Knowledge (XXG)

Gene knockdown

Source 📝

279:) to target specific genes. TALENs are nucleases that have two important functional components: a DNA binding domain and a DNA cleaving domain. The DNA binding domain is a sequence-specific transcription activator-like effector sequence while the DNA cleaving domain originates from a bacterial endonuclease and is non-specific. TALENs can be designed to cleave a sequence specified by the sequence of the transcription activator-like effector portion of the construct. Once designed, a TALEN is introduced into a cell as a plasmid or mRNA. The TALEN is expressed, localizes to its target sequence, and cleaves a specific site. After cleavage of the target DNA sequence by the TALEN, the cell uses non-homologous end joining as a DNA repair mechanism to correct the cleavage. The cell's attempt at repairing the cleaved sequence can render the encoded protein non-functional, as this repair mechanism introduces insertion or deletion errors at the repaired site. 257:. CRISPR-associated (cas) genes encode cellular machinery that cuts exogenous DNA into small fragments and inserts them into a CRISPR repeat locus. When this CRISPR region of DNA is expressed by the cell, the small RNAs produced from the exogenous DNA inserts serve as a template sequence that other Cas proteins use to silence this same exogenous sequence. The transcripts of the short exogenous sequences are used as a guide to silence these foreign DNA when they are present in the cell. This serves as a kind of acquired immunity, and this process is like a prokaryotic RNA interference mechanism. The CRISPR repeats are conserved amongst many species and have been demonstrated to be usable in human cells, bacteria, 152:(RNAi) is a means of silencing genes by way of mRNA degradation. Gene knockdown by this method is achieved by introducing small double-stranded interfering RNAs (siRNA) into the cytoplasm. Small interfering RNAs can originate from inside the cell or can be exogenously introduced into the cell. Once introduced into the cell, exogenous siRNAs are processed by the RNA-induced silencing complex ( 197: 183:, or other applications. RNA interference is a very useful research tool, allowing investigators to carry out large genetic screens in an effort to identify targets for further research related to a particular pathway, drug, or phenotype. 156:). The siRNA is complementary to the target mRNA to be silenced, and the RISC uses the siRNA as a template for locating the target mRNA. After the RISC localizes to the target mRNA, the RNA is cleaved by a ribonuclease. 74:
In a transient knockdown, the binding of this oligonucleotide to the active gene or its transcripts causes decreased expression through a variety of processes. Binding can occur either through the blocking of
267:, and other organisms for effective genome manipulation. The use of CRISPRs as a versatile research tool can be illustrated by many studies making use of it to generate organisms with genome alterations. 179:
give laboratories a way of testing many genes in a variety of experimental backgrounds. Insights gained from experimental RNAi use may be useful in identifying potential therapeutic targets,
599:
Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (November 2000). "Functional genomic analysis of C. elegans chromosome I by systematic RNA interference".
497:
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (February 1998). "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans".
1015:
Gennequin B, Otte DM, Zimmer A (November 2013). "CRISPR/Cas-induced double-strand breaks boost the frequency of gene replacements for humanizing the mouse Cnr2 gene".
129:. Researchers draw inferences from how the knockdown differs from individuals in which the gene of interest is operational. Transient knockdowns are often used in 276: 207: 775:
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (July 2013).
336:
Summerton JE (2007). "Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity".
71:, this leads to a temporary change in gene expression that does not modify the chromosomal DNA, and the result is referred to as a "transient knockdown". 1156: 1050:
Sun N, Zhao H (July 2013). "Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing".
287:
So far, knockdown organisms with permanent alterations in their DNA have been engineered chiefly for research purposes. Also known simply as
1093: 176: 236: 275:
Another technology made possible by prokaryotic genome manipulation is the use of transcription activator-like effector nucleases (
153: 1161: 379:
Summerton J (December 1999). "Morpholino antisense oligomers: the case for an RNase H-independent structural type".
55:
of an organism is genetically modified, the resulting organism is called a "knockdown organism." If the change in
76: 825: 259: 161: 159:
RNAi is widely used as a laboratory technique for genetic functional analysis. RNAi in organisms such as
130: 95: 608: 506: 253:
is a mechanism involving loci called 'Clustered Regularly Interspaced Short Palindromic Repeats', or
32: 218: 1075: 632: 530: 444: 361: 302:
There are several companies that offer commercial services related to gene knockdown treatments.
927:"Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination" 462:
Wahlestedt, Claes (February 1994). "Antisense oligonucleotide strategies in neuropharmacology".
1097: 1067: 1032: 997: 956: 907: 858: 806: 757: 716: 681: 624: 581: 522: 479: 436: 396: 353: 699:
Kamath RS, Ahringer J (August 2003). "Genome-wide RNAi screening in Caenorhabditis elegans".
