Knowledge (XXG)

Solvent effects

Source 📝

544:. In essence, the reaction rates are influenced by differential solvation of the starting material and transition state by the solvent. When the reactant molecules proceed to the transition state, the solvent molecules orient themselves to stabilize the transition state. If the transition state is stabilized to a greater extent than the starting material then the reaction proceeds faster. If the starting material is stabilized to a greater extent than the transition state then the reaction proceeds slower. However, such differential solvation requires rapid reorientational relaxation of the solvent (from the transition state orientation back to the ground-state orientation). Thus, equilibrium-solvent effects are observed in reactions that tend to have sharp barriers and weakly dipolar, rapidly relaxing solvents. 289: 588:. Using a simple solvation model that considered only pure electrostatic interactions between ions or dipolar molecules and solvents in initial and transition states, all nucleophilic and elimination reactions were organized into different charge types (neutral, positively charged, or negatively charged). Hughes and Ingold then made certain assumptions about the extent of solvation to be expected in these situations: 994: 1006:
The reactions involving charged transition metal complexes (cationic or anionic) are dramatically influenced by solvation, especially in the polar media. As high as 30-50 kcal/mol changes in the potential energy surface (activation energies and relative stability) were calculated if the charge of the
552:
The equilibrium hypothesis does not stand for very rapid chemical reactions in which the transition state theory breaks down. In such cases involving strongly dipolar, slowly relaxing solvents, solvation of the transition state does not play a very large role in affecting the reaction rate. Instead,
1068:
KĂŒtt A, Movchun V, Rodima T, Dansauer T, Rusanov EB, Leito I, Kaljurand I, Koppel J, Pihl V, Koppel I, Ovsjannikov G, Toom L, Mishima M, Medebielle M, Lork E, Röschenthaler GV, Koppel IA, Kolomeitsev AA (2008). "Pentakis(trifluoromethyl)phenyl, a Sterically Crowded and Electron-withdrawing Group:
161:
Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile. Ionization - and, thus, acidity - would be greatest in water and lesser in DMSO and Acetonitrile, as seen in the table below, which shows
634:; this fact has become increasingly more apparent as more reactions are performed in the gas phase. As such, solvent conditions significantly affect the performance of a reaction with certain solvent conditions favoring one reaction mechanism over another. For 989:
for the non-polar-solvent reaction conditions. Polar solvents stabilize the reactants to a greater extent than the non-polar-solvent conditions by solvating the negative charge on the nucleophile, making it less available to react with the electrophile.
837:). There is a noticeable increase in reaction rate when changing from a protic solvent to an aprotic solvent. This difference arises from acid/base reactions between protic solvents (not aprotic solvents) and strong nucleophiles. While it is true that 512:
Often, reactivity and reaction mechanisms are pictured as the behavior of isolated molecules in which the solvent is treated as a passive support. However, the nature of the solvent can actually influence reaction rates and order of a chemical reaction.
650:
1 reactions is a result of the polar solvent's solvating the reactant intermediate species, i.e., the carbocation, thereby decreasing the intermediate energy relative to the starting material. The following table shows the relative solvolysis rates of
820:
react with strong nucleophiles with good basic character in an acid/base fashion, thus decreasing or removing the nucleophilic nature of the nucleophile. The following table shows the effect of solvent polarity on the relative reaction rates of the
81:
of a reaction by differential stabilization of the reactant or product. The equilibrium is shifted in the direction of the substance that is preferentially stabilized. Stabilization of the reactant or product can occur through any of the different
811:
1 reaction mechanisms are viable is the strength of the Nucleophile. Nuclephilicity and basicity are linked and the more nucleophilic a molecule becomes the greater said nucleophile's basicity. This increase in basicity causes problems for
1140:
Kaljurand I, KĂŒtt A, SoovĂ€li L, Rodima T, MĂ€emets V, Leito I, Koppel IA (2005). "Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units: Unification of Different Basicity Scales".
