Knowledge (XXG)

Guillotine partition

Source 📝

28: 20: 94:. In that problem, the original sheet is a plain rectangle without holes. The challenge comes from the fact that the dimensions of the small rectangles are fixed in advance. The optimization goals are usually to maximize the area of the produced rectangles or their value, or minimize the waste or the number of required sheets. 221:
In the special case in which all holes are degenerate (single points), the minimum-length guillotine rectangular partition is at most 2 times the minimum-length rectangular partition. By a more careful analysis, it can be proved that the approximation factor is in fact at most 1.75. It is not known
343:
Besides the computational problems, guillotine partitions were also studied from a combinatorial perspective. Suppose a given rectangle should be partitioned into smaller rectangles using guillotine cuts only. Obviously, there are infinitely many ways to do this, since even a single cut can take
549: 634: 222:
if the 1.75 is tight, but there is an instance in which the approximation factor is 1.5. Therefore, the guillotine partition provides a constant-factor approximation to the general problem, which is NP-hard.
427: 275: 322: 216: 143: 180: 1260: 926:"Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems" 449: 23:
A guillotine cutting: an optimised sheet of smaller rectangles which can be divided intact through the correct series of bisecting end-to-end cuts.
558: 1195: 779: 744: 332: 1270: 900: 151:
there exists a minimum-length guillotine rectangular partition in which every maximal line segment contains a vertex of the boundary
842: 355: 81:
related to guillotine partition, such as: minimizing the number of rectangles or the total length of cuts. These are variants of
1217: 1055: 672:-coloring always exists. An important special case is when the graph represents a partition of a rectangle into rectangles. 106:, the goal is to partition the original rectilinear polygon into rectangles, such that the total edge length is a minimum. 62: 774:. Springer Optimization and Its Applications. New York: Springer-Verlag. pp. 165–209, chapter 5 "guillotine cut". 1265: 703: 74: 693:
Dimitrov, Aigner-Horev and Krakovski finally proved that there always exists a strong polychromatic 4-coloring.
679:
Aigner-Horev, Katz, Krakovski and Loffler proved that, in the special sub-case in which the graph represents a
54:) is a straight bisecting line going from one edge of an existing polygon to the opposite edge, similarly to a 653: 446:
dimensions, Ackerman, Barequet, Pinter and Romik give an exact summation formula, and prove that it is in
1132: 1011: 78: 1093: 664:
of the graph, each color appears at least once. Several researchers have tried to find the largest
661: 146: 43: 232: 1171: 992: 906: 90: 434: 1236: 1191: 1152: 1113: 1074: 1031: 984: 945: 896: 861: 818: 775: 740: 284: 185: 112: 82: 1226: 1183: 1144: 1105: 1064: 1023: 976: 937: 888: 851: 808: 732: 55: 925: 27: 836:
Gonzalez, Teofilo F.; Razzazi, Mohammadreza; Shing, Man-Tak; Zheng, Si-Qing (1994-05-01).
156: 229:-dimensional box: a guillotine-partition with minimum edge-length can be found in time 19: 881:"Polynomial time approximation schemes for Euclidean TSP and other geometric problems" 813: 796: 676:
Dinitz, Katz and Krakovski proved that there always exists a polychromatic 3-coloring.
1254: 856: 837: 996: 910: 657: 544:{\displaystyle \Theta \left({\frac {(2d-1+2{\sqrt {d(d-1)}})^{n}}{n^{3/2}}}\right)} 430: 1187: 1049:
Asinowski, Andrei; Barequet, Gill; Mansour, Toufik; Pinter, Ron Y. (2014-09-28).
769: 724: 690:-dimensional guillotine partitions, and provided an efficient coloring algorithm. 46:, possibly containing some holes, into rectangles, using only guillotine-cuts. A 736: 1231: 1212: 1069: 1050: 1148: 1131:
Horev, Elad; Katz, Matthew J.; Krakovski, Roi; Löffler, Maarten (2009-06-15).