291:, these organisms are most commonly used for reverse genetics, especially in species such as 1059: 1024: 987: 946: 938: 897: 889: 848: 840: 796: 788: 747: 708: 671: 663: 616: 571: 561: 514: 471: 428: 388: 345: 180: 149: 126: 125:, but has an unknown or incompletely known function. This experimental approach is known as 417:
Nasevicius A, Ekker SC (October 2000). "Effective targeted gene 'knockdown' in zebrafish".
419: 60: 56: 40: 20: 612: 510: 951: 926: 902: 877: 853: 801: 776: 676: 651: 576: 549: 712: 392: 1150: 475: 311: 448: 365: 1079: 636: 534: 99: 824:
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (November 2013).
250: 1028: 792: 667: 349: 777:"CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes" 167: 141:
development. The term gene knockdown first appeared in the literature in 1994
111: 1123: 264: 122: 1071: 1036: 1001: 960: 911: 862: 810: 761: 720: 685: 628: 585: 566: 440: 400: 357: 526: 483: 171:
provides a quick and inexpensive means of investigating gene function. In
942: 249:
A different means of silencing exogenous DNA that has been discovered in
103: 24: 43:
that has a sequence complementary to either gene or an mRNA transcript.
844: 550:"The RNA-induced silencing complex: a versatile gene-silencing machine" 137:
and will be present in the daughter cells of the injected cell through
106:
cleavage sites used for maturation of other functional RNAs, including
36: 1063: 992: 976:"Genome editing using artificial site-specific nucleases in zebrafish" 975: 752: 735: 734:
Ghadakzadeh S, Mekhail M, Aoude A, Hamdy R, Tabrizian M (March 2016).
893: 826:"Orthogonal Cas9 proteins for RNA-guided gene regulation and editing" 620: 299:
for which transient knockdown technologies cannot easily be applied.
254: 138: 134: 117:
The most direct use of transient knockdowns is for learning about a
1139: 381:
Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
878:"RNA-guided editing of bacterial genomes using CRISPR-Cas systems" 518: 432: 107: 88: 84: 736:"Small Players Ruling the Hard Game: siRNA in Bone Regeneration" 292: 118: 92: 80: 68: 64: 28: 876:
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (March 2013).
1131: 296: 190: 52: 91:-H dependent antisense, or through the blocking of either 652:"RNAi therapeutics: principles, prospects and challenges" 214: 79:(in the case of gene-binding), the degradation of the 1017:
Biochemical and Biophysical Research Communications
31:is reduced. The reduction can occur either through 133:because oligos can be injected into single-celled 175:research, the availability of tools such as the 114:oligos or other RNase-H independent antisense). 412: 410: 8: 974:Hisano Y, Ota S, Kawahara A (January 2014). 925:Chen C, Fenk LA, de Bono M (November 2013). 331: 329: 327: 83:transcript (e.g. by small interfering RNA ( 19:is an experimental technique by which the 991: 980:Development, Growth & Differentiation 950: 901: 852: 800: 751: 675: 575: 565: 237:Learn how and when to remove this message 1140:"TALEN Effector Nucleotide Targeter 2.0" 323: 208:not related to the topic of the article 1124:"CRISPR Genome Engineering Resources" 338:Current Topics in Medicinal Chemistry 7: 740:Journal of Bone and Mineral Research 1132:"Mojo Hand: Design Your Own TALENs" 554:The Journal of Biological Chemistry 650:Aagaard L, Rossi JJ (March 2007). 14: 1094:"Adenoviral Gene Knockdown Cells" 548:Pratt AJ, MacRae IJ (July 2009). 