1340:
Hughes, Edward D.; Ingold, Christopher K. (1935). "Mechanism of substitution at a saturated carbon atom. Part IV. A discussion of constitutional and solvent effects on the mechanism, kinetics, velocity, and orientation of substitution".
972:
for the polar-solvent reaction conditions. This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the
1104:
KĂŒtt, A.; Leito, I.; Kaljurand, I.; SoovĂ€li, L.; Vlasov, V.M.; Yagupolskii, L.M.; Koppel, I.A. (2006). "A Comprehensive Self-Consistent Spectrophotometric Acidity Scale of Neutral BrĂžnsted Acids in Acetonitrile".
106:
and its ability to preferentially solvate and thus stabilize certain species in acid-base equilibria. A change in the solvating ability or dielectric constant can thus influence the acidity or basicity.
444: 612:
A change in solvent polarity will have little or no effect on the rates of reaction when there is little or no difference in charge between the reactants and the activated complex.
102:
The ionization equilibrium of an acid or a base is affected by a solvent change. The effect of the solvent is not only because of its acidity or basicity but also because of its
1440:
V. P. Ananikov; D. G. Musaev; K. Morokuma (2001). "Catalytic Triple Bond Activation and Vinyl−Vinyl Reductive Coupling by Pt(IV) Complexes. A Density Functional Study".
1015:
Many free radical-based syntheses show large kinetic solvent effects that can reduce the rate of reaction and cause a planned reaction to follow an unwanted pathway.
606:
An increase in solvent polarity accelerates the rates of reactions where a charge is developed in the activated complex from neutral or slightly charged reactant
1524: 532:
techniques where physical methods are used to control reactions rather than solvents are methods are methods for affecting reactions in the absence of solvent.
59: 609:
An increase in solvent polarity decreases the rates of reactions where there is less charge in the activated complex in comparison to the starting materials
1377: 1324: 1736: 1613: 1570: 1877: 1517: 1249: 1220: 1053: 993: 1312: 1468: 351: 1785: 1780: 1590: 1945: 1950: 580:
The effect of solvent on elimination and nucleophillic substitution reactions was originally studied by British chemists
1976: 1510: 646:
is of direct importance to its viability as a suitable solvent. The ability of polar solvents to increase the rate of S
1971: 336:
H-bonding with the solvent. As a result, solvents of low polarity that do not readily participate in H-bonding allow
1915: 1605: 1241: 305: 1642: 1542: 1369: 574: 1872: 791:
and thereby increase the rate of the reaction. This relationship is according to the equation ΔG = –RT ln K (
1920: 1721: 585: 541: 69:
dissolves in a solvent when solvent-solute interactions are more favorable than solute-solute interaction.
1675: 841:
also affect the relative reaction rates, however, for demonstration of principle for solvent polarity on S
627: 199: 1393:
Yongho, Kim.; Cramer, Christopher J.; Truhlar, Donald G. (2009). "Steric Effects and Solvent Effects on S
1905: 1837: 1695: 1685: 540:
Solvents can affect rates through equilibrium-solvent effects that can be explained on the basis of the
1900: 1628: 1406: 1274: 325: 317: 83: 78: 309: 149:
In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then
1910: 1842: 1827: 1770: 1316: 652: 103: 91: 43: 1935: 1705: 1534: 324:-enol form predominating at low polarity and the diketo form predominating at high polarity. The 51: 803:
being first order in Nucleophile and first order in Reagent. The determining factor when both S
1930: 1925: 1887: 1832: 1751: 1731: 1667: 1488: 1422: 1373: 1320: 1245: 1216: 1158: 1122: 1086: 1049: 792: 218: 1069:
Synthesis and Acidity of Pentakis(trifluoromethyl)benzene, -toluene, -phenol, and -aniline".
