Knowledge (XXG)

Hybrizyme

Source πŸ“

172:
scale. The "rare allele phenomenon" might be an indication of this process. Even with the continuous effect of relatively strong endogenous selection against hybrids, a hybrid population might be an example where selection against reproductive isolation results in creating variable recombinant genotypes. Sometimes, this phenomenon might assist in creating a complex of adaptive traits that lead to adaptive novelty.
138:
against poorly fit multilocus genotypes. Therefore, the hybrizymes that increase in frequency could be modifier alleles or genetic markers that increase via hitchhiking. It is not excluded that the targets of selection are the barrier loci, loci that resist homogenization with the other genome during gene flow among diverging species, making them the most different parts of the
171:
With the continual selection against hybrid disadvantage, crossing-over might, over time, interrupt existing linkages and establish new. This generates a shift in selection pressure on loci which are in linkage with these genes and will contribute to further changes in allele frequencies on a genome
128:
Several hypotheses have been proposed to account the high frequency of hybrizymes in hybrid zones such as genetic drift, elevated rates of nucleotide substitutions. or positive selection on alleles which are mildly deleterious in parental taxa. Still, some faced a certain degree of unpredictability;
77:
Early studies focused on detecting electromorphs for loci that code regulatory and non-regulatory enzymes from several functional classes using allozyme electrophoresis and usually involved loci that were polymorphic in parental populations. The phenomenon has also been detected in a broad range of
145:
If allelic variation at these loci is considered, there might be alleles that have differential effect on reproductive isolation or hybrid disadvantage, leading to selection of those who have lower severity. The exact origin and mechanism that maintains these alleles at a high frequency is still a
137:
and hybrid inferiority. In the centre of hybrid zones, the process of constant creation of low-fitness recombinant genotypes will favor any allele that will decrease reproductive isolation, consequently elevating the hybrid fitness. So, a likely mechanism would be negative or purifying selection
112:
Intragenic recombination, under certain circumstances, might create new allelic variants at rates higher than the ones associated with regular mutational processes. Under this hypothesis the variant allele would be a mosaic of the parental alleles. The likelihood of this hypothesis was disputed,
64:
that were observed at high frequency in hybrid zones, but are absent or rare in parental taxa as "the rare allele phenomenon". These alleles can have increased frequencies up to a point of the allele becoming the most common one in the hybrid zone, rendering the term "the rare allele phenomenon"
86:
Multiple hypotheses have been proposed to explain the mutational (molecular) origin of hybrizymes. They include gene conversion, transposable element activity, post-translational modification, mutations. and intragenic recombination. Some of these hypotheses are rejected by research in the past
59:
Originally hybrizymes were defined as "unexpected allelic electromorphs associated with hybrid zones", a formal term proposed by renowned conservation geneticist and biogeographer David S. Woodruff in 1988. By suggesting a new definition for a phenomenon that had been previously widely observed
73:
Hybrid populations display the hybrizyme phenomenon by having increased frequencies of certain alleles that are rare or non-existent outside of the hybrid zone. The hybrizyme phenomenon is widespread in hybrid zones of species of snails, crickets, lizards, salamanders, rodents, fish and birds.
163:
ensures that relatively strong endogenous selection would not quench such potential. Additionally, partial postzygotic reproductive isolation usually involves multiple genes and segregation and recombination of genes creates broadly varying reproductive compatibility in hybrid populations.
113:
through sequencing studies. Although there is yet no specific explanation for hybrizymes, it is not excluded that hybrizymes are generated by the combined effect of recombination and mutation events, with any recombination trace concealed by succeeding mutations. However, research on
39:) meet, mate, and produce hybrid offspring. The hybrizyme phenomenon is widespread and these alleles occur commonly, if not in all hybrid zones. Initially considered to be caused by elevated rates of mutation in hybrids, the most probable hypothesis infers that they are the result of 129:
specifically under the mutational hypothesis the overall substitution rates are elevated and many variants are expected versus having only one allele reaching high frequency and, at the same time, positive selection on deleterious alleles seems ambiguous.
