Knowledge (XXG)

Hydrogel dressing

Source 📝

60:. Chemical cross-linking involved formation of covalent bonds between polymer chains. Chemically cross-linked hydrogel dressings are synthesized by chain-growth polymerization, step-growth polymerization, enzymes, or irradiation polymerization. Synthetic dressings incorporating nanoparticles such as PVA and polyethylene glycol (PEG) are assembled using chemical cross-linking mechanisms. Physically cross-linked hydrogel dressings are assembled via ionic interaction, hydrogen bonding, hydrophobic interactions, or crystallization. Physically cross-linked hydrogels disintegrate due to local changes in pH, ionic strength, and temperature. Natural dressings incorporating polysaccharides and proteoglycans/proteins form a 3D network using physical cross-linking. Hydrogel dressings mimic the cross-linked 3D network of extracellular matrix fibers in human skin. 113:"Smart" hydrogels which are stimuli-responsive (i.e. thermoresponsive, bioresponsive, pH-responsive, photoresponsive, and redox-responsive) are also being produced. pH-responsive hydrogel dressings which release growth factors and antibiotic agents as the pH of the wound increases from normal skin levels (pH 4–6) to internal levels (pH ~7.4). Redox-responsive hydrogel dressings can be disintegrated on-demand by addition of a reducing agent. Assembly of the 3D network of photoresponsive hydrogel dressings is initiated by UV radiation. Thermoresponsive hydrogel dressings which exhibit temperature-dependent sol-gel transition and/or temperature-dependent drug release. 80:(AMPs) and chitosan have inherent antimicrobial activity. The antimicrobial properties of hydrogel dressings can be enhanced by addition of metal nanoparticles, antibiotics, or other antimicrobial agents. Silver and gold nanoparticles can also be incorporated into hydrogel dressings to enhance antimicrobial activity. Some hydrogel dressings have antibiotics such as ciprofloxacin and amoxicillin incorporated into their structure which are unloaded into the wound as fluid is exchanged. Some hydrogel dressings have incorporated stimuli-responsive nitric oxide-releasing agents and other antimicrobial agents. 73:
uncross-linked state. Hydrogel dressings can absorb up to 600 times their initial amount of water, including fluid-based wound exudates. Hydrogels are effective biomaterials for wound dressings and tissue engineering because they exchange fluid, hydrating necrotic tissues. The absorption of secretions causes the hydrogel dressing to swell, expanding the cross links in the polymer chains. The expanded 3D cross-linked network can irreversibly incorporate pathogens and detritus, thereby removing them from the wound.
105:
dressings because they can conform to the shape of the wound bed and they facilitate autolytic debridement. Impregnated hydrogel dressings are dry dressings (e.g. gauzes) saturated with an amorphous hydrogel. Sprayable hydrogel dressings are composed of amorphous hydrogels which rapidly increase in viscosity after application. Sprayable hydrogels have also been shown to increase the penetration and efficacy of therapeutic agents.
27:
infection, retain moisture, promote optimum adhesion to tissues, and satisfy the basic requirements of biocompatibility. Hydrogel dressings can also be designed to respond to changes in the microenvironment at the wound bed. Hydrogel dressings should promote an appropriate microenvironment for angiogenesis, recruitment of fibroblasts, and cellular proliferation.
122:
accelerate healing in partial and full thickness burn wounds of varying size. Other studies have shown that hydrogel dressings accelerate healing in radioactive skin injuries and dog bite wounds. Hydrogel dressings decrease the healing time of traumatic skin injuries by an average 5.28 days and reduce the pain reported by patients.
63:
Hydrogels can be formed through a self-assembly process in which monomers diffuse in solution then form non covalent interactions. Hydrogels used in wound dressings can be self-assembled upon addition of divalent metal cations or electrically charged polysaccharides due to electrostatic interactions.
42:
such as polyvinyl alcohol (PVA). Self-assembling designer peptide hydrogels are another type of synthetic hydrogel in development. Natural hydrogel dressings are further subdivided into either polysaccharide-based (e.g. alginates) or proteoglycan- and/or protein-based (e.g. collagen). Hybrid hydrogel
100:
Self-healing hydrogels automatically and reversibly repair damage done due to mechanical and chemical stress. Self-healing mechanisms can involve "dynamic covalent bonding, non-covalent interactions" and mixed interactions. Covalent interactions involved in self-healing include Schiff base formation
104:
Hydrogel dressings are available in sheet, amorphous, impregnated, or sprayable forms. Sheet-form hydrogel dressings are non-adhesive against the wound and are effective in healing partial-thickness wounds. Amorphous hydrogels are more effective in treatment of full-thickness wounds than sheet-form
199:
Hydrogels may be modified to incorporate metal cations (e.g. copper (II)), degradable linkers (e.g. dextran), and adhesive functional groups (e.g. RGD). Integrating biological derivatives into synthetic hydrogels allows producers to tailor binding affinities and specificity, mechanical properties,
121:
The efficacy of hydrogel dressings has been assessed on various wound types. There is some evidence to suggest that hydrogels are effective dressings for chronic wounds including pressure ulcers, diabetic ulcers, and venous ulcers although the results are uncertain. Hydrogels have been shown to
96:
Wound dressings should be stretchable to prevent tearing. Hai Lei et al. demonstrated that poor elasticity and hysteresis in naturally-derived protein-based hydrogels can be remedied by the addition of polyprotein cross-linkers. The flexibility of hydrogels can also be enhanced by incorporating
72:
Cross-linking of soluble hydrophilic monomers forms a 3D insoluble netted structure which can incorporate a large amount of water. The 3D polymeric network of hydrogels is highly hydrated with 90-99% water w/w; it is capable of binding many times more water molecules when assembled than in the
26:
are three-dimensional networks consisting of chemically or physically cross-linked hydrophilic polymers. The insoluble hydrophilic structures absorb polar wound exudates and allow oxygen diffusion at the wound bed to accelerate healing. Hydrogel dressings can be designed to prevent bacterial
30:
Hydrogels respond elastically to applied stress; gels made from materials like collagen exhibit high toughness and low sliding friction, reducing damage from mechanical stress. Hydrogel dressings should possess mechanical and physical properties similar to the 3D microenvironment of the
1056:
De Giglio, E.; Cometa, S.; Ricci, M.A.; Cafagna, D.; Savino, A.M.; Sabbatini, L.; Orciani, M.; Ceci, E.; Novello, L.; Tantillo, G.M.; Mattioli-Belmonte, M. (February 2011). "Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections".