1862: 1811: 1765: 1480: 1449: 1414: 1346: 1304: 1282: 1150: 1114: 1078: 581: 313: 1940: 1852: 817: 767:
is quite different, as the lack of solvation on the nucleophile increases the rate of an S
529: 1305: 1410: 1286: 1278: 602:
The applicable effect of these general assumptions are shown in the following examples:
288: 1647: 1636: 838: 333: 1965: 1895: 1867: 1775: 1726: 1700: 826: 521: 169:
values at 25 Â°C for acetonitrile (ACN) and dimethyl sulfoxide (DMSO) and water.
87: 55: 1847: 1653: 1560: 1550: 760: 635: 525: 234: 150: 17: 516:
Performing a reaction without solvent can affect reaction-rate for reactions with
1176: 1806: 1741: 1024: 800: 659: 643: 631: 517: 250: 47: 1857: 1502: 1212: 562: 31: 1492: 1469:"The frequently overlooked importance of solvent in free radical syntheses" 1426: 1162: 1126: 1090: 1350: 671: 598:
loss of charge will decrease solvation more than the dispersal of charge
554: 301: 1484: 558: 39: 1453: 1418: 1154: 1118: 1082: 1048:(4th ed.), New York: Oxford University Press, pp. 317–318, 266: 66: 1760: 830: 679: 287: 1265:
James T. Hynes (1985). "Chemical Reaction Dynamics in Solution".
1506: 332:-enol form is more pronounced when there is no competition for 1580: 1467:
Grzegorz Litwinienko; A. L. J. Beckwith; K. U. Ingold (2011).
1007:
metal species was changed during the chemical transformation.
27:
Influence of a solvent on chemical reactivity, stability, etc.
816:
2 reaction mechanisms when the solvent of choice is protic.
992: 779:
2), the ability to either stabilize the transition state (S
439:{\displaystyle {\mathbf {K} }_{\mathrm {T} }={\frac {}{}}} 46:
or molecular associations. Solvents can have an effect on
153:. Consider the following acid dissociation equilibrium: 968:
1 reaction coordinate diagram. Note the decrease in ΔG
592:
increasing magnitude of charge will increase solvation
985:
2 reaction coordinate diagram. Note the decreased ΔG
354: 1307:
Advanced Organic Chemistry: Structure and Mechanisms
642:
the solvent's ability to stabilize the intermediate
565:) play a large role in affecting the reaction rate. 1886: 1820: 1794: 1750: 1714: 1666: 1627: 1604: 1541: 845:2 reaction rates, steric effects may be neglected. 783:
1) or destabilize the reactant starting material (S
340:-enolic stabilization by intramolecular H-bonding. 438: 964:2 reactions is to the right. On the left is an S 630:inherently determines the nucleophilicity of the 595:increasing delocalization will decrease solvation 320:is dependent upon the solvent polarity, with the 1303:Sundberg, Richard J.; Carey, Francis A. (2007). 