119:
species implies that high recombination rates are possible due to acceleration of genetic variation after hybridization. Furthermore, results are found that indicate that recurrent mutation is unlikely and that support the hypothesis of recombination.
104:. However, the hypothesis has several weaknesses. It does not explain why normally rare alleles are restricted to a hybrid zone, why polymorphic loci are affected more or offers a mechanism that explains the high frequency of even the rarest variants. 95:
Under the mutational hypothesis, hybrizymes likely arise due to simple point mutations. Sequencing data have indicated this and imply low likelihood that hybrizymes arise as a result of transposition or recombination. Research on
132:
Selection does not need to be directed to the hybrizyme, but to other genes with which the hybrizyme is linked, placing genetic hitchhiking in perspective. In other words, hybrid zones are maintained primarily by balance between
158:
Hybridization might expand the prospect of adaptive radiation to the point where positive selection on recombinant hybrid genotypes surpasses the intrinsic selection against them. Therefore, the selection schemes in
87:
couple of years, but there is an unambiguous explanation for the mutational origin of hybrizymes. The two hypotheses most often discussed are increased mutation rates and intragenic recombination.
646:
Hoffman SM, Brown WM (December 1995). "The molecular mechanism underlying the "rare allele phenomenon" in a subspecific hybrid zone of the California field mouse, Peromyscus californicus".
164:
Consequently, there will be recurrent removal of disadvantageous alleles for reproductive isolation and relative stabilization of hybrid zones, possibly slowing down the path of complete
47:
or infertility). Stated differently, any allele that will decrease reproductive isolation is favored and any linked alleles (genetic markers) also increase their frequency by
920:"Genealogy of the nuclear beta-fibrinogen locus in a highly structured lizard species: comparison with mtDNA and evidence for intragenic recombination in the hybrid zone" 508:
Lammers Y, Kremer D, Brakefield PM, Groenenberg DS, Pirovano W, Schilthuizen M (March 2013). "SNP genotyping for detecting the 'rare allele phenomenon' in hybrid zones".
74:
Intriguingly, the increased frequency of some of these alleles can have a pronounced effect making them 3-20 times more common in hybrids than in non-hybrid populations.
200:
Woodruff DS (March 1989). "Genetic anomalies associated with Cerion hybrid zones: the origin and maintenance of new electromorphic variants called hybrizymes".
463: 150:
analysis of the genomic regions involved in the phenomenon as a more trustworthy pathway to identify genes that impact the level of reproductive isolation.
60:
Woodruff's interpretation bypasses the etiological connotation of alternative terms and avoids inappropriate context. Namely, previous studies referred to
412:"Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences" 40: 51:. If the linked alleles used to be rare variants in the parental taxa, they will become more common in the area where the hybrids are formed. 1120: 551:
Hillis DM, Moritz C, Porter CA, Baker RJ (January 1991). "Evidence for biased gene conversion in concerted evolution of ribosomal DNA".
1209: 860:
Golding GB, Strobeck C (1983). "Increased Number of Alleles Found in Hybrid Populations Due to Intragenic Recombination".
903:
Kanazawa M, Shamoto Y, Aotsuka T (1999). "Amylase3 hybrizyme found in Japanese freshwater crab, Geothelphusa dehaani".
1008:
Woodruff RC, Lyman RF, Thompson JN (March 1979). "Intraspecific hybridisation and the release of mutator activity".
375:
Smith MF (November 1979). "Geographic variation in genic and morphological characters in Peromyscus californicus".
147: 486: 464:"Molecular evaluation of interspecific hybrids between Acer albopurpurascens and A. buergerianum var. formosanum" 43:. Namely, in the center of the hybrid zone, negative selection purges alleles against hybrid disadvantage (e.g. 78:
genetic markers such as intron haplotypes, microsatellites, ribosomal DNA spacer variants, and anonymous SNPs.