101:
and disulfide exchange. Non-covalent interactions are generally less stable and make the hydrogel more sensitive to microenvironmental changes (e.g. pH, temperature). Some hydrogel dressings are self-healing due to mixed mechanisms such as host-guest and protein-ligand interactions.
2423:
Mattioli-Belmonte, M.; Zizzi, A.; Lucarini, G.; Giantomassi, F.; Biagini, G.; Tucci, G.; Orlando, F.; Provinciali, M.; Carezzi, F.; Morganti, P. (September 2007). "Chitin Nanofibrils Linked to Chitosan Glycolate as Spray, Gel, and Gauze Preparations for Wound Repair".
1103:
Chang, Chiung-Hung; Lin, Yu-Hsin; Yeh, Chia-Lin; Chen, Yi-Chi; Chiou, Shu-Fen; Hsu, Yuan-Man; Chen, Yueh-Sheng; Wang, Chi-Chung (2009-11-19). "Nanoparticles Incorporated in pH-Sensitive Hydrogels as Amoxicillin Delivery for Eradication of Helicobacter pylori".
2521:
Tavakoli, Shima; Mokhtari, Hamidreza; Kharaziha, Mahshid; Kermanpur, Ahmad; Talebi, Ardeshir; Moshtaghian, Jamal (June 2020). "A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds".
2573:
Ying, Huiyan; Zhou, Juan; Wang, Mingyu; Su, Dandan; Ma, Qiaoqiao; Lv, Guozhong; Chen, Jinghua (August 2019). "In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing".
68:
via hydrophobic interactions can be induced in amphiphilic polysaccharides-based gels by addition of water; it can also be induced in non amphiphilic polysaccharide-based hydrogels by addition of hydrophobic grafts.
87:
reactions of quinones. The adhesive properties of hydrogels have been shown to be enhanced by addition of positively charged microgels (MR) into the 3D matrix to increase electrostatic and hydrophobic interactions.
2804:
Cereceres, Stacy; Lan, Ziyang; Bryan, Laura; Whitely, Michael; Wilems, Thomas; Greer, Hunter; Alexander, Ellen Ruth; Taylor, Robert J.; Bernstein, Lawrence; Cohen, Noah; Whitfield-Cargile, Canaan (June 2019).
690: 2380:
Ong, Shin-Yeu; Wu, Jian; Moochhala, Shabbir M.; Tan, Mui-Hong; Lu, Jia (November 2008). "Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties".
1267:
He, Xiaoyan; Liu, Liqin; Han, Huimin; Shi, Wenyu; Yang, Wu; Lu, Xiaoquan (2018-12-18). "Bioinspired and Microgel-Tackified Adhesive Hydrogel with Rapid Self-Healing and High Stretchability".
1742:
Witthayaprapakorn, C.; Molloy, Robert; Nalampang, K.; Tighe, B.J. (August 2008). "Design and Preparation of a Bioresponsive Hydrogel for Biomedical Application as a Wound Dressing".
38:
Hydrogel dressings can be sorted into the categories: synthetic, natural, and hybrid. Synthetic hydrogel dressings have been produced using biomimetic extracellular matrix
2470:
Stubbe, Birgit; Mignon, Arn; Declercq, Heidi; Vlierberghe, Sandra; Dubruel, Peter (2019-06-25). "Development of Gelatin-Alginate Hydrogels for Burn Wound Treatment".
97:
microgels into the matrix. Hydrogel dressings mimic the fibrous nature of native ECM to maintain cell-to-cell communication at the wound bed for tissue regeneration.
2241:
Zhang, Lijun; Yin, Hanxiao; Lei, Xun; Lau, Johnson N. Y.; Yuan, Mingzhou; Wang, Xiaoyan; Zhang, Fangyingnan; Zhou, Fei; Qi, Shaohai; Shu, Bin; Wu, Jun (2019-11-21).
237:
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. (2006-06-06). "Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology".
1840:
Mi, Luo; Xue, Hong; Li, Yuting; Jiang, Shaoyi (2011-09-07). "A Thermoresponsive Antimicrobial Wound Dressing Hydrogel Based on a Cationic Betaine Ester".
809:
Basak, Shibaji; Nanda, Jayanta; Banerjee, Arindam (2014). "Multi-stimuli responsive self-healing metallo-hydrogels: tuning of the gel recovery property".
371:
Ulijn, Rein V.; Bibi, Nurguse; Jayawarna, Vineetha; Thornton, Paul D.; Todd, Simon J.; Mart, Robert J.; Smith, Andrew M.; Gough, Julie E. (April 2007).
1883:
Zoellner, P.; Kapp, H.; Smola, H. (March 2007). "Clinical performance of a hydrogel dressing in chronic wounds: a prospective observational study".
2040:
Li, Yuan; Jiang, Shishuang; Song, Liwan; Yao, Zhe; Zhang, Junwen; Wang, Kangning; Jiang, Liping; He, Huacheng; Lin, Cai; Wu, Jiang (2021-10-08).
1310:
Lei, Hai; Dong, Liang; Li, Ying; Zhang, Junsheng; Chen, Huiyan; Wu, Junhua; Zhang, Yu; Fan, Qiyang; Xue, Bin; Qin, Meng; Chen, Bin (2020-08-12).
35:
of human skin. Hydrogel wound dressings are designed to have a mechanism for application and removal which minimizes further trauma to tissues.
2161:
Nuutila, Kristo; Grolman, Josh; Yang, Lu; Broomhead, Michael; Lipsitz, Stuart; Onderdonk, Andrew; Mooney, David; Eriksson, Elof (2020-02-01).
187:(PU), and poly(lactide-co-glycolide) (PLGA). Synthetic hydrogel dressings may also be formed from designer peptides. Researchers are applying 2741:"Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds" 856: 2163:"Immediate Treatment of Burn Wounds with High Concentrations of Topical Antibiotics in an Alginate Hydrogel Using a Platform Wound Device" 2319:
Wang, J (2008). "Local treatment of canine bite wound III with silver ion dressing combined with hydrogel: randomized controlled group".
1624:
Hendi, Asail; Umair Hassan, Muhammad; Elsherif, Mohamed; Alqattan, Bader; Park, Seongjun; Yetisen, Ali Kemal; Butt, Haider (June 2020).
1378:
Huang, Guoyou; Li, Fei; Zhao, Xin; Ma, Yufei; Li, Yuhui; Lin, Min; Jin, Guorui; Lu, Tian Jian; Genin, Guy M.; Xu, Feng (2017-10-09).