292:Keto enol tautomerization (diketo form on left, 58:and choosing the appropriate solvent allows for 553:dynamic contributions of the solvent (such as 1518: 8: 1202: 1200: 1198: 1196: 1194: 1192: 520:mechanisms, for example, by maximizing the 1525: 1511: 1503: 1366:Organic Chemistry Structure and Reactivity 1238:Physical and Mechanistic Organic Chemistry 308:. This effect is especially pronounced in 374: 364: 363: 357: 356: 353: 997:Solvent effects on SN1 and SN2 reactions 847: 688: 342: 171: 109: 1298: 1296: 1036: 1551:Unimolecular nucleophilic substitution 1177:"Bordwell pKa Table (Acidity in DMSO)" 1561:Bimolecular nucleophilic substitution 7: 1209:Solvent Effects in Organic Chemistry 1002:Transition-metal-catalyzed reactions 1614:Electrophilic aromatic substitution 1287:10.1146/annurev.pc.36.100185.003041 1581:Nucleophilic internal substitution 1571:Nucleophilic aromatic substitution 365: 77:Different solvents can affect the 25: 111:Solvent properties at 25 Â°C 60:thermodynamic and kinetic control 358: 1737:Lindemann–Hinshelwood mechanism 1786:Outer sphere electron transfer 1781:Inner sphere electron transfer 1591:Nucleophilic acyl substitution 430: 409: 404: 377: 90:, dipole-dipole interactions, 1: 1951:Diffusion-controlled reaction 1207:Reichardt, Christian (1990). 771:2 reaction. In either case (S 1606:Electrophilic substitutions 795:). The rate equation for S 536:Equilibrium-solvent effects 1993: 1916:Energy profile (chemistry) 1878:More O'Ferrall–Jencks plot 1543:Nucleophilic substitutions 1242:Cambridge University Press 787:2) acts to decrease the ΔG 572: 548:Frictional solvent effects 92:van der Waals interactions 62:over a chemical reaction. 1946:Michaelis–Menten kinetics 1370:Houghton Mifflin Harcourt 508:Effects on reaction rates 86:with the solvent such as 84:non-covalent interactions 1873:Potential energy surface 1752:Electron/Proton transfer 1637:Unimolecular elimination 1044:Loudon, G. Marc (2005), 573:Not to be confused with 561:, internal pressure, or 312:compounds that can form 1921:Transition state theory 1722:Intramolecular reaction 1648:Bimolecular elimination 1236:Jones, Richard (1984). 981:. On the right is an S 586:Christopher Kelk Ingold 542:transition state theory 38:are the influence of a 1715:Unimolecular reactions 1676:Electrophilic addition 1011:Free radical syntheses 998: 857:Dielectric Constant, Δ 698:Dielectric Constant, Δ 628:substitution reactions 622:Substitution reactions 440: 297: 1906:Rate-determining step 1838:Reactive intermediate 1696:Free-radical addition 1686:Nucleophilic addition 1629:Elimination reactions 1267:Annu. Rev. Phys. Chem 996: 441: 328:H-bond formed in the 306:keto–enol tautomerism 291: 203:-Toluenesulfonic acid 1901:Equilibrium constant 1364:Eğe, Seyhan (2008). 1351:10.1039/JR9350000244 1215:. pp. 147–181. 1211:. Marburg, Germany: 626:The solvent used in 575:Hughes–Ingold symbol 352: 318:equilibrium constant 296:-enol form on right) 284:Keto–enol equilibria 119:Dielectric constant 98:Acid-base equilibria 79:equilibrium constant 73:Effects on stability 1977:Reaction mechanisms 1911:Reaction coordinate 1843:Radical (chemistry) 1828:Elementary reaction 1771:Grotthuss mechanism 1535:reaction mechanisms 1411:2009JPCA..113.9109K 1279:1985ARPC...36..573H 1244:. pp. 94–114. 