774:
Schilthuizen M, Hoekstra RF, Gittenberger E (May 2001). "The 'rare allele phenomenon' in a ribosomal spacer".
1173:
Seehausen O (2004). "Response to Schilthuizen et al.: Hybridization, rare alleles and adaptive radiation".
1017: 725: 655: 560: 817:
Watt WB (November 1972). "Intragenic Recombination as a Source of Population Genetic Variability".
48: 1041: 990: 949: 877: 842: 799: 689: 533: 478: 392: 357: 283: 44: 596:"Evidence for horizontal transmission of the P transposable element between Drosophila species" 1231: 1205: 1152: 1116: 1085: 1033: 941: 885: 834: 791: 753: 681: 625: 576: 525: 441: 433: 349: 1182: 1144: 1108: 1075: 1025: 980: 969:"Parallel evolution of an sAat-'hybrizyme'in hybrid zones in Albinaria hippolyti (Boettger)" 931: 869: 826: 783: 743: 733: 671: 663: 615: 607: 568: 517: 423: 384: 339: 291: 275: 241: 209: 1021: 729: 659: 564: 245: 100:
and Japanese freshwater crabs confirms that the phenomenon is possibly caused by simple
620: 595: 344: 327: 296: 263: 213: 101: 97: 65:
deceptive. Despite this, these two terms have been used interchangeably in literature.
1225: 787: 748: 713: 994: 846: 803: 693: 537: 482: 361: 1112: 1045: 953: 160: 611: 594:
Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (February 1990).
28: 1186: 1148: 718:
Proceedings of the National Academy of Sciences of the United States of America
165: 61: 36: 838: 437: 738: 572: 521: 328:"Hybridization between species of the Rana pipiens complex in central Texas" 134: 1156: 1089: 945: 936: 919: 889: 795: 529: 445: 428: 411: 353: 279: 757: 685: 629: 580: 1037: 985: 968: 676: 881: 667: 410:
Lexer, C; Buerkle, C A; Joseph, J A; Heinze, B; Fay, M F (2006-09-20).
396: 32: 24: 1080: 1063: 1029: 462:
Liao PC, Shih HC, Yen TB, Lu SY, Cheng YP, Chiang YC (October 2010).
287: 139: 873: 388: 264:"Selective increase of a rare haplotype in a land snail hybrid zone" 830: 1135:
Seehausen O (April 2004). "Hybridization and adaptive radiation".
232:
Barton NH, Hewitt GM (November 1985). "Analysis of hybrid zones".
115: 20: 1064:"Hybrid zones, barrier loci and the 'rare allele phenomenon'" 311:
Barton NH, Hewwit GM (1981). "Hybrid zones and speciation.".
262:
Schilthuizen M, Hoekstra RF, Gittenberger E (November 1999).
712:
Bradley RD, Bull JJ, Johnson AD, Hillis DM (October 1993).
313:
Evolution and Speciation: Essays in Honor of M. J. D. White
918:
Godinho R, Mendonça B, Crespo EG, Ferrand N (June 2006).