2243:"A Systematic Review and Meta-Analysis of Clinical Effectiveness and Safety of Hydrogel Dressings in the Management of Skin Wounds" 2099:
Mohd Zohdi, Rozaini; Abu Bakar Zakaria, Zuki; Yusof, Norimah; Mohamed Mustapha, Noordin; Abdullah, Muhammad Nazrul Hakim (2012).
2682:
Mir, Mariam; Ali, Murtaza Najabat; Barakullah, Afifa; Gulzar, Ayesha; Arshad, Munam; Fatima, Shizza; Asad, Maliha (2018-02-14).
547:
Mogoşanu, George Dan; Grumezescu, Alexandru Mihai (March 2014). "Natural and synthetic polymers for wounds and burns dressing".
517:
Jones, Annie; Vaughan, David (December 2005). "Hydrogel dressings in the management of a variety of wound types: A review".
1781:
Nizioł, Martyna; Paleczny, Justyna; Junka, Adam; Shavandi, Amin; Dawiec-Liśniewska, Anna; Podstawczyk, Daria (2021-06-08).
2042:"Zwitterionic Hydrogel Activates Autophagy to Promote Extracellular Matrix Remodeling for Improved Pressure Ulcer Healing" 1209:"Effect of pH on the Rate of Curing and Bioadhesive Properties of Dopamine Functionalized Poly(ethylene glycol) Hydrogels" 646:
Varshney, Lalit (February 2007). "Role of natural polysaccharides in radiation formation of PVA–hydrogel wound dressing".
2924: 2862:
Jang, M J; Bae, S K; Jung, Y S; Kim, J C; Kim, J S; Park, S K; Suh, J S; Yi, S J; Ahn, S H; Lim, J O (2021-04-09).
2300:
Jiang, X; Sun, R; Li, J (2018). "Observation on the effect of hydrogel dressing on radiation-induced skin injury".
1983:
Norman, Gill; Westby, Maggie J; Rithalia, Amber D; Stubbs, Nikki; Soares, Marta O; Dumville, Jo C (2018-06-15).
1783:"3D Printing of Thermoresponsive Hydrogel Laden with an Antimicrobial Agent towards Wound Healing Applications" 1552: 1529: 2864:"Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model" 1152:"Characterization of pHEMA-based hydrogels that exhibit light-induced bactericidal effect via release of NO" 1506: 77: 2321: 648:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
2627:"A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings" 1312:"Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers" 155:. Naturally-derived protein/proteoglycan hydrogel dressings have been synthesized from polymers such as 17: 2361:
Huang, G (2016). "Treatment and nursing observation of 42 cases of acute skin abrasion and contusion".
1150:
Halpenny, Genevieve M.; Steinhardt, Rachel C.; Okialda, Krystle A.; Mascharak, Pradip K. (2009-06-24).
2752: 1323: 763: 655: 246: 32: 1380:"Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment" 1207:
Cencer, Morgan; Liu, Yuan; Winter, Audra; Murley, Meridith; Meng, Hao; Lee, Bruce P. (2014-07-17).
463:"Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications" 180: 2218: 1557: 1534: 1511: 83:
Hydrogel dressings can adhere directly to the wound bed under normal physiological conditions via
2901: 2607: 2555: 2503: 2449: 1865: 1763: 1606: 1292: 704:
Hennink, W.E; van Nostrum, C.F (January 2002). "Novel crosslinking methods to design hydrogels".
443: 270: 76:
Some hydrogel dressings have intrinsic antimicrobial properties. Hydrogel dressings formed from
2342: 1751: 2893: 2885: 2844: 2826: 2786: 2768: 2721: 2703: 2664: 2646: 2599: 2591: 2547: 2539: 2495: 2487: 2441: 2405: 2397: 2282: 2264: 2200: 2182: 2140: 2122: 2081: 2063: 2022: 2004: 1965: 1947: 1908: 1900: 1857: 1822: 1804: 1755: 1724: 1706: 1665: 1647: 1598: 1485: 1467: 1417: 1399: 1357: 1339: 1284: 1246: 1228: 1189: 1171: 1129: 1121: 1082: 1074: 1038: 1020: 979: 971: 930: 912: 834: 826: 781: 729: 721: 671: 628: 610: 564: 492: 435: 427: 346: 328: 262: 176: 2739:
Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E. (2016-09-07).
2875: 2834: 2818: 2776: 2760: 2711: 2695: 2654: 2638: 2583: 2531: 2479: 2433: 2389: 2272: 2254: 2190: 2174: 2130: 2112: 2071: 2053: 2012: 1996: 1955: 1939: 1892: 1849: 1812: 1794: 1747: 1714: 1696: 1655: 1637: 1588: 1577:"Development of Hydrogel-Based Sprayable Wound Dressings for Second- and Third-Degree Burns" 1475: 1457: 1407: 1391: 1347: 1331: 1276: 1236: 1220: 1179: 1163: 1113: 1066: 1028: 1010: 961: 920: 904: 818: 789: 771: 713: 663: 618: 600: 589:"Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite" 556: 526: 482: 474: 417: 384: 336: 318: 254: 950:"Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action" 866: 136: 2756: 1327: 767: 659: 250: 2839: 2806: 2781: 2740: 2716: 2683: 2659: 2626: 2393: 2277: 2242: 2195: 2162: 2135: 2100: 2076: 2041: 2017: 1984: 1960: 1927: 1817: 1782: 1719: 1684: 1660: 1625: 1480: 1445: 1412: 1379: 1352: 1311: 1241: 1208: 1184: 1151: 1033: 998: 925: 892: 794: 751: 623: 588: 487: 462: 341: 306: 717: 530: 389: 372: 2918: 2905: 2807:"Bactericidal activity of 3D-printed hydrogel dressing loaded with gallium maltolate" 2611: 2559: 2507: 2223: 1767: 1610: 1296: 65: 2453: 1869: 274: 135:
Polysaccharide-based hydrogel dressings have been synthesized from polymers such as
2000: 1943: 447: 184: 148: 1896: 1799: 560: 1926:
Dumville, Jo C; O'Meara, Susan; Deshpande, Sohan; Speak, Katharine (2013-07-12).
1280: 1070: 966: 949: 478: 1683:
Lu, Hao; Yuan, Long; Yu, Xunzhou; Wu, Chengzhou; He, Danfeng; Deng, Jun (2018).
1395: 404:
Percival, Steven L.; McCarty, Sara; Hunt, John A.; Woods, Emma J. (2014-02-24).