1109: 1027: 941: 880: 1240: 1156: 1117: 1078: 1035: 988: 949: 892: 865: 822: 629:{\displaystyle \Theta \left({\frac {(3+2{\sqrt {2}})^{n}}{n^{3/2}}}\right)} 980: 1010:
Ackerman, Eyal; Barequet, Gill; Pinter, Ron Y.; Romik, Dan (2006-05-31).
838:"On optimal guillotine partitions approximating optimal d-box partitions" 331:
Arora and Mitchell used the guillotine-partitioning technique to develop
964: 963:
Yao, Bo; Chen, Hongyu; Cheng, Chung-Kuan; Graham, Ronald (2003-01-01).
182:
possible choices for the next guillotine cut, and there are altogether
65:. An alternative term for a guillotine-partition in this context is a 1098:
International Journal of Computational Geometry & Applications
26: 18: 885:
Proceedings of 37th Conference on Foundations of Computer Science
639:
Asinowski, Barequet, Mansour and Pinter also study the number of
1172:"Polychromatic Colorings of n-Dimensional Guillotine-Partitions" 85:
problems, where the cuts are constrained to be guillotine cuts.
1092:
Dinitz, Yefim; Katz, Matthew J.; Krakovski, Roi (2009-12-01).
35:
be separated by making single bisecting cuts across the plane.
73:. Guillotine partitions are also the underlying structure of 98:
Computing a guillotine partition with a smallest edge-length
1211:
Dimitrov, Darko; Horev, Elad; Krakovski, Roi (2009-05-06).
969:
ACM Transactions on Design Automation of Electronic Systems
797:"Improved bounds for rectangular and guillotine partitions" 422:{\displaystyle O\left({\frac {n!2^{5n-3}}{n^{3/2}}}\right)} 281:-1)-volume in the optimal guillotine-partition is at most 61:
Guillotine partition is particularly common in designing
1170:
Keszegh, Balázs (2008). Hu, Xiaodong; Wang, Jie (eds.).
1051:"Cut equivalence of d-dimensional guillotine partitions" 965:"Floorplan representations: Complexity and connections" 731:, Wiesbaden: Vieweg+Teubner Verlag, pp. 251–301, 729:
Combinatorial Algorithms for Integrated Circuit Layout
145:
even if the raw polygon has holes. The algorithm uses
1133:"Polychromatic 4-coloring of guillotine subdivisions" 1012:"The number of guillotine partitions in d dimensions" 561: 452: 358: 287: 235: 188: 159: 115: 1213:"Polychromatic colorings of rectangular partitions" 683:, a strong polychromatic 4-coloring always exists. 628: 543: 421: 316: 269: 210: 174: 137: 660:is a coloring of its vertices such that, in each 104:minimum edge-length rectangular-partition problem 795:Gonzalez, Teofilo; Zheng, Si-Qing (1989-06-01). 771:Design and Analysis of Approximation Algorithms 768:Du, Ding-Zhu; Ko, Ker-I.; Hu, Xiaodong (2012). 344:infinitely many values. However, the number of 352:In two dimensions, there is an upper bound in 335:for various geometric optimization problems. 16:Process of partitioning a rectilinear polygon 8: 31:A non-guillotine cutting: these rectangles 153:. Therefore, in each iteration, there are 1230: 1182:. Berlin, Heidelberg: Springer: 110–118. 