268:
Proceedings of the Royal Society B: Biological Sciences
1204:. Sunderland, Massachusetts: Sinauer Associates, Inc. 714:"Origin of a novel allele in a mammalian hybrid zone" 1057: 1055: 769: 767: 19:
is a term coined to indicate novel or normally rare
257: 255: 146:subject of debate and additional studies, such as 1168: 1166: 967:Schilthuizen M, Gittenberger E (September 1994). 31:, geographic areas where two related taxa (e.g. 1103:Elmer KR (2019), "Barrier Loci and Evolution", 707: 705: 703: 641: 639: 195: 193: 191: 189: 187: 185: 503: 501: 499: 227: 225: 223: 8: 1062:Schilthuizen M, Lammers Y (February 2013). 457: 455: 1107:, American Cancer Society, pp. 1–7, 1079: 984: 935: 747: 737: 675: 619: 427: 343: 295: 202:Biological Journal of the Linnean Society 234:Annual Review of Ecology and Systematics 181: 326:Sage RD, Selander RK (December 1979). 7: 246:10.1146/annurev.es.16.110185.000553 345:10.1111/j.1558-5646.1979.tb04763.x 214:10.1111/j.1095-8312.1989.tb00495.x 14: 1175:Trends in Ecology & Evolution 1137:Trends in Ecology & Evolution 788:10.1046/j.1365-294X.2001.01282.x 1068:Journal of Evolutionary Biology 142:between divergent populations. 1113:10.1002/9780470015902.a0028138 648:Journal of Molecular Evolution 41:negative (purifying) selection 1: 510:Molecular Ecology Resources 27:) that are associated with 1248: 1187:10.1016/j.tree.2004.05.011 1149:10.1016/j.tree.2004.01.003 612:10.1093/genetics/124.2.339 148:Next Generation Sequencing 1200:Coyne JA, Orr HA (2004). 108:Intragenic recombination 102:nucleotide substitutions 819:The American Naturalist 739:10.1073/pnas.90.19.8939 573:10.1126/science.1987647 522:10.1111/1755-0998.12044 937:10.1038/sj.hdy.6800823 429:10.1038/sj.hdy.6800898 280:10.1098/rspb.1999.0906 69:Widespread phenomenon 986:10.1038/hdy.1994.129 377:Journal of Mammalogy 124:Cause of maintenance 1022:1979Natur.278..277W 730:1993PNAS...90.8939B 660:1995JMolE..41.1165H 565:1991Sci...251..308H 315:. pp. 109–145. 274:(1434): 2181–2185. 49:genetic hitchhiking 905:Zoological Science 668:10.1007/BF00173198 168:by reinforcement. 45:hybrid inviability 1122:978-0-470-01590-2 1081:10.1111/jeb.12056 776:Molecular Ecology 82:Mutational origin 1239: 1216: 1215: 1197: 1191: 1190: 1170: 1161: 1160: 1132: 1126: 1125: 1100: 1094: 1093: 1083: 1059: 1050: 1049: 1030:10.1038/278277a0 1005: 999: 998: 988: 964: 958: 957: 939: 915: 909: 908: 900: 894: 893: 857: 851: 850: 825:(952): 737–753. 814: 808: 807: 771: 762: 761: 751: 741: 709: 698: 697: 679: 643: 634: 633: 623: 591: 585: 584: 559:(4991): 308–10. 548: 542: 541: 505: 494: 493: 491: 485:. Archived from 468: 459: 450: 449: 431: 407: 401: 400: 372: 366: 365: 347: 323: 317: 316: 308: 302: 301: 299: 259: 250: 249: 229: 218: 217: 197: 154:Adaptive novelty 1247: 1246: 1242: 1241: 1240: 1238: 1237: 1236: 1222: 1221: 1220: 1219: 1212: 1199: 1198: 1194: 1172: 1171: 1164: 1134: 1133: 1129: 1123: 1102: 1101: 1097: 1061: 1060: 1053: 1016:(5701): 277–9. 