188: 2880: 2863: 2642: 2587: 2535: 1335: 667: 2699: 2058: 1701: 1167: 587:
Rivas, Manuel; del Valle, Luís; Alemán, Carlos; Puiggalí, Jordi (2019-03-06).
57: 2889: 2830: 2772: 2707: 2650: 2595: 2543: 2491: 2445: 2437: 2401: 2268: 2259: 2186: 2126: 2067: 2008: 1951: 1904: 1861: 1808: 1759: 1710: 1651: 1602: 1471: 1462: 1403: 1343: 1288: 1232: 1175: 1125: 1078: 1024: 975: 916: 830: 785: 725: 675: 614: 431: 332: 266: 2340:
Chen, L (2015). "Clinical observation of skin wound wet healing treatment".
2178: 175:
Synthetic hydrogel dressings may be derived from synthetic polymers such as
39: 2897: 2848: 2790: 2725: 2668: 2603: 2551: 2499: 2483: 2409: 2286: 2204: 2144: 2085: 2026: 1969: 1912: 1853: 1826: 1728: 1669: 1593: 1576: 1489: 1421: 1361: 1250: 1193: 1133: 1086: 1042: 983: 934: 838: 733: 632: 568: 496: 439: 350: 258: 2117: 1626:"Healthcare Applications of pH-Sensitive Hydrogel-Based Devices: A Review" 1575:
He, Jacqueline Jialu; McCarthy, Colleen; Camci-Unal, Gulden (2021-04-09).
406:"The effects of pH on wound healing, biofilms, and antimicrobial efficacy" 2219:"In third-degree burn treatment, hydrogel helps grow new, scar-free skin" 1015: 861: 323: 156: 144: 23: 1642: 605: 822: 691:"Degradable Poly(ethylene glycol) Hydrogels for 2D and 3D Cell Culture" 160: 152: 2822: 2764: 1224: 1117: 908: 776: 752:"Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications" 422: 405: 2101:"Gelam ( Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing" 164: 140: 43:
dressings incorporate synthetic nanoparticles and natural materials.
948:
Chan, David I.; Prenner, Elmar J.; Vogel, Hans J. (September 2006).
999:"Applications of Chitin and Its Derivatives in Biological Medicine" 84: 2625:
Kamoun, Elbadawy A.; Kenawy, El-Refaie S.; Chen, Xin (May 2017).
1446:"Synthesis and Biomedical Applications of Self-healing Hydrogels" 1685:"Recent advances of on-demand dissolution of hydrogel dressings" 750:
Gonçalves, Catarina; Pereira, Paula; Gama, Miguel (2010-02-24).
2684:"Synthetic polymeric biomaterials for wound healing: a review" 1985:"Dressings and topical agents for treating venous leg ulcers" 893:"Antimicrobial hydrogels for the treatment of infection" 891:
Salomé Veiga, Ana; Schneider, Joel P. (November 2013).
2105:
Evidence-Based Complementary and Alternative Medicine
1928:"Hydrogel dressings for healing diabetic foot ulcers" 461:
Xu, Cancan; Dai, Guohao; Hong, Yi (September 2019).
1156:
Journal of Materials Science: Materials in Medicine
954:Biochimica et Biophysica Acta (BBA) - Biomembranes 56:Hydrogel dressings exhibit chemical or physical 305:Tavakoli, Shima; Klar, Agnes S. (2020-08-11). 2247:Frontiers in Bioengineering and Biotechnology 2046:Frontiers in Bioengineering and Biotechnology 8: 2426:Journal of Bioactive and Compatible Polymers 997:Park, Bae Keun; Kim, Moon-Moo (2010-12-15). 1003:International Journal of Molecular Sciences 2879: 2838: 2780: 2715: 2658: 2276: 2258: 2194: 2134: 2116: 2075: 2057: 2016: 1959: 1816: 1798: 1718: 1700: 1659: 1641: 1592: 1479: 1461: 1411: 1351: 1240: 1183: 1032: 1014: 965: 924: 793: 775: 622: 604: 486: 421: 388: 340: 322: 1752:10.4028/www.scientific.net/amr.55-57.681 191:to the synthesis of hydrogel dressings. 1989:Cochrane Database of Systematic Reviews 1932:Cochrane Database of Systematic Reviews 307:"Advanced Hydrogels as Wound Dressings" 208: 2465: 2463: 2236: 2234: 2156: 2154: 1570: 1568: 1547: 1545: 1524: 1522: 1501: 1499: 1439: 1437: 1435: 1433: 1431: 1373: 1371: 1262: 1260: 1145: 1143: 1098: 1096: 886: 884: 882: 880: 878: 876: 549:International Journal of Pharmaceutics 1630:International Journal of Nanomedicine 1444:Liu, Yi; Hsu, Shan-hui (2018-10-02). 850: 848: 745: 743: 232: 7: 2576:Materials Science and Engineering: C 2524:Materials Science and Engineering: C 582: 580: 578: 542: 540: 512: 510: 508: 506: 366: 364: 362: 360: 300: 298: 296: 294: 292: 290: 288: 286: 284: 230: 228: 226: 224: 222: 220: 218: 216: 214: 212: 131:Naturally-derived hydrogel dressings 200:and stimuli-responsive properties. 