1068: 855: 812: 610: 606: 595: 584: 569: 560: 525: 521: 510: 484: 460: 451: 403: 399: 379: 366: 357: 306: 286: 249: 234: 199: 187: 158: 126: 114: 715: 1178:. Lecture Notes in Computer Science. 924:Mitchell, Joseph S. B. (1999-01-01). 333:polynomial-time approximation schemes 7: 763: 761: 149:based on the following observation: 1261:Optimization algorithms and methods 225:These results can be extended to a 109:This problem can be solved in time 88:A related but different problem is 562: 453: 348:guillotine partitions is bounded. 14: 1094:"Guarding rectangular partitions" 42:is the process of partitioning a 686:Keszegh extended this result to 801:Journal of Symbolic Computation 339:Number of guillotine partitions 1137:Information Processing Letters 1016:Information Processing Letters 648:Coloring guillotine partitions 592: 572: 507: 501: 489: 463: 264: 239: 205: 192: 169: 163: 132: 119: 63:floorplans in microelectronics 1: 814:10.1016/S0747-7171(89)80042-2 1188:10.1007/978-3-540-69733-6_12 857:10.1016/0925-7721(94)90013-2 270:{\displaystyle O(dn^{2d+1})} 1176:Computing and Combinatorics 737:10.1007/978-3-322-92106-2_6 1287: 1232:10.1016/j.disc.2008.07.035 1070:10.1016/j.disc.2014.05.014 879:Arora, S. (October 1996). 668:such that a polychromatic 433:. the exact number is the 1149:10.1016/j.ipl.2009.03.006 1110:10.1142/S0218195909003131 1028:10.1016/j.ipl.2006.01.011 942:10.1137/S0097539796309764 930:SIAM Journal on Computing 723:Lengauer, Thomas (1990), 704:Binary space partitioning 643:of guillotine partitions. 324:times that of an optimal 1271:Rectangular subdivisions 893:10.1109/SFCS.1996.548458 317:{\displaystyle 2d-4+4/d} 211:{\displaystyle O(n^{4})} 138:{\displaystyle O(n^{5})} 641:cut-equivalence classes 75:binary space partitions 843:Computational Geometry 725:"Circuit Partitioning" 654:polychromatic coloring 630: 555:=2 this bound becomes 545: 423: 346:structurally-different 318: 271: 212: 176: 139: 36: 24: 981:10.1145/606603.606607 631: 546: 424: 319: 272: 213: 177: 140: 79:optimization problems 30: 22: 1218:Discrete Mathematics 1056:Discrete Mathematics 681:guillotine partition 559: 450: 356: 285: 233: 186: 175:{\displaystyle O(n)} 157: 113: 83:polygon partitioning 77:. There are various 40:Guillotine partition 147:dynamic programming 44:rectilinear polygon 626: 541: 419: 314: 267: 208: 172: 135: 91:guillotine cutting 37: 25: 1266:Discrete geometry 1197:978-3-540-69733-6 887:. pp. 2–11. 781:978-1-4614-1700-2 746:978-3-322-92108-6 620: 589: 535: 504: 413: 277:, and the total ( 71:slicing floorplan 67:slicing partition 1278: 1245: 1244: 1234: 1225:(9): 2957–2960. 1208: 1202: 1201: 1167: 1161: 1160: 1128: 1122: 1121: 1089: 1083: 1082: 1072: 1046: 1040: 1039: 1007: 1001: 1000: 960: 954: 953: 936:(4): 1298–1309. 