569:Hughes–Ingold rules 181: 112: 104:dielectric constant 44:chemical reactivity 18:Hughes–Ingold rules 1972:Physical chemistry 1936:Arrhenius equation 1706:Oxidative addition 1668:Addition reactions 1485:10.1039/C1CS15007C 999: 528:is one of several 436: 304:compounds exhibit 298: 172: 110: 1959: 1958: 1931:Activated complex 1926:Activation energy 1888:Chemical kinetics 1833:Reaction dynamics 1732:Photodissociation 1454:10.1021/om001073u 1419:10.1021/jp905429p 1405:(32): 9109–9114. 1379:978-0-618-31809-4 1326:978-0-387-44897-8 1155:10.1021/jo048252w 1119:10.1021/jo060031y 1083:10.1021/jo702513w 1046:Organic Chemistry 956:A comparison of S 954: 953: 793:Gibbs free energy 757: 756: 617:Reaction examples 524:of the reagents. 505: 504: 434: 281: 280: 219:2,4-Dinitrophenol 147: 146: 132:Dimethylsulfoxide 16:(Redirected from 1984: 1863:Collision theory 1812:Matrix isolation 1766:Harpoon reaction 1643:E1cB-elimination 1527: 1520: 1513: 1504: 1497: 1496: 1464: 1458: 1457: 1448:(8): 1652–1667. 1437: 1431: 1430: 1399:J. Phys. Chem. A 1390: 1384: 1383: 1361: 1355: 1354: 1337: 1331: 1330: 1310: 1300: 1291: 1290: 1262: 1256: 1255: 1233: 1227: 1226: 1204: 1187: 1186: 1184: 1183: 1173: 1167: 1166: 1149:(3): 1019–1028. 1137: 1131: 1130: 1113:(7): 2829–2838. 1101: 1095: 1094: 1077:(7): 2607–2620. 1065: 1059: 1058: 1041: 848: 799:2 reactions are 689: 582:Edward D. Hughes 445: 443: 442: 437: 435: 433: 407: 375: 370: 369: 368: 362: 361: 343: 182: 180:values of acids 113: 21: 1992: 1991: 1987: 1986: 1985: 1983: 1982: 1981: 1962: 1961: 1960: 1955: 1941:Eyring equation 1882: 1853:Stereochemistry 1816: 1802:Solvent effects 1790: 1746: 1710: 1691: 1681: 1662: 1657: 1623: 1619: 1600: 1596: 1586: 1576: 1566: 1556: 1537: 1531: 1501: 1500: 1466: 1465: 1461: 1442:Organometallics 1439: 1438: 1434: 1396: 1392: 1391: 1387: 1380: 1363: 1362: 1358: 1339: 1338: 1334: 1327: 1302: 1301: 1294: 1264: 1263: 1259: 1252: 1235: 1234: 1230: 1223: 1206: 1205: 1190: 1181: 1179: 1175: 1174: 1170: 1139: 1138: 1134: 1103: 1102: 1098: 1067: 1066: 1062: 1056: 1043: 1042: 1038: 1033: 1021: 1013: 1004: 988: 984: 980: 976: 971: 967: 963: 959: 940: 894: 876: 844: 836: 824: 818:Protic solvents 815: 810: 806: 798: 790: 786: 782: 778: 774: 770: 764: 746: 731: 716: 712: 685: 677: 669: 665: 656:-butyl chloride 649: 639: 624: 619: 578: 571: 550: 538: 530:mechanochemical 510: 490:Dichloromethane 466:Tetrahydrofuran 408: 376: 355: 350: 349: 314:hydrogen-bonded 286: 179: 168: 100: 75: 36:solvent effects 28: 23: 22: 15: 12: 11: 5: 1990: 1988: 1980: 1979: 1974: 1964: 1963: 1957: 1956: 1954: 1953: 1948: 1943: 1938: 1933: 1928: 1923: 1918: 1913: 1908: 1903: 1898: 1892: 1890: 1884: 1883: 1881: 1880: 1875: 1870: 1865: 1860: 1855: 1850: 1845: 1840: 1835: 1830: 1824: 1822: 1821:Related topics 1818: 1817: 1815: 1814: 1809: 1804: 1798: 1796: 1795:Medium effects 1792: 1791: 1789: 