2394:10.1016/j.biomaterials.2008.07.034 14: 2001:10.1002/14651858.cd012583.pub2 1944:10.1002/14651858.cd009101.pub3 706:Advanced Drug Delivery Reviews 519:Journal of Orthopaedic Nursing 1: 1897:10.12968/jowc.2007.16.3.27019 1842:Advanced Functional Materials 1800:10.3390/bioengineering8060079 718:10.1016/s0169-409x(01)00240-x 561:10.1016/j.ijpharm.2013.12.015 531:10.1016/S1361-3111(05)80001-9 410:Wound Repair and Regeneration 390:10.1016/S1369-7021(07)70049-4 2631:Journal of Advanced Research 1581:Advanced NanoBiomed Research 1281:10.1021/acs.macromol.8b01678 1071:10.1016/j.actbio.2010.07.030 967:10.1016/j.bbamem.2006.04.006 479:10.1016/j.actbio.2019.05.032 195:Biohybrid hydrogel dressings 171:Synthetic hydrogel dressings 1744:Advanced Materials Research 1396:10.1021/acs.chemrev.7b00094 2941: 2643:10.1016/j.jare.2017.01.005 2588:10.1016/j.msec.2019.03.093 2536:10.1016/j.msec.2020.110837 1336:10.1038/s41467-020-17877-z 668:10.1016/j.nimb.2006.11.101 109:"Smart" hydrogel dressings 15: 2700:10.1007/s40204-018-0083-4 2472:Macromolecular Bioscience 2059:10.3389/fbioe.2021.740863 1702:10.1186/s41038-018-0138-8 1168:10.1007/s10856-009-3795-0 373:"Bioresponsive hydrogels" 163:, kappa-carrageenan, and 2881:10.1088/1748-605x/abf1a8 2688:Progress in Biomaterials 2438:10.1177/0883911507082157 2260:10.3389/fbioe.2019.00342 1553:"Hydrogels: Impregnated" 1463:10.3389/fchem.2018.00449 92:Physical characteristics 52:Chemical characteristics 16:Not to be confused with 2179:10.1089/wound.2019.1018 2484:10.1002/mabi.201900123 2167:Advances in Wound Care 1854:10.1002/adfm.201100871 1594:10.1002/anbr.202100004 1530:"Hydrogels: Amorphous" 1450:Frontiers in Chemistry 259:10.1002/adma.200501612 78:antimicrobial peptides 1885:Journal of Wound Care 1316:Nature Communications 181:poly(ethylene glycol) 18:Hydrocolloid dressing 2868:Biomedical Materials 2302:J. Pract. Clin. Nurs 1016:10.3390/ijms11125152 855:Wong, Vicky (2007). 324:10.3390/biom10081169 33:extracellular matrix 2757:2016NatSR...632670S 2322:Chin. J. Tissue Eng 2227:. 14 December 2011. 2118:10.1155/2012/843025 1643:10.2147/ijn.s245743 1507:"Hydrogels: Sheets" 1390:(20): 12764–12850. 1328:2020NatCo..11.4032L 768:2010Mate....3.1420G 660:2007NIMPB.255..343V 606:10.3390/gels5010014 251:2006AdM....18.1345P 85:oxidation-reduction 2925:Medical treatments 2811:APL Bioengineering 2745:Scientific Reports 1746:. 55–57: 681–684. 1689:Burns & Trauma 1059:Acta Biomaterialia 823:10.1039/c3cc48896a 467:Acta Biomaterialia 239:Advanced Materials 2823:10.1063/1.5088801 2765:10.1038/srep32670 2388:(32): 4323–4332. 1848:(21): 4028–4034. 1225:10.1021/bm500701u 1213:Biomacromolecules 1162:(11): 2353–2360. 1118:10.1021/bm900985h 1106:Biomacromolecules 1009:(12): 5152–5164. 909:10.1002/bip.22412 817:(18): 2356–2359. 777:10.3390/ma3021420 689:Kasko, Andrea M. 423:10.1111/wrr.12125 245:(11): 1345–1360. 177:polyvinyl alcohol 2932: 2910: 2909: 2883: 2859: 2853: 2852: 2842: 2801: 2795: 2794: 2784: 2736: 2730: 2729: 2719: 2679: 2673: 2672: 2662: 2622: 2616: 2615: 2570: 2564: 2563: 2518: 2512: 2511: 2467: 2458: 2457: 2420: 2414: 2413: 2377: 2371: 2370: 2358: 2352: 2351: 2337: 2331: 2330: 2316: 2310: 2309: 2297: 2291: 2290: 2280: 2262: 2238: 2229: 2228: 2215: 2209: 2208: 2198: 2158: 2149: 2148: 2138: 2120: 2096: 2090: 2089: 2079: 2061: 2037: 2031: 2030: 2020: 1980: 1974: 1973: 1963: 1923: 1917: 1916: 1880: 1874: 1873: 1837: 1831: 1830: 1820: 1802: 1778: 1772: 1771: 1739: 1733: 1732: 1722: 1704: 1680: 1674: 1673: 1663: 1645: 1621: 1615: 1614: 1596: 1572: 1563: 1562: 1549: 1540: 1539: 1526: 1517: 1516: 1503: 1494: 1493: 1483: 1465: 1441: 1426: 1425: 1415: 1384:Chemical Reviews 1375: 1366: 1365: 1355: 1307: 1301: 1300: 1264: 1255: 1254: 1244: 1219:(8): 2861–2869. 1204: 1198: 1197: 1187: 1147: 1138: 1137: 1100: 1091: 1090: 1053: 1047: 1046: 1036: 1018: 994: 988: 987: 969: 960:(9): 1184–1202. 945: 939: 938: 928: 888: 871: 870: 852: 843: 842: 806: 800: 799: 797: 779: 762:(2): 1420–1460. 747: 738: 737: 701: 695: 694: 686: 680: 679: 643: 637: 636: 626: 608: 584: 573: 572: 544: 535: 534: 514: 501: 500: 490: 458: 452: 451: 425: 401: 395: 394: 392: 368: 355: 354: 344: 326: 302: 279: 278: 234: 2940: 2939: 2935: 2934: 2933: 2931: 2930: 2929: 2915: 2914: 2913: 2861: 2860: 2856: 2803: 2802: 2798: 2738: 2737: 2733: 2681: 2680: 2676: 2624: 2623: 2619: 2572: 2571: 2567: 2520: 2519: 2515: 2469: 2468: 2461: 2422: 2421: 2417: 2379: 2378: 2374: 2363:J. Yangtze Univ 2360: 2359: 2355: 2339: 2338: 2334: 2318: 2317: 2313: 2299: 2298: 2294: 2240: 2239: 2232: 2217: 2216: 2212: 2160: 2159: 2152: 2098: 2097: 2093: 2039: 2038: 2034: 1995:(6): CD012583. 1982: 1981: 1977: 1938:(7): CD009101. 