: 1344: 1338: 1328: 1322: 1321: 1293: 1284: 1283: 1281: 1249: 1243: 1242: 1237:Shriver (2010). 1234: 1215: 1214: 1205:(6): 2680–2682. 1194: 1160:Pourbaix diagram 1126: 1079: 1065: 1053: 1044:oxidizing agents 1037: 1022: 928: 915: 913: 912: 909: 894: 781: 767: 766: 763: 757: 743: 742: 741: 738: 724: 713:aqueous solution 710: 699: 698: 697: 694: 683: 677: 676: 673: 658: 657: 656: 653: 576: 573: 563: 562: 559: 548: 536: 533: 523: 510: 496: 495: 494: 491: 476: 475: 474: 471: 456: 433: 409: 402: 394: 380: 371: 369: 368: 365: 239:°, expressed in 198:Faraday constant 157: 146: 141: 131:Faraday constant 120: 106: 59:oxidation states 55:electrochemistry 29: 1402: 1401: 1397: 1396: 1395: 1393: 1392: 1391: 1377: 1376: 1368: 1363: 1362: 1345: 1330: 1329: 1325: 1295: 1294: 1287: 1251: 1250: 1246: 1236: 1235: 1218: 1196: 1195: 1178: 1173: 1156: 1134: 1124: 1120: 1116: 1110: 1102: 1094: 1078: 1075:2 H + 2 e ⇌ H 1074: 1063: 1059: 1056:reducing agents 1051: 1047: 1035: 1034:related to the 1020: 1014: 980: 926: 921: 910: 907: 906: 903: 889:at two extreme 879: 846: 840: 834: 823: 817: 811: 796:oxidation state 788: 779: 775: 771: 764: 761: 760: 758: 755: 739: 736: 735: 733: 729: 725: 722: 709: 705: 695: 692: 691: 689: 681: 674: 671: 670: 668: 664: 654: 651: 650: 648: 644: 574: 571: 567: 560: 557: 556: 554: 546: 534: 531: 527: 521: 519: 515: 509: 505: 492: 489: 488: 486: 472: 469: 468: 466: 462: 455: 451: 431: 427: 422: 408: 400: 396: 391: 386: 378: 373: 366: 363: 362: 359: 340: 320: 277:oxidation state 249: 175:oxidation state 164: 151: 139: 133: 108: 96: 82:Latimer diagram 67:oxidation state 31: 23: 17: 12: 11: 5: 1400: 1398: 1390: 1389: 1379: 1378: 1375: 1374: 1367: 1366:External links 1364: 1361: 1360: 1323: 1304:(6): 480–482. 1285: 1244: 1216: 1175: 1174: 1172: 1169: 1168: 1167: 1162: 1155: 1152: 1137: 1136: 1132: 1108: 1100: 1092: 1060:2 OH ⇌ O + H 979: 976: 964:pH-independent 958:the number of 918:hydrazoic acid 878: 875: 866: 865: 849: 848: 842: 836: 830: 826: 825: 819: 813: 807: 787: 784: 783: 782: 753: 745: 744: 730:+ 3 H → 12 N 720: 641:hydrazoic acid 587: 586: 581:° = 1.250 V, ∆ 551: 550: 541:° = 1.455 V, ∆ 485:than nitrate ( 339: 336: 318: 315:° = 4, and in 253:electron-volts 248: 247:Unit and scale 245: 223:, the number, 163: 160: 78:half-reactions 15: 13: 10: 9: 6: 4: 3: 2: 1399: 1388: 1385: 1384: 1382: 1373: 1370: 1369: 1365: 1356: 1350: 1342: 1337: 1336: 1327: 1324: 1319: 1315: 1311: 1307: 1303: 1299: 1292: 1290: 1286: 1280: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1245: 1240: 1233: 1231: 1229: 1227: 1225: 1223: 1221: 1217: 1212: 1208: 1204: 1200: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1177: 1170: 1166: 1163: 1161: 1158: 1157: 1153: 1151: 1149: 1146: 1142: 1130: 1121:O + 2 e ⇌ H 1114: 1106: 1098: 1090: 1087: 1086: 1085: 1083: 1072: 1067: 1057: 1048:2 H + O ⇌ H 1045: 1041: 1033: 1029: 1025: 1017: 1012: 1009: 1005: 1001: 997: 993: 989: 984: 977: 975: 971: 969: 965: 961: 957: 953: 949: 945: 941: 937: 927: 919: 914: 901: 897: 892: 888: 883: 877:pH dependence 876: 874: 872: 863: 859: 855: 851: 850: 845: 839: 833: 828: 827: 822: 816: 810: 805: 804: 803: 801: 797: 793: 785: 754: 751: 747: 746: 721: 718: 717: 716: 714: 703: 687: 662: 661:hydroxylamine 642: 637: 635: 631: 628:sink, and is 627: 626:thermodynamic 623: 618: 616: 612: 608: 604: 600: 596: 592: 584: 580: 553: 552: 544: 540: 514: 513: 512: 503: 498: 484: 480: 460: 449: 444: 442: 432: 420: 416: 412: 406: 393: 384: 383:hydroxylamine 379: 370: 357: 353: 349: 344: 337: 335: 333: 329: 325: 321: 314: 310: 307: 302: 298: 293: 291: 287: 282: 278: 273: 270: 266: 262: 258: 254: 246: 244: 242: 238: 234: 230: 226: 222: 218: 214: 210: 205: 203: 199: 195: 191: 187: 183: 181: 176: 172: 170: 161: 159: 155: 150: 144: 137: 132: 128: 124: 119: 115: 111: 