1788: 1783: 1778: 1773: 1768: 1763: 1757: 1755: 1748: 1747: 1745: 1744: 1739: 1734: 1729: 1724: 1718: 1716: 1712: 1711: 1709: 1708: 1703: 1698: 1693: 1689: 1683: 1679: 1672: 1670: 1664: 1663: 1661: 1660: 1655: 1651: 1645: 1640: 1633: 1631: 1625: 1624: 1622: 1621: 1617: 1610: 1608: 1602: 1601: 1599: 1598: 1594: 1588: 1584: 1578: 1574: 1568: 1564: 1558: 1554: 1547: 1545: 1539: 1538: 1532: 1530: 1529: 1522: 1515: 1507: 1499: 1498: 1479:(5): 2157–63. 1473:Chem. Soc. Rev 1459: 1432: 1397:2 Reactions". 1394: 1385: 1378: 1356: 1332: 1325: 1292: 1273:(1): 573–597. 1257: 1250: 1228: 1221: 1188: 1168: 1132: 1096: 1060: 1054: 1035: 1034: 1032: 1029: 1028: 1027: 1020: 1017: 1012: 1009: 1003: 1000: 986: 982: 978: 974: 969: 965: 961: 957: 952: 951: 948: 945: 942: 938: 934: 933: 930: 927: 924: 920: 919: 916: 913: 910: 906: 905: 902: 899: 896: 892: 888: 887: 884: 881: 878: 874: 870: 869: 864: 859: 854: 842: 839:steric effects 834: 825:2 reaction of 822: 813: 808: 804: 796: 788: 784: 780: 776: 772: 768: 762: 755: 754: 751: 748: 744: 740: 739: 736: 733: 729: 725: 724: 721: 718: 714: 710: 706: 705: 700: 695: 683: 675: 667: 663: 647: 637: 623: 620: 618: 615: 614: 613: 610: 607: 600: 599: 596: 593: 570: 567: 549: 546: 537: 534: 509: 506: 503: 502: 499: 495: 494: 491: 487: 486: 483: 479: 478: 475: 471: 470: 467: 463: 462: 459: 455: 454: 451: 447: 446: 432: 429: 426: 423: 420: 417: 414: 411: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 373: 367: 360: 347: 334:intermolecular 326:intramolecular 310:1,3-dicarbonyl 285: 282: 279: 278: 275: 272: 269: 263: 262: 259: 256: 253: 247: 246: 243: 240: 237: 231: 230: 227: 224: 221: 215: 214: 211: 208: 205: 196: 195: 192: 189: 186: 177: 166: 159: 158: 145: 144: 141: 137: 136: 133: 129: 128: 125: 121: 120: 117: 99: 96: 74: 71: 56:reaction rates 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1989: 1978: 1975: 1973: 1970: 1969: 1967: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1896:Rate equation 1894: 1893: 1891: 1889: 1885: 1879: 1876: 1874: 1871: 1869: 1868:Arrow pushing 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1825: 1823: 1819: 1813: 1810: 1808: 1805: 1803: 1800: 1799: 1797: 1793: 1787: 1784: 1782: 1779: 1777: 1776:Marcus theory 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1758: 1756: 1753: 1749: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1727:Isomerization 1725: 1723: 1720: 1719: 1717: 1713: 1707: 1704: 1702: 1701:Cycloaddition 1699: 1697: 1694: 1687: 1684: 1677: 1674: 1673: 1671: 1669: 1665: 1659: 1652: 1649: 1646: 1644: 1641: 1638: 1635: 1634: 1632: 1630: 1626: 1615: 1612: 1611: 1609: 1607: 1603: 1592: 1589: 1582: 1579: 1572: 1569: 1562: 1559: 1552: 1549: 1548: 1546: 1544: 1540: 1536: 1528: 1523: 1521: 1516: 1514: 1509: 1508: 1505: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1463: 1460: 1455: 1451: 1447: 1443: 1436: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1389: 1386: 1381: 