1925: 1924: 1920: 1882: 1881: 1877: 1839: 1838: 1834: 1780: 1779: 1775: 1741: 1740: 1736: 1682: 1681: 1677: 1623: 1622: 1618: 1574: 1573: 1566: 1551: 1550: 1543: 1528: 1527: 1520: 1505: 1504: 1497: 1443: 1442: 1429: 1377: 1376: 1369: 1309: 1308: 1304: 1266: 1265: 1258: 1206: 1205: 1201: 1149: 1148: 1141: 1102: 1101: 1094: 1055: 1054: 1050: 996: 995: 991: 947: 946: 942: 890: 889: 874: 854: 853: 846: 808: 807: 803: 749: 748: 741: 703: 702: 698: 688: 687: 683: 645: 644: 640: 586: 585: 576: 546: 545: 538: 516: 515: 504: 460: 459: 455: 403: 402: 398: 377:Materials Today 370: 369: 358: 304: 303: 282: 236: 235: 210: 206: 197: 173: 137:hyaluronic acid 133: 128: 119: 111: 94: 54: 49: 47:Characteristics 21: 12: 11: 5: 2938: 2936: 2928: 2927: 2917: 2916: 2912: 2911: 2854: 2796: 2731: 2674: 2637:(3): 217–233. 2617: 2565: 2513: 2478:(8): 1900123. 2459: 2432:(5): 525–538. 2415: 2372: 2353: 2332: 2311: 2292: 2230: 2210: 2150: 2091: 2032: 1975: 1918: 1891:(3): 133–136. 1875: 1832: 1787:Bioengineering 1773: 1734: 1675: 1616: 1587:(6): 2100004. 1564: 1541: 1518: 1495: 1427: 1367: 1302: 1269:Macromolecules 1256: 1199: 1139: 1112:(1): 133–142. 1092: 1065:(2): 882–891. 1048: 989: 940: 903:(6): 637–644. 872: 844: 801: 739: 696: 681: 654:(2): 343–349. 638: 574: 555:(2): 127–136. 536: 502: 453: 416:(2): 174–186. 396: 356: 280: 207: 205: 202: 196: 193: 172: 169: 132: 129: 127: 124: 118: 115: 110: 107: 93: 90: 53: 50: 48: 45: 13: 10: 9: 6: 4: 3: 2: 2937: 2926: 2923: 2922: 2920: 2907: 2903: 2899: 2895: 2891: 2887: 2882: 2877: 2874:(4): 045013. 2873: 2869: 2865: 2858: 2855: 2850: 2846: 2841: 2836: 2832: 2828: 2824: 2820: 2817:(2): 026102. 2816: 2812: 2808: 2800: 2797: 2792: 2788: 2783: 2778: 2774: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2735: 2732: 2727: 2723: 2718: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2678: 2675: 2670: 2666: 2661: 2656: 2652: 2648: 2644: 2640: 2636: 2632: 2628: 2621: 2618: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2577: 2569: 2566: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2517: 2514: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2481: 2477: 2473: 2466: 2464: 2460: 2455: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2419: 2416: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2376: 2373: 2368: 2364: 2357: 2354: 2349: 2345: 2344: 2336: 2333: 2328: 2324: 2323: 2315: 2312: 2307: 2303: 2296: 2293: 2288: 2284: 2279: 2274: 2270: 2266: 2261: 2256: 2252: 2248: 2244: 2237: 2235: 2231: 2226: 2225: 2224:Science Daily 2220: 2214: 2211: 2206: 2202: 2197: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2157: 2155: 2151: 2146: 2142: 2137: 2132: 2128: 2124: 2119: 2114: 2110: 2106: 2102: 2095: 2092: 2087: 2083: 2078: 2073: 2069: 2065: 2060: 2055: 2051: 2047: 2043: 2036: 2033: 2028: 2024: 2019: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1979: 1976: 1971: 1967: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1922: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1879: 1876: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1836: 1833: 1828: 1824: 1819: 1814: 1810: 1806: 1801: 1796: 1792: 1788: 1784: 1777: 1774: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1738: 1735: 1730: 1726: 1721: 1716: 1712: 1708: 1703: 1698: 1694: 1690: 1686: 1679: 1676: 1671: 1667: 1662: 1657: 1653: 1649: 1644: 1639: 1636:: 3887–3901. 1635: 1631: 1627: 1620: 1617: 1612: 1608: 1604: 1600: 1595: 1590: 1586: 1582: 1578: 1571: 1569: 1565: 1560: 1559: 1554: 1548: 1546: 1542: 1537: 1536: 1531: 1525: 1523: 1519: 1514: 1513: 1508: 1502: 1500: 1496: 1491: 1487: 1482: 1477: 1473: 1469: 1464: 1459: 1455: 1451: 1447: 1440: 1438: 1436: 1434: 1432: 1428: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1372: 1368: 1363: 1359: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1306: 1303: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1263: 1261: 1257: 1252: 1248: 1243: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1200: 1195: 1191: 1186: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1146: 1144: 1140: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1099: 1097: 1093: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1052: 1049: 1044: 1040: 1035: 1030: 1026: 1022: 1017: 1012: 1008: 1004: 1000: 993: 990: 985: 981: 977: 973: 968: 963: 959: 955: 951: 944: 941: 936: 932: 927: 922: 918: 914: 910: 906: 902: 898: 894: 887: 885: 883: 881: 879: 877: 873: 868: 864: 863: 858: 851: 849: 845: 840: 836: 832: 828: 824: 820: 816: 812: 805: 802: 796: 791: 787: 783: 778: 773: 769: 765: 761: 757: 753: 746: 744: 740: 735: 731: 727: 723: 719: 715: 711: 707: 700: 697: 692: 685: 682: 677: 673: 669: 665: 661: 657: 653: 649: 642: 639: 634: 630: 625: 620: 616: 612: 607: 602: 598: 594: 590: 583: 581: 579: 575: 570: 566: 562: 558: 554: 550: 543: 541: 537: 532: 528: 524: 520: 513: 511: 509: 507: 503: 498: 494: 489: 484: 480: 476: 472: 468: 464: 457: 454: 449: 445: 441: 437: 433: 429: 424: 419: 415: 411: 407: 400: 397: 391: 386: 382: 378: 374: 367: 365: 363: 361: 357: 352: 348: 343: 338: 334: 330: 325: 320: 316: 312: 308: 301: 299: 297: 295: 293: 291: 289: 287: 285: 281: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 233: 231: 229: 227: 225: 223: 221: 219: 217: 215: 213: 209: 203: 201: 194: 192: 190: 186: 182: 178: 170: 168: 166: 162: 158: 154: 150: 146: 142: 138: 130: 125: 123: 116: 114: 108: 106: 102: 98: 91: 89: 86: 81: 79: 74: 70: 67: 66:Self-assembly 61: 59: 58:cross-linking 51: 46: 44: 41: 36: 34: 28: 25: 19: 2871: 2867: 2857: 2814: 2810: 2799: 2751:(1): 32670. 