921: 915: 914: 876: 870: 869: 859: 833: 827: 826: 816: 792: 786: 785: 765: 756: 755: 754: 753: 720: 635: 633: 632: 627: 625: 621: 619: 618: 614: 601: 600: 599: 590: 585: 570: 550: 548: 547: 542: 540: 536: 534: 533: 529: 516: 515: 514: 505: 485: 461: 428: 426: 425: 420: 418: 414: 412: 411: 407: 394: 393: 392: 367: 328:-box partition. 323: 321: 320: 315: 310: 276: 274: 273: 268: 263: 262: 217: 215: 214: 209: 204: 203: 181: 179: 178: 173: 144: 142: 141: 136: 131: 130: 56:paper guillotine 52:edge-to-edge cut 50:(also called an 1286: 1285: 1281: 1280: 1279: 1277: 1276: 1275: 1251: 1250: 1249: 1248: 1210: 1209: 1205: 1198: 1169: 1168: 1164: 1143:(13): 690–694. 1130: 1129: 1125: 1091: 1090: 1086: 1048: 1047: 1043: 1009: 1008: 1004: 962: 961: 957: 923: 922: 918: 903: 878: 877: 873: 835: 834: 830: 794: 793: 789: 782: 767: 766: 759: 751: 749: 747: 722: 721: 717: 712: 700: 650: 602: 591: 571: 565: 557: 556: 517: 506: 462: 456: 448: 447: 435:Schröder number 395: 375: 368: 362: 354: 353: 341: 283: 282: 245: 231: 230: 195: 184: 183: 155: 154: 122: 111: 110: 100: 17: 12: 11: 5: 1284: 1282: 1274: 1273: 1268: 1263: 1253: 1252: 1247: 1246: 1203: 1196: 1162: 1123: 1104:(6): 579–594. 1084: 1041: 1022:(4): 162–167. 1002: 955: 916: 901: 871: 828: 807:(6): 591–610. 787: 780: 757: 745: 714: 713: 711: 708: 707: 706: 699: 696: 695: 694: 691: 684: 677: 649: 646: 645: 644: 637: 624: 617: 613: 609: 605: 598: 594: 588: 583: 580: 577: 574: 568: 564: 539: 532: 528: 524: 520: 513: 509: 503: 500: 497: 494: 491: 488: 483: 480: 477: 474: 471: 468: 465: 459: 455: 440: 438: 429:attributed to 417: 410: 406: 402: 398: 391: 388: 385: 382: 378: 374: 371: 365: 361: 340: 337: 313: 309: 305: 302: 299: 296: 293: 290: 266: 261: 258: 255: 252: 248: 244: 241: 238: 207: 202: 198: 194: 191: 171: 168: 165: 162: 134: 129: 125: 121: 118: 99: 96: 48:guillotine-cut 15: 13: 10: 9: 6: 4: 3: 2: 1283: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1242: 1238: 1233: 1228: 1224: 1220: 1219: 1214: 1207: 1204: 1199: 1193: 1189: 1185: 1181: 1177: 1173: 1166: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1124: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1085: 1080: 1076: 1071: 1066: 1062: 1058: 1057: 1052: 1045: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1006: 1003: 998: 994: 990: 986: 982: 978: 974: 970: 966: 959: 956: 951: 947: 943: 939: 935: 931: 927: 920: 917: 912: 908: 904: 902:0-8186-7594-2 898: 894: 890: 886: 882: 875: 872: 867: 863: 858: 853: 849: 845: 844: 839: 832: 829: 824: 820: 815: 810: 806: 802: 798: 791: 788: 783: 777: 773: 772: 764: 762: 758: 748: 742: 738: 734: 730: 726: 719: 716: 709: 705: 702: 701: 697: 692: 689: 685: 682: 678: 675: 674: 673: 671: 667: 663: 659: 655: 647: 642: 638: 622: 615: 611: 607: 603: 596: 586: 581: 578: 575: 566: 554: 537: 530: 526: 522: 518: 511: 498: 495: 492: 486: 481: 478: 475: 472: 469: 466: 457: 445: 441: 439: 436: 432: 415: 408: 404: 400: 396: 389: 386: 383: 380: 376: 372: 369: 363: 359: 351: 350: 349: 347: 338: 336: 334: 329: 327: 311: 307: 303: 300: 297: 294: 291: 288: 280: 259: 256: 253: 250: 246: 242: 236: 228: 223: 219: 218:subproblems. 