1375: 1371: 1367: 1360: 1357: 1352: 1348: 1344: 1343:J. Chem. Soc. 1336: 1333: 1328: 1322: 1318: 1314: 1309: 1308: 1299: 1297: 1293: 1288: 1284: 1280: 1276: 1272: 1268: 1261: 1258: 1253: 1251:0-521-22642-2 1247: 1243: 1240:. Cambridge: 1239: 1232: 1229: 1224: 1222:0-89573-684-5 1218: 1214: 1210: 1203: 1201: 1199: 1197: 1195: 1193: 1189: 1178: 1172: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1136: 1133: 1128: 1124: 1120: 1116: 1112: 1108: 1100: 1097: 1092: 1088: 1084: 1080: 1076: 1072: 1064: 1061: 1057: 1055:0-19-511999-1 1051: 1047: 1040: 1037: 1030: 1026: 1023: 1022: 1018: 1016: 1010: 1008: 1001: 995: 991: 949: 946: 943: 936: 935: 931: 928: 925: 922: 921: 917: 914: 911: 908: 907: 903: 900: 897: 890: 889: 885: 882: 879: 872: 871: 868: 865: 863: 862:Relative Rate 860: 858: 855: 853: 850: 849: 846: 840: 832: 828: 827:1-bromobutane 819: 802: 794: 766: 759:The case for 752: 749: 742: 741: 737: 734: 727: 726: 722: 719: 708: 707: 704: 703:Relative Rate 701: 699: 696: 694: 691: 690: 687: 681: 673: 661: 657: 655: 645: 641: 633: 629: 621: 616: 611: 608: 605: 604: 603: 597: 594: 591: 590: 589: 587: 583: 576: 568: 566: 564: 560: 556: 547: 545: 543: 535: 533: 531: 527: 523: 522:concentration 519: 514: 507: 500: 497: 496: 492: 489: 488: 484: 481: 480: 476: 473: 472: 468: 465: 464: 460: 457: 456: 452: 449: 448: 427: 424: 421: 418: 415: 412: 401: 398: 395: 392: 389: 386: 383: 380: 371: 348: 345: 344: 341: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 295: 290: 283: 276: 273: 270: 268: 265: 264: 260: 257: 254: 252: 249: 248: 244: 241: 238: 236: 233: 232: 228: 225: 222: 220: 217: 216: 212: 209: 206: 204: 202: 198: 197: 193: 190: 187: 184: 183: 176: 170: 165: 156: 155: 154: 152: 142: 139: 138: 134: 131: 130: 126: 123: 122: 118: 115: 114: 108: 105: 97: 95: 93: 89: 85: 80: 72: 70: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1848:Molecularity 1801: 1476: 1472: 1462: 1445: 1441: 1435: 1402: 1398: 1388: 1365: 1359: 1342: 1335: 1311:. New York: 1306: 1270: 1266: 1260: 1237: 1231: 1208: 1180:. Retrieved 1171: 1146: 1143:J. Org. Chem 1142: 1135: 1110: 1107:J. Org. Chem 1106: 1099: 1074: 1071:J. Org. Chem 1070: 1063: 1045: 1039: 1014: 1005: 955: 866: 861: 856: 851: 758: 702: 697: 692: 653: 625: 601: 579: 551: 539: 526:Ball milling 515: 511: 337: 329: 321: 299: 293: 235:Benzoic acid 200: 174: 163: 160: 151:acetonitrile 148: 124:Acetonitrile 101: 76: 64: 35: 29: 1807:Cage effect 1742:RRKM theory 1658:elimination 1345:: 244–255. 1315:. pp.  1025:Cage effect 801:bimolecular 765:2 reactions 660:acetic acid 644:carbocation 640:1 reactions 632:nucleophile 518:bimolecular 458:Cyclohexane 316:enols. The 251:Acetic acid 1966:Categories 1182:2008-11-02 1031:References 987:activation 979:activation 970:activation 789:activation 185:HA ⇌ A + H 157:HA ⇌ A + H 48:solubility 1858:Catalysis 1754:reactions 1213:Wiley-VCH 678:OH), and 563:viscosity 450:Gas phase 390:− 88:H-bonding 52:stability 32:chemistry 1493:21344074 1427:19719294 1313:Springer 1163:15675863 1127:16555839 1091:18324831 1019:See also 950:Aprotic 932:Aprotic 918:Aprotic 753:150,000 672:methanol 555:friction 302:carbonyl 1407:Bibcode 1275:Bibcode 904:Protic 886:Protic 852:Solvent 807:2 and S 693:Solvent 559:density 482:Ethanol 474:Benzene 346:Solvent 213:strong 116:Solvent 40:solvent 1533:Basic 1491:  1425:  1376:  1323:  1319:–376. 