2748: 2744: 2734: 2691: 2687: 2677: 2634: 2630: 2620: 2579: 2575: 2568: 2527: 2523: 2516: 2475: 2471: 2429: 2425: 2418: 2385: 2382:Biomaterials 2381: 2375: 2366: 2362: 2356: 2350:: 1811–1813. 2347: 2341: 2335: 2329:: 2659–2662. 2326: 2320: 2314: 2305: 2301: 2295: 2250: 2246: 2222: 2213: 2173:(2): 48–60. 2170: 2166: 2108: 2104: 2094: 2049: 2045: 2035: 1992: 1988: 1978: 1935: 1931: 1921: 1888: 1884: 1878: 1845: 1841: 1835: 1790: 1786: 1776: 1743: 1737: 1692: 1688: 1678: 1633: 1629: 1619: 1584: 1580: 1558:Wound Source 1556: 1535:Wound Source 1533: 1512:Wound Source 1510: 1453: 1449: 1387: 1383: 1319: 1315: 1305: 1275:(1): 72–80. 1272: 1268: 1216: 1212: 1202: 1159: 1155: 1109: 1105: 1062: 1058: 1051: 1006: 1002: 992: 957: 953: 943: 900: 896: 860: 814: 811:Chem. Commun 810: 804: 759: 755: 712:(1): 13–36. 709: 705: 699: 684: 651: 647: 641: 596: 592: 552: 548: 522: 518: 470: 466: 456: 413: 409: 399: 383:(4): 40–48. 380: 376: 314: 311:Biomolecules 310: 242: 238: 198: 185:polyurethane 174: 134: 120: 117:Applications 112: 103: 99: 95: 82: 75: 71: 62: 55: 37: 29: 22: 2694:(1): 1–21. 2582:: 487–498. 1322:(1): 4032. 897:Biopolymers 857:"Hydrogels" 317:(8): 1169. 189:3D printing 2530:: 110837. 2111:: 843025. 2052:: 740863. 525:: S1–S11. 204:References 40:nanofibers 2906:232355932 2890:1748-6041 2831:2473-2877 2773:2045-2322 2708:2194-0509 2651:2090-1232 2612:108904004 2596:0928-4931 2560:215750261 2544:0928-4931 2508:195355185 2492:1616-5187 2446:0883-9115 2402:0142-9612 2343:Huaxi Med 2308:: 91–100. 2269:2296-4185 2187:2162-1918 2127:1741-427X 2068:2296-4185 2009:1465-1858 1952:1465-1858 1905:0969-0700 1862:1616-301X 1809:2306-5354 1793:(6): 79. 1768:136738274 1760:1662-8985 1711:2321-3876 1652:1178-2013 1611:233669658 1603:2699-9307 1472:2296-2646 1404:0009-2665 1344:2041-1723 1297:104431319 1289:0024-9297 1233:1525-7797 1176:0957-4530 1126:1525-7797 1079:1742-7061 1025:1422-0067 976:0005-2736 917:0006-3525 831:1359-7345 786:1996-1944 756:Materials 726:0169-409X 676:0168-583X 615:2310-2861 599:(1): 14. 473:: 50–59. 432:1067-1927 333:2218-273X 267:0935-9648 167:.   24:Hydrogels 2919:Category 2898:33761488 2849:31123722 2791:27600999 2726:29446015 2669:28239493 2604:31029343 2552:32279800 2500:31237746 2454:56285246 2410:18708251 2369:: 67–68. 2287:31824935 2205:31903298 2145:21941590 2086:34692658 2027:29906322 1970:23846869 1913:17385591 1870:96376955 1827:34201362 1729:30619904 1670:32581536 1490:30333970 1422:28991456 1362:32788575 1251:25010812 1194:19554428 1134:19924885 1087:20659594 1043:21614199 984:16756942 935:24122459 862:Catalyst 839:24448590 734:11755704 633:30845674 569:24368109 497:31125728 440:24611980 351:32796593 275:16865835 157:collagen 149:alginate 145:chitosan 2840:6506339 2782:5013444 2753:Bibcode 2717:5823812 2660:5315442 2278:6881259 2253:: 342. 2196:6940590 2136:3175734 2077:8531594 2018:6513558 1961:6486218 1818:8227034 1720:6310937 1661:7276332 1481:6176467 1456:: 449. 1413:6494624 1353:7423981 1324:Bibcode 1242:4130238 1185:2778696 1034:3100826 926:3929057 795:5513474 764:Bibcode 656:Bibcode 624:6473879 488:6710142 448:5393915 342:7464761 247:Bibcode 183:(PEG), 179:(PVA), 161:gelatin 153:agarose 2904:  2896:  2888:  2847:  2837:  2829:  2789:  2779:  2771:  2724:  2714:  2706:  2667:  2657:  2649:  2610:  2602:  2594:  2558:  2550:  2542:  2506:  2498:  2490:  2452:  2444:  2408:  2400:  2285:  2275:  2267:  2203:  2193:  2185:  2143:  2133:  2125:  2084:  2074:  2066:  2025:  2015:  2007:  1968:  1958:  1950:  1911:  1903:  1868:  1860:  1825:  1815:  1807:  1766:  1758:  1727:  1717:  1709:  1695:: 35. 