104: 100: 94: 91: 87: 83: 79: 76: 72: 68: 64: 60: 56: 52: 48: 47:Frost diagram 40: 35: 27: 22: 1334: 1326: 1301: 1297: 1261: 1257: 1247: 1238: 1202: 1198: 1138: 1128: 1112: 1104: 1096: 1088: 1070: 1068: 1018: 1010: 1003: 999: 995: 985: 981: 972: 963: 955: 947: 943: 939: 933: 895: 867: 861: 857: 853: 843: 837: 831: 820: 814: 808: 789: 756:   723:   638: 629: 619: 610: 602: 591:nitrous acid 588: 582: 578: 547:   542: 538: 501: 499: 445: 440: 438: 414: 410: 331: 327: 323: 312: 294: 285: 280: 274: 268: 260: 256: 250: 236: 224: 220: 216: 212: 208: 206: 201: 189: 179: 168: 165: 142: 135: 126: 122: 117: 113: 109: 102: 98: 92: 85: 50: 46: 44: 21:Frost circle 1148:equilibrium 595:redox scale 549:–842 J/mol) 350:species at 207:The term -Δ 152: [ 63:free energy 24: [ 1264:(4): 432. 1171:References 1135:+ 0.828 V. 772:O → 12 N 711:). So, in 290:allotropes 255:, and the 192:°, of the 1349:cite book 960:electrons 615:electrons 589:Although 524:6 e ⇌ N 419:hydrazine 358:species ( 306:manganese 284:of zero ( 229:electrons 39:manganese 1381:Category 1154:See also 1019:Because 968:elements 887:nitrogen 686:ammonium 520:+ 6 H + 448:nitrogen 348:nitrogen 265:integers 121:, where 1341:314–321 1306:Bibcode 1266:Bibcode 1101:(pH 14) 1021:  952:protons 599:oxidant 522:  483:oxidant 479:nitrate 459:nitrite 140:  129:is the 41:species 1125:+ 2 OH 998:° = −Δ 780:+ 9 OH 776:+ 3 NH 734:+ 3 NH 700:) and 659:) and 636:(↘↙). 381:) and 267:. The 112:° = −Δ 1145:redox 1133:basic 1109:basic 1082:basic 1028:redox 916:, or 900:azide 841:→ 2 M 768:+ 9 H 750:anion 613:) of 568:+ 6 H 528:+ 4 H 516:2 HNO 356:azide 297:slope 227:, of 221:i. e. 156:] 101:° = − 28:] 1355:link 1127:) = 1093:(OH) 1066:). 934:The 896:Note 726:9 HN 678:/ NH 555:2 NO 545:° = 467:/ NO 415:e.g. 411:Note 295:The 275:The 241:volt 182:axis 173:the 171:axis 1314:doi 1274:doi 1207:doi 1117:2 H 1115:° ( 1073:° ( 835:+ M 818:+ M 812:→ M 759:9 N 715:: 649:/ N 497:). 463:HNO 428:-NH 317:MnO 308:in 219:°, 204:. 188:, Δ 107:or 103:nFE 65:vs 49:or 1383:: 1351:}} 1347:{{ 1312:. 1302:71 1300:. 1288:^ 1272:. 1262:86 1260:. 1256:. 1219:^ 1203:73 1201:. 1179:^ 1150:. 1141:pH 1111:− 1103:= 1095:= 1002:°/ 996:nE 992:pH 936:pH 923:HN 920:, 891:pH 860:+ 856:= 852:2 690:NH 682:OH 669:OH 665:NH 645:HN 511:: 487:NO 424:NH 401:OH 397:NH 395:/ 392:OH 388:NH 375:HN 352:pH 330:/Δ 324:nE 313:nE 286:nE 261:nE 257:nE 243:. 235:, 217:nE 215:= 211:°/ 200:, 154:de 145:)) 116:°/ 110:nE 71:pH 45:A 26:de 1357:) 1343:. 1320:. 1316:: 1308:: 1282:. 1276:: 1268:: 1213:. 1209:: 1131:° 1129:E 1123:2 1119:2 1113:E 1107:° 1105:E 1099:° 1097:E 1091:° 1089:E 1077:2 1071:E 1064:O 1062:2 1052:O 1050:2 1036:O 1024:H 1011:E 1004:F 1000:G 956:n 948:m 944:n 942:/ 940:m 925:3 911:3 908:− 905:N 902:( 862:p 858:m 854:n 847:. 844:n 838:p 832:m 824:. 821:p 815:m 809:n 778:3 774:2 770:2 765:3 762:− 740:4 737:+ 732:2 728:3 708:2 706:N 704:( 696:4 693:+ 688:( 680:2 675:2 672:+ 667:2 663:( 655:3 652:− 647:3 643:( 611:n 603:G 583:G 579:E 577:( 572:O 570:2 566:2 561:3 558:− 543:G 539:E 537:( 532:O 530:2 526:2 518:2 508:2 506:N 502:E 493:3 490:− 473:2 470:− 465:2 461:( 454:2 452:N 441:E 430:2 426:2 421:( 407:. 399:3 390:2 385:( 377:3 367:3 364:− 361:N 332:x 328:y 319:2 281:x 269:y 237:E 225:n 213:F 209:G 202:F 190:G 180:y 169:x 143:e 136:F 134:( 127:F 123:n 118:F 114:G 105:° 99:G 97:Δ 93:E 86:G

Index

Frost circle
de

manganese
electrochemistry
oxidation states
free energy
oxidation state
pH
oxidation–reduction
half-reactions
Latimer diagram
standard electrode potential
Faraday constant
Arthur Atwater Frost
de
x axis
oxidation state
y axis
Gibbs free energy
half-reduction reaction
Faraday constant
electrons
standard potential
volt
electron-volts
integers
oxidation state
allotropes
slope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