1248:  1219:  1161:  1125:  1089:  1052:  960:1 to S 775:1 or S 267:Phenol 261:4.756 194:water 67:solute 1761:Redox 1597:Acyl) 977:, ΔΔG 915:1,300 831:azide 829:with 680:water 658:with 501:0.23 498:Water 477:14.7 453:11.7 300:Many 277:9.99 271:29.14 255:23.51 239:21.51 223:16.66 140:Water 94:etc. 1650:(E2) 1639:(E1) 1489:PMID 1423:PMID 1374:ISBN 1321:ISBN 1246:ISBN 1217:ISBN 1159:PMID 1123:PMID 1087:PMID 1050:ISBN 947:5000 929:2800 909:DMSO 867:Type 686:O). 670:H), 654:tert 584:and 493:4.2 485:5.8 469:7.2 274:18.0 258:12.6 245:4.2 242:11.1 229:3.9 191:DMSO 54:and 1620:Ar) 1577:Ar) 1481:doi 1450:doi 1415:doi 1403:113 1347:doi 1317:359 1283:doi 1151:doi 1115:doi 1079:doi 923:DMF 674:(CH 662:(CH 461:42 338:cis 330:cis 322:cis 294:cis 226:5.1 210:0.9 207:8.5 188:ACN 143:78 135:47 127:37 42:on 30:In 1968:: 1688:(A 1678:(A 1616:(S 1593:(S 1587:i) 1583:(S 1573:(S 1567:2) 1563:(S 1557:1) 1553:(S 1487:. 1477:40 1475:. 1471:. 1446:20 1444:. 1421:. 1413:. 1401:. 1372:. 1368:. 1295:^ 1281:. 1271:36 1269:. 1191:^ 1157:. 1147:70 1145:. 1121:. 1111:71 1109:. 1085:. 1075:73 1073:. 973:ΔE 944:38 941:CN 937:CH 926:37 912:49 898:78 880:33 877:OH 873:CH 833:(N 750:78 738:4 735:33 732:OH 728:CH 723:1 713:CO 709:CH 682:(H 666:CO 557:, 65:A 50:, 34:, 1692:) 1690:N 1682:) 1680:E 1656:i 1654:E 1618:E 1595:N 1585:N 1575:N 1565:N 1555:N 1526:e 1519:t 1512:v 1495:. 1483:: 1456:. 1452:: 1429:. 1417:: 1409:: 1395:N 1382:. 1353:. 1349:: 1329:. 1289:. 1285:: 1277:: 1254:. 1225:. 1185:. 1165:. 1153:: 1129:. 1117:: 1093:. 1081:: 983:N 975:a 966:N 962:N 958:N 939:3 901:7 895:O 893:2 891:H 883:1 875:3 843:N 835:3 823:N 821:S 814:N 812:S 809:N 805:N 797:N 785:N 781:N 777:N 773:N 769:N 763:N 761:S 747:O 745:2 743:H 730:3 720:6 717:H 715:2 711:3 684:2 676:3 668:2 664:3 648:N 638:N 636:S 577:. 431:] 428:o 425:t 422:e 419:k 416:i 413:d 410:[ 405:] 402:l 399:o 396:n 393:e 387:s 384:i 381:c 378:[ 372:= 366:T 359:K 201:p 178:a 175:K 173:p 167:a 164:K 162:p 20:)

Index

Hughes–Ingold rules
chemistry
solvent
chemical reactivity
solubility
stability
reaction rates
thermodynamic and kinetic control
solute
equilibrium constant
non-covalent interactions
H-bonding
van der Waals interactions
dielectric constant
acetonitrile
p-Toluenesulfonic acid
2,4-Dinitrophenol
Benzoic acid
Acetic acid
Phenol

carbonyl
keto–enol tautomerism
1,3-dicarbonyl
hydrogen-bonded
equilibrium constant
intramolecular
intermolecular
bimolecular
concentration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