1668:  1658:  1650:  1609:  1601:  1488:  1478:  1470:  1420:  1410:  1402:  1360:  1350:  1342:  1295:  1287:  1249:  1239:  1231:  1192:  1182:  1174:  1132:  1124:  1085:  1077:  1041:  1031:  1023:  982:  974:  933:  923:  915:  837:  829:  792:  784:  732:  724:  674:  631:  621:  613:  567:  495:  485:  446:  438:  430:  349:  339:  331:  273:  265:  165:fibrin 151:, and 141:chitin 2902:S2CID 2608:S2CID 2556:S2CID 2504:S2CID 2450:S2CID 1866:S2CID 1764:S2CID 1607:S2CID 1293:S2CID 867:18–21 444:S2CID 271:S2CID 126:Types 2894:PMID 2886:ISSN 2845:PMID 2827:ISSN 2787:PMID 2769:ISSN 2722:PMID 2704:ISSN 2665:PMID 2647:ISSN 2600:PMID 2592:ISSN 2548:PMID 2540:ISSN 2496:PMID 2488:ISSN 2442:ISSN 2406:PMID 2398:ISSN 2283:PMID 2265:ISSN 2201:PMID 2183:ISSN 2141:PMID 2123:ISSN 2109:2012 2082:PMID 2064:ISSN 2023:PMID 2005:ISSN 1993:2018 1966:PMID 1948:ISSN 1936:2013 1909:PMID 1901:ISSN 1858:ISSN 1823:PMID 1805:ISSN 1756:ISSN 1725:PMID 1707:ISSN 1666:PMID 1648:ISSN 1599:ISSN 1486:PMID 1468:ISSN 1418:PMID 1400:ISSN 1358:PMID 1340:ISSN 1285:ISSN 1247:PMID 1229:ISSN 1190:PMID 1172:ISSN 1130:PMID 1122:ISSN 1083:PMID 1075:ISSN 1039:PMID 1021:ISSN 980:PMID 972:ISSN 958:1758 931:PMID 913:ISSN 835:PMID 827:ISSN 782:ISSN 730:PMID 722:ISSN 672:ISSN 629:PMID 611:ISSN 593:Gels 565:PMID 493:PMID 436:PMID 428:ISSN 347:PMID 329:ISSN 263:ISSN 2876:doi 2835:PMC 2819:doi 2777:PMC 2761:doi 2712:PMC 2696:doi 2655:PMC 2639:doi 2584:doi 2580:101 2532:doi 2528:111 2480:doi 2434:doi 2390:doi 2273:PMC 2255:doi 2191:PMC 2175:doi 2131:PMC 2113:doi 2072:PMC 2054:doi 2013:PMC 1997:doi 1956:PMC 1940:doi 1893:doi 1850:doi 1813:PMC 1795:doi 1748:doi 1715:PMC 1697:doi 1656:PMC 1638:doi 1589:doi 1476:PMC 1458:doi 1408:PMC 1392:doi 1388:117 1348:PMC 1332:doi 1277:doi 1237:PMC 1221:doi 1180:PMC 1164:doi 1114:doi 1067:doi 1029:PMC 1011:doi 962:doi 921:PMC 905:doi 901:100 819:doi 790:PMC 772:doi 714:doi 664:doi 652:255 619:PMC 601:doi 557:doi 553:463 527:doi 483:PMC 475:doi 418:doi 385:doi 337:PMC 319:doi 255:doi 2921:: 2900:. 2892:. 2884:. 2872:16 2870:. 2866:. 2843:. 2833:. 2825:. 2813:. 2809:. 2785:. 2775:. 2767:. 2759:. 2747:. 2743:. 2720:. 2710:. 2702:. 2690:. 2686:. 2663:. 2653:. 2645:. 2633:. 2629:. 2606:. 2598:. 2590:. 2578:. 2554:. 2546:. 2538:. 2526:. 2502:. 2494:. 2486:. 2476:19 2474:. 2462:^ 2448:. 2440:. 2430:22 2428:. 2404:. 2396:. 2386:29 2384:. 2367:13 2365:. 2348:30 2346:. 2327:12 2325:. 2304:. 2281:. 2271:. 2263:. 2249:. 2245:. 2233:^ 2221:. 2199:. 2189:. 2181:. 2169:. 2165:. 2153:^ 2139:. 2129:. 2121:. 2107:. 2103:. 2080:. 2070:. 2062:. 2048:. 2044:. 2021:. 2011:. 2003:. 1991:. 1987:. 1964:. 1954:. 1946:. 1934:. 1930:. 1907:. 1899:. 1889:16 1887:. 1864:. 1856:. 1846:21 1844:. 1821:. 1811:. 1803:. 1789:. 1785:. 1762:. 1754:. 1723:. 1713:. 1705:. 1691:. 1687:. 1664:. 1654:. 1646:. 1634:15 1632:. 1628:. 1605:. 1597:. 1583:. 1579:. 1567:^ 1555:. 1544:^ 1532:. 1521:^ 1509:. 1498:^ 1484:. 1474:. 1466:. 1452:. 1448:. 1430:^ 1416:. 1406:. 1398:. 1386:. 1382:. 1370:^ 1356:. 1346:. 1338:. 1330:. 1320:11 1318:. 1314:. 1291:. 1283:. 1273:52 1271:. 1259:^ 1245:. 1235:. 1227:. 1217:15 1215:. 1211:. 1188:. 1178:. 1170:. 1160:20 1158:. 1154:. 1142:^ 1128:. 1120:. 1110:11 1108:. 1095:^ 1081:. 1073:. 1061:. 1037:. 1027:. 1019:. 1007:11 1005:. 1001:. 978:. 970:. 956:. 952:. 929:. 919:. 911:. 899:. 895:. 875:^ 865:: 859:. 847:^ 833:. 825:. 815:50 813:. 788:. 780:. 770:. 758:. 754:. 742:^ 728:. 720:. 710:54 708:. 670:. 662:. 650:. 627:. 617:. 609:. 595:. 591:. 577:^ 563:. 551:. 539:^ 521:. 505:^ 491:. 481:. 471:95 469:. 465:. 442:. 434:. 426:. 414:22 412:. 408:. 381:10 379:. 375:. 359:^ 345:. 335:. 327:. 315:10 313:. 309:. 283:^ 269:. 261:. 253:. 243:18 241:. 211:^ 159:, 147:, 143:, 139:, 2908:. 2878:: 2851:. 2821:: 2815:3 2793:. 2763:: 2755:: 2749:6 2728:. 2698:: 2692:7 2671:. 2641:: 2635:8 2614:. 2586:: 2562:. 2534:: 2510:. 2482:: 2456:. 2436:: 2412:. 2392:: 2306:3 2289:. 2257:: 2251:7 2207:. 2177:: 2171:9 2147:. 2115:: 2088:. 2056:: 2050:9 2029:. 1999:: 1972:. 1942:: 1915:. 1895:: 1872:. 1852:: 1829:. 1797:: 1791:8 1770:. 1750:: 1731:. 1699:: 1693:6 1672:. 1640:: 1613:. 1591:: 1585:1 1561:. 1538:. 1515:. 1492:. 1460:: 1454:6 1424:. 1394:: 1364:. 1334:: 1326:: 1299:. 1279:: 1253:. 1223:: 1196:. 1166:: 1136:. 1116:: 1089:. 1069:: 1063:7 1045:. 1013:: 986:. 964:: 937:. 907:: 869:. 841:. 821:: 798:. 774:: 766:: 760:3 736:. 716:: 693:. 678:. 666:: 658:: 635:. 603:: 597:5 571:. 559:: 533:. 529:: 523:9 499:. 477:: 450:. 420:: 393:. 387:: 353:. 321:: 277:. 257:: 249:: 20:.

Index

Hydrocolloid dressing
Hydrogels
extracellular matrix
nanofibers
cross-linking
Self-assembly
antimicrobial peptides
oxidation-reduction
hyaluronic acid
chitin
chitosan
alginate
agarose
collagen
gelatin
fibrin
polyvinyl alcohol
poly(ethylene glycol)
polyurethane
3D printing









Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.