1007: 1006: 1002: 966: 965: 961: 917: 916: 912: 902: 901: 897: 874:10.2307/2408171 859: 858: 854: 816: 815: 811: 773: 772: 765: 724:(19): 8939–41. 711: 710: 701: 645: 644: 637: 593: 592: 588: 550: 549: 545: 507: 506: 497: 489: 466: 461: 460: 453: 409: 408: 404: 389:10.2307/1380187 374: 373: 369: 325: 324: 320: 310: 309: 305: 261: 260: 253: 231: 230: 221: 199: 198: 183: 178: 156: 126: 110: 93: 84: 71: 57: 12: 11: 5: 1245: 1243: 1235: 1234: 1224: 1223: 1218: 1217: 1210: 1192: 1181:(8): 405–406. 1162: 1143:(4): 198–207. 1127: 1121: 1095: 1051: 1000: 959: 910: 895: 852: 831:10.1086/282809 809: 763: 699: 635: 586: 543: 495: 492:on 2020-02-13. 451: 402: 367: 338:(4): 1069–88. 318: 303: 251: 219: 180: 179: 177: 174: 155: 152: 125: 122: 109: 106: 98:pocket gophers 92: 89: 83: 80: 70: 67: 56: 53: 13: 10: 9: 6: 4: 3: 2: 1244: 1233: 1230: 1229: 1227: 1213: 1211:0-87893-089-2 1207: 1203: 1196: 1193: 1188: 1184: 1180: 1176: 1169: 1167: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1131: 1128: 1124: 1118: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1082: 1077: 1074:(2): 288–90. 1073: 1069: 1065: 1058: 1056: 1052: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1004: 1001: 996: 992: 987: 982: 978: 974: 970: 963: 960: 955: 951: 947: 943: 938: 933: 930:(6): 454–63. 929: 925: 921: 914: 911: 906: 899: 896: 891: 887: 883: 879: 875: 871: 867: 863: 856: 853: 848: 844: 840: 836: 832: 828: 824: 820: 813: 810: 805: 801: 797: 793: 789: 785: 782:(5): 1341–5. 781: 777: 770: 768: 764: 759: 755: 750: 745: 740: 735: 731: 727: 723: 719: 715: 708: 706: 704: 700: 695: 691: 687: 683: 678: 677:2027.42/48050 673: 669: 665: 661: 657: 654:(6): 1165–9. 653: 649: 642: 640: 636: 631: 627: 622: 617: 613: 609: 606:(2): 339–55. 605: 601: 597: 590: 587: 582: 578: 574: 570: 566: 562: 558: 554: 547: 544: 539: 535: 531: 527: 523: 519: 516:(2): 237–42. 515: 511: 504: 502: 500: 496: 488: 484: 480: 477:(4): 413–20. 476: 472: 465: 458: 456: 452: 447: 443: 439: 435: 430: 425: 421: 417: 413: 406: 403: 398: 394: 390: 386: 383:(4): 705–22. 382: 378: 371: 368: 363: 359: 355: 351: 346: 341: 337: 333: 329: 322: 319: 314: 307: 304: 298: 293: 289: 285: 281: 277: 273: 269: 265: 258: 256: 252: 247: 243: 240:(1): 113–48. 239: 235: 228: 226: 224: 220: 215: 211: 208:(3): 281–94. 207: 203: 196: 194: 192: 190: 188: 186: 182: 175: 173: 169: 167: 162: 161:hybrid swarms 153: 151: 149: 143: 141: 136: 130: 123: 121: 118: 117: 107: 105: 103: 99: 90: 88: 81: 79: 75: 68: 66: 63: 54: 52: 50: 46: 42: 38: 34: 30: 26: 23:variants (or 22: 18: 1201: 1195: 1178: 1174: 1140: 1136: 1130: 1104: 1098: 1071: 1067: 1013: 1009: 1003: 979:(3): 244–8. 976: 972: 962: 927: 923: 913: 904: 898: 868:(1): 17–29. 865: 861: 855: 822: 818: 812: 779: 775: 721: 717: 651: 647: 603: 599: 589: 556: 552: 546: 513: 509: 487:the original 474: 470: 422:(2): 74–84. 