1096:. Sirion Biotech. Archived from 1052:Biotechnology and Bioengineering 195: 1157:Genetically modified organisms 656:Advanced Drug Delivery Reviews 1: 713:10.1016/S1046-2023(03)00050-1 393:10.1016/S0167-4781(99)00150-5 217:or discuss this issue on the 476:10.1016/0165-6147(94)90107-4 67:or temporarily binding to a 39:such as a short DNA or RNA 1178: 1029:10.1016/j.bbrc.2013.10.138 793:10.1016/j.cell.2013.06.044 668:10.1016/j.addr.2007.03.005 350:10.2174/156802607780487740 47:Versus transient knockdown 168:Drosophila melanogaster 35:or by treatment with a 931:Nucleic Acids Research 567:10.1074/jbc.R900012200 1142:. Cornell University. 206:may contain material 177:Ahringer RNAi Library 131:developmental biology 23:of one or more of an 882:Nature Biotechnology 464:Trends Pharmacol Sci 215:improve this section 33:genetic modification 1162:Genetics techniques 613:2000Natur.408..325F 511:1998Natur.391..806F 1134:. The Mayo Clinic. 1126:. Broad Institute. 943:10.1093/nar/gkt805 845:10.1038/nmeth.2681 1064:10.1002/bit.24890 993:10.1111/dgd.12094 753:10.1002/jbmr.2816 560:(27): 17897–901. 283:Commercialization 247: 246: 239: 1169: 1143: 1135: 1127: 1110: 1109: 1107: 1105: 1090: 1084: 1083: 1047: 1041: 1040: 1012: 1006: 1005: 995: 971: 965: 964: 954: 922: 916: 915: 905: 894:10.1038/nbt.2508 873: 867: 866: 856: 830: 821: 815: 814: 804: 772: 766: 765: 755: 731: 725: 724: 696: 690: 689: 679: 647: 641: 640: 621:10.1038/35042517 607:(6810): 325–30. 596: 590: 589: 579: 569: 545: 539: 538: 505:(6669): 806–11. 494: 488: 487: 459: 453: 452: 414: 405: 404: 376: 370: 369: 333: 242: 235: 231: 228: 222: 199: 198: 191: 181:drug development 150:RNA interference 145:RNA interference 127:reverse genetics 59:is caused by an 1177: 1176: 1172: 1171: 1170: 1168: 1167: 1166: 1147: 1146: 1138: 1130: 1122: 1119: 1114: 1113: 1103: 1101: 1092: 1091: 1087: 1049: 1048: 1044: 1014: 1013: 1009: 973: 972: 968: 924: 923: 919: 875: 874: 870: 839:(11): 1116–21. 828: 823: 822: 818: 774: 773: 769: 733: 732: 728: 698: 697: 693: 649: 648: 644: 598: 597: 593: 547: 546: 542: 496: 495: 491: 461: 460: 456: 420:Nature Genetics 416: 415: 408: 378: 377: 373: 335: 334: 325: 320: 308: 285: 273: 243: 232: 226: 223: 212: 200: 196: 189: 147: 61:oligonucleotide 57:gene expression 49: 41:oligonucleotide 12: 11: 5: 1175: 1173: 1165: 1164: 1159: 1149: 1148: 1145: 1144: 1136: 1128: 1118: 1117:External links 1115: 1112: 1111: 1100:on 9 July 2013 1085: 1058:(7): 1811–21. 1042: 1007: 966: 917: 868: 833:Nature Methods 816: 767: 726: 691: 662:(2–3): 75–86. 642: 591: 540: 489: 454: 406: 371: 322: 321: 319: 316: 315: 314: 307: 304: 284: 281: 272: 269: 245: 244: 203: 201: 194: 188: 185: 146: 143: 121:that has been 63:binding to an 48: 45: 17:Gene knockdown 13: 10: 9: 6: 4: 3: 2: 1174: 1163: 1160: 1158: 1155: 1154: 1152: 1141: 1137: 1133: 1129: 1125: 1121: 1120: 1116: 1099: 1095: 1089: 1086: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1046: 1043: 1038: 1034: 1030: 1026: 1022: 1018: 1011: 1008: 1003: 999: 994: 989: 985: 981: 977: 970: 967: 962: 958: 953: 948: 944: 940: 936: 932: 928: 921: 918: 913: 909: 904: 899: 895: 891: 887: 883: 879: 872: 869: 864: 860: 855: 850: 846: 842: 838: 834: 827: 820: 817: 812: 808: 803: 798: 794: 790: 787:(2): 442–51. 786: 782: 778: 771: 768: 763: 759: 754: 749: 746:(3): 475–87. 745: 741: 737: 730: 727: 722: 718: 714: 710: 707:(4): 313–21. 706: 702: 695: 692: 687: 683: 678: 673: 669: 665: 661: 657: 653: 646: 643: 638: 634: 630: 626: 622: 618: 614: 610: 606: 602: 595: 592: 587: 583: 578: 573: 568: 563: 559: 555: 551: 544: 541: 536: 532: 528: 524: 520: 519:10.1038/35888 516: 512: 508: 504: 500: 493: 490: 485: 481: 477: 473: 469: 465: 458: 455: 450: 446: 442: 438: 434: 433:10.1038/79951 430: 427:(2): 216–20. 426: 422: 421: 413: 411: 407: 402: 398: 394: 390: 387:(1): 141–58. 386: 382: 375: 372: 367: 363: 359: 355: 351: 347: 344:(7): 651–60. 