200: 196: 189: 166: 160: 152: 148: 127: 123: 116: 107: 105: 97: 95: 93: 92: 86: 84: 80: 76: 72: 68: 64: 59: 57: 53: 49: 45: 41: 34: 29: 21: 1222: 1216: 1206: 1179: 1175: 1165: 1140: 1136: 1126: 1101: 1097: 1087: 1060: 1054: 1044: 1019: 1015: 1005: 975:(1): 55–80. 972: 968: 958: 933: 929: 919: 884: 874: 847: 841: 831: 804: 800: 790: 770: 750:, retrieved 728: 718: 687: 680: 669: 665: 658:planar graph 651: 640: 552: 443: 345: 342: 330: 325: 278: 226: 224: 220: 150: 108: 103: 101: 89: 87: 70: 66: 60: 51: 47: 39: 38: 32: 1063:: 165–174. 850:(1): 1–11. 1255:Categories 752:2021-01-16 710:References 1241:0012-365X 1157:0020-0190 1118:0218-1959 1079:0012-365X 1036:0020-0190 989:1084-4309 950:0097-5397 866:0925-7721 823:0747-7171 563:Θ 496:− 473:− 454:Θ 387:− 295:− 698:See also 997:1645358 911:1499391 551:. When 102:In the 1239:  1194:  1155:  1116:  1077:  1034:  995:  987:  948:  909:  899:  864:  821:  778:  743:  33:cannot 993:S2CID 907:S2CID 656:of a 431:Knuth 69:or a 1237:ISSN 1192:ISBN 1180:5092 1153:ISSN 1114:ISSN 1075:ISSN 1032:ISSN 985:ISSN 946:ISSN 897:ISBN 862:ISSN 819:ISSN 776:ISBN 741:ISBN 662:face 1227:doi 1223:309 1184:doi 1145:doi 1141:109 1106:doi 1065:doi 1061:331 1024:doi 977:doi 938:doi 889:doi 852:doi 809:doi 733:doi 442:In 1257:: 1235:. 1221:. 1215:. 1190:. 1174:. 1151:. 1139:. 1135:. 1112:. 1102:19 1100:. 1096:. 1073:. 1059:. 1053:. 1030:. 1020:98 1018:. 1014:. 991:. 983:. 971:. 967:. 944:. 934:28 932:. 928:. 905:. 895:. 883:. 860:. 846:. 840:. 817:. 803:. 799:. 760:^ 739:, 727:, 652:A 58:. 1243:. 1229:: 1200:. 1186:: 1159:. 1147:: 1120:. 1108:: 1081:. 1067:: 1038:. 1026:: 999:. 979:: 973:8 952:. 940:: 913:. 891:: 868:. 854:: 848:4 825:. 811:: 805:7 784:. 735:: 688:d 670:k 666:k 636:. 623:) 616:2 612:/ 608:3 604:n 597:n 593:) 587:2 582:2 579:+ 576:3 573:( 567:( 553:d 538:) 531:2 527:/ 523:3 519:n 512:n 508:) 502:) 499:1 493:d 490:( 487:d 482:2 479:+ 476:1 470:d 467:2 464:( 458:( 444:d 437:. 416:) 409:2 405:/ 401:3 397:n 390:3 384:n 381:5 377:2 373:! 370:n 364:( 360:O 326:d 312:d 308:/ 304:4 301:+ 298:4 292:d 289:2 279:d 265:) 260:1 257:+ 254:d 251:2 247:n 243:d 240:( 237:O 227:d 206:) 201:4 197:n 193:( 190:O 170:) 167:n 164:( 161:O 133:) 128:5 124:n 120:( 117:O

Index



rectilinear polygon
paper guillotine
floorplans in microelectronics
binary space partitions
optimization problems
polygon partitioning
guillotine cutting
dynamic programming
polynomial-time approximation schemes
Knuth
Schröder number
polychromatic coloring
planar graph
face
Binary space partitioning
"Circuit Partitioning"
doi
10.1007/978-3-322-92106-2_6
ISBN
978-3-322-92108-6


Design and Analysis of Approximation Algorithms
ISBN
978-1-4614-1700-2
"Improved bounds for rectangular and guillotine partitions"
doi
10.1016/S0747-7171(89)80042-2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.