419: 415: 405: 380: 376: 370: 335: 331: 321: 312: 306: 271: 267: 237: 233: 205: 201: 170: 157: 144: 131: 127: 114: 111: 94: 85: 76: 72: 58: 29:hybrid zones 16: 15: 1202:Speciation 176:References 166:speciation 37:subspecies 862:Evolution 839:0003-0147 471:Bot. Stud 438:0018-067X 332:Evolution 135:gene flow 62:allozymes 55:Etymology 17:Hybrizyme 1232:Genetics 1226:Category 1157:16701254 1090:23324010 995:46527997 973:Heredity 946:16598190 924:Heredity 890:28568015 847:83891085 804:15699880 796:11380889 694:19397913 600:Genetics 538:34785300 530:23241161 483:49576046 446:16985509 416:Heredity 362:11870983 354:28563904 91:Mutation 1046:4255341 1018:Bibcode 954:2834444 882:2408171 758:8415634 726:Bibcode 686:8587112 656:Bibcode 630:2155157 621:1203926 581:1987647 561:Bibcode 553:Science 397:1380187 297:1690333 33:species 25:alleles 1208:  1155:  1119:  1088:  1044:  1038:106306 1036:  1010:Nature 993:  952:  944:  888:  880:  845:  837:  802:  794:  756:  746:  692:  684:  628:  618:  579:  536:  528:  481:  444:  436:  395:  360:  352:  294:  286:  140:genome 1042:S2CID 991:S2CID 950:S2CID 907:: 16. 878:JSTOR 843:S2CID 800:S2CID 749:47476 690:S2CID 534:S2CID 490:(PDF) 479:S2CID 467:(PDF) 393:JSTOR 358:S2CID 288:51606 284:JSTOR 1206:ISBN 1153:PMID 1117:ISBN 1086:PMID 1034:PMID 942:PMID 886:PMID 835:ISSN 792:PMID 754:PMID 682:PMID 626:PMID 577:PMID 526:PMID 442:PMID 434:ISSN 350:PMID 116:Acer 21:gene 1183:doi 1145:doi 1109:doi 1105:eLS 1076:doi 1026:doi 1014:278 981:doi 932:doi 870:doi 827:doi 823:106 784:doi 744:PMC 734:doi 672:hdl 664:doi 616:PMC 608:doi 604:124 569:doi 557:251 518:doi 424:doi 385:doi 340:doi 292:PMC 276:doi 272:266 242:doi 210:doi 35:or 1228:: 1179:19 1177:. 1165:^ 1151:. 1141:19 1139:. 1115:, 1084:. 1072:26 1070:. 1066:. 1054:^ 1040:. 1032:. 1024:. 1012:. 989:. 977:73 975:. 971:. 948:. 940:. 928:96 926:. 922:. 884:. 876:. 866:37 864:. 841:. 833:. 821:. 798:. 790:. 780:10 778:. 766:^ 752:. 742:. 732:. 722:90 720:. 716:. 702:^ 688:. 680:. 670:. 662:. 652:41 650:. 638:^ 624:. 614:. 602:. 598:. 575:. 567:. 555:. 532:. 524:. 514:13 512:. 498:^ 475:51 473:. 469:. 454:^ 440:. 432:. 420:98 418:. 414:. 391:. 381:60 379:. 356:. 348:. 336:34 334:. 330:. 290:. 282:. 270:. 266:. 254:^ 238:16 236:. 222:^ 206:36 204:. 184:^ 1214:. 1189:. 1185:: 1159:. 1147:: 1111:: 1092:. 1078:: 1048:. 1028:: 1020:: 997:. 983:: 956:. 934:: 892:. 872:: 849:. 829:: 806:. 786:: 760:. 736:: 728:: 696:. 674:: 666:: 658:: 632:. 610:: 583:. 571:: 563:: 540:. 520:: 448:. 426:: 399:. 387:: 364:. 342:: 300:. 278:: 248:. 244:: 216:. 212::

Index

gene
alleles
hybrid zones
species
subspecies
negative (purifying) selection
hybrid inviability
genetic hitchhiking
allozymes
pocket gophers
nucleotide substitutions
Acer
gene flow
genome
Next Generation Sequencing
hybrid swarms
speciation






doi
10.1111/j.1095-8312.1989.tb00495.x



doi
10.1146/annurev.es.16.110185.000553

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