343: 339: 332: 330: 328: 324: 317: 313: 312:Gene knockout 310: 309: 305: 303: 300: 298: 294: 290: 282: 280: 278: 270: 268: 266: 262: 261: 256: 252: 241: 238: 230: 220: 216: 210: 209: 204:This section 202: 193: 192: 186: 184: 182: 178: 174: 170: 169: 164: 163: 157: 155: 151: 144: 142: 140: 136: 132: 128: 124: 120: 115: 113: 109: 105: 101: 97: 94: 90: 86: 82: 78: 77:transcription 72: 70: 66: 62: 58: 54: 46: 44: 42: 38: 34: 30: 26: 22: 18: 1102:. Retrieved 1098:the original 1088: 1055: 1051: 1045: 1023:(4): 815–9. 1020: 1016: 1010: 986:(1): 26–33. 983: 979: 969: 937:(20): e193. 934: 930: 920: 888:(3): 233–9. 885: 881: 871: 836: 832: 819: 784: 780: 770: 743: 739: 729: 704: 700: 694: 659: 655: 645: 604: 600: 594: 557: 553: 543: 502: 498: 492: 467: 463: 457: 424: 418: 384: 380: 374: 341: 337: 301: 288: 286: 274: 258: 248: 233: 224: 213:Please help 205: 172: 166: 160: 158: 148: 116: 100:RNA splicing 73: 50: 16: 15: 470:(2): 42–6. 251:prokaryotes 96:translation 1151:Categories 318:References 289:knockdowns 260:C. elegans 227:April 2020 173:C. elegans 162:C. elegans 112:morpholino 102:sites, or 21:expression 265:zebrafish 219:talk page 139:embryonic 123:sequenced 110:(e.g. by 1104:17 April 1072:23508559 1037:24211574 1002:24117409 961:24013562 912:23360965 863:24076762 811:23849981 762:26890411 721:12828945 686:17449137 629:11099033 586:19342379 449:21451111 441:11017081 401:10807004 366:12241724 358:17430206 306:See also 104:nuclease 25:organism 1080:6214542 952:3814388 903:3748948 854:3844869 802:3770145 701:Methods 677:1978219 637:4373444 609:Bibcode 577:2709356 535:4355692 527:9486653 507:Bibcode 484:8165722 255:CRISPRs 187:CRISPRs 135:zygotes 98:, pre-m 37:reagent 1078:  1070:  1035:  1000:  959:  949:  910:  900:  861:  851:  809:  799:  760:  719:  684:  674:  635:  627:  601:Nature 584:  574:  533:  525:  499:Nature 482:  447:  439:  399:  364:  356:  277:TALENs 271:TALENs 87:)) or 1076:S2CID 829:(PDF) 633:S2CID 531:S2CID 445:S2CID 362:S2CID 108:miRNA 89:RNase 85:siRNA 51:If a 29:genes 1106:2013 1068:PMID 1033:PMID 998:PMID 957:PMID 908:PMID 859:PMID 807:PMID 781:Cell 758:PMID 717:PMID 682:PMID 625:PMID 582:PMID 523:PMID 480:PMID 437:PMID 397:PMID 385:1489 354:PMID 297:rats 293:mice 165:and 154:RISC 119:gene 93:mRNA 81:mRNA 69:gene 65:mRNA 1060:doi 1056:110 1025:doi 1021:441 988:doi 947:PMC 939:doi 898:PMC 890:doi 849:PMC 841:doi 797:PMC 789:doi 785:154 748:doi 709:doi 672:PMC 664:doi 617:doi 605:408 572:PMC 562:doi 558:284 515:doi 503:391 472:doi 429:doi 389:doi 346:doi 295:or 53:DNA 27:'s 1153:: 1074:. 1066:. 1054:. 1031:. 1019:. 996:. 984:56 982:. 978:. 955:. 945:. 935:41 933:. 929:. 906:. 896:. 886:31 884:. 880:. 857:. 847:. 837:10 835:. 831:. 805:. 795:. 783:. 779:. 756:. 744:31 742:. 738:. 715:. 705:30 703:. 680:. 670:. 660:59 658:. 654:. 631:. 623:. 615:. 603:. 580:. 570:. 556:. 552:. 529:. 521:. 513:. 501:. 478:. 468:15 466:. 443:. 435:. 425:26 423:. 409:^ 395:. 383:. 360:. 352:. 340:. 326:^ 263:, 1108:. 1082:. 1062:: 1039:. 1027:: 1004:. 990:: 963:. 941:: 914:. 892:: 865:. 843:: 813:. 791:: 764:. 750:: 723:. 711:: 688:. 666:: 639:. 619:: 611:: 588:. 564:: 537:. 517:: 509:: 486:. 474:: 451:. 431:: 403:. 391:: 368:. 348:: 342:7 240:) 234:( 229:) 225:( 221:. 211:.

Index

expression
organism
genes
genetic modification
reagent
oligonucleotide
DNA
gene expression
oligonucleotide
mRNA
gene
transcription
mRNA
siRNA
RNase
mRNA
translation
RNA splicing
nuclease
miRNA
morpholino
gene
sequenced
reverse genetics
developmental biology
zygotes
embryonic
RNA interference
RISC
C. elegans

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.