Knowledge (XXG)

Latimer diagram

Source ๐Ÿ“

375: 110: 20: 231:
It must be stressed that standard reduction potentials are not additive values. They cannot be directly summed up, or subtracted, from the values in volt indicated in a Latimer diagram. If needed, their calculation must be performed via the difference in Gibbs free energies. The easiest way to
240:
and the sign minus simplifies on both side of the equation. So, the values of E in volt must be simply multiplied by the number (n) of electron transferred in the considered half-reaction. Since the Faraday constant can disappear from the equation, no need to calculate
256:
in solution under the conditions for which the electrode potentials are given: if the potential to the right of the species is higher than the potential on the left, it will disproportionate. Therefore,
188:, the electrode potential is a representation of the Gibbs energy change for the given reduction. The sum of the Gibbs energy changes for subsequent reductions (e.g. from O 416: 355: 332: 321:
Atkins, Peter; Overton, Tina (2010). "5. Oxidation and Reduction: The diagrammatic presentation of potential data ยง5.12 Latimer diagrams".
445: 224:. This can be used to find the electrode potential for non-adjacent species, which gives all the information necessary for the 409: 129: 39: 435: 402: 43: 70:
to the right side. The species are connected by arrows, and the numerical value of the standard potential (in
440: 253: 351: 328: 307: 258: 86: 386: 343: 382: 302: 183: 35: 176:, as a concise summary of the standard electrode potentials relative to the element. Since 67: 63: 374: 109: 429: 297: 225: 221: 173: 233: 19: 322: 212:
O) is the same as the Gibbs energy change for the overall reduction (i.e. from O
252:
A simple examination of a Latimer diagram can also indicate if a species will
59: 24: 272: 79: 75: 16:
Representation of the standard electrode potential data of an element
280: 97: 71: 55: 18: 74:) for the reduction is written at each arrow. For example, for 232:
proceed is simply to use energies (nE) directly expressed in
66:
of the element is on the left side, with successively lower
58:
reactions are shown in the direction of reduction (gain of
42:
data of that element. This type of diagram is named after
344:"ยง1.3 Some Uses of Standard Potentials: Latimer Diagrams" 128:
has a value +0.68 V over it, it indicates that the
390: 172:
Latimer diagrams can be used in the construction of
410: 8: 54:In a Latimer diagram, because by convention 417: 403: 271:is unstable and will disproportionate in 282: 267: 263: 324:Shriver and Atkins' Inorganic Chemistry 7: 371: 369: 78:, the species would be in the order 236:(eV), because the Faraday constant 389:. You can help Knowledge (XXG) by 46:(1893โ€“1955), an American chemist. 14: 373: 327:. OUP Oxford. pp. 162โ€“163. 108: 1: 130:standard electrode potential 40:standard electrode potential 462: 368: 350:. Springer. p. 18. 144:) + 2 H + 2  44:Wendell Mitchell Latimer 220:O), in accordance with 446:Electrochemistry stubs 385:-related article is a 27: 342:Rieger, P.H. (1993). 22: 249:expressed in joule. 38:is a summary of the 116:The arrow between O 62:), the most highly 23:Latimer diagram of 132:for the reaction: 28: 398: 397: 357:978-0-412-04391-8 334:978-0-19-923617-6 308:Ellingham diagram 259:hydrogen peroxide 453: 436:Electrochemistry 419: 412: 405: 383:electrochemistry 377: 370: 361: 348:Electrochemistry 338: 303:Pourbaix diagram 287: 270: 254:disproportionate 248: 187: 112: 68:oxidation states 36:chemical element 461: 460: 456: 455: 454: 452: 451: 450: 426: 425: 424: 423: 366: 364: 358: 341: 335: 320: 316: 294: 284: 279: 276: 269: 265: 261: 246: 242: 219: 215: 211: 207: 203: 199: 195: 191: 181: 177: 170: 164:is 0.68 volts. 155: 151: 139: 127: 123: 119: 101: 94: 90: 83: 52: 32:Latimer diagram 17: 12: 11: 5: 459: 457: 449: 448: 443: 438: 428: 427: 422: 421: 414: 407: 399: 396: 395: 378: 363: 362: 356: 339: 333: 317: 315: 312: 311: 310: 305: 300: 293: 290: 274: 244: 217: 213: 209: 205: 201: 197: 193: 189: 179: 174:Frost diagrams 169: 166: 162: 161: 153: 149: 137: 125: 121: 117: 114: 113: 99: 92: 88: 81: 51: 48: 15: 13: 10: 9: 6: 4: 3: 2: 458: 447: 444: 442: 439: 437: 434: 433: 431: 420: 415: 413: 408: 406: 401: 400: 394: 392: 388: 384: 379: 376: 372: 367: 359: 353: 349: 345: 340: 336: 330: 326: 325: 319: 318: 313: 309: 306: 304: 301: 299: 298:Frost diagram 296: 295: 291: 289: 286: 277: 260: 255: 250: 239: 235: 234:electron-volt 229: 227: 226:Frost diagram 223: 200:, then from H 185: 175: 167: 165: 159: 147: 143: 135: 134: 133: 131: 111: 107: 106: 105: 103: 95: 84: 77: 73: 69: 65: 64:oxidized form 61: 57: 49: 47: 45: 41: 37: 33: 26: 21: 391:expanding it 380: 365: 347: 323: 251: 237: 230: 171: 163: 157: 145: 141: 115: 53: 50:Construction 31: 29: 168:Application 441:Potentials 430:Categories 314:References 222:Hess's law 60:electrons 25:manganese 292:See also 354:  331:  182:G = -n 104:(-2): 96:(โ€“1), 76:oxygen 381:This 120:and H 85:(0), 72:volts 56:redox 34:of a 387:stub 352:ISBN 329:ISBN 278:and 216:to H 208:to H 192:to H 148:โ‡„ H 432:: 346:. 288:. 228:. 158:aq 30:A 418:e 411:t 404:v 393:. 360:. 337:. 285:O 283:2 281:H 275:2 273:O 268:2 266:O 264:2 262:H 247:G 245:r 243:ฮ” 238:F 218:2 214:2 210:2 206:2 204:O 202:2 198:2 196:O 194:2 190:2 186:E 184:F 180:r 178:ฮ” 160:) 156:( 154:2 152:O 150:2 146:e 142:g 140:( 138:2 136:O 126:2 124:O 122:2 118:2 102:O 100:2 98:H 93:2 91:O 89:2 87:H 82:2 80:O

Index


manganese
chemical element
standard electrode potential
Wendell Mitchell Latimer
redox
electrons
oxidized form
oxidation states
volts
oxygen
O2
H2O2
H2O

standard electrode potential
Frost diagrams
F
Hess's law
Frost diagram
electron-volt
disproportionate
hydrogen peroxide
O2
H2O
Frost diagram
Pourbaix diagram
Ellingham diagram
Shriver and Atkins' Inorganic Chemistry
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