Knowledge (XXG)

Hydrogenase

Source 📝

211: 3665: 409: 322: 622: 647:
series of metallorganic clusters that comprise a long distance; the active site structures remain unchanged during the whole process. In -only hydrogenases, however, electrons are directly delivered to the active site via a short distance. Methenyl-H4MPT, a cofactor, directly accepts the hydride from H
646:
Unlike the other two types, -only hydrogenases are found only in some hydrogenotrophic methanogenic archaea. They also feature a fundamentally different enzymatic mechanism in terms of redox partners and how electrons are delivered to the active site. In and hydrogenases, electrons travel through a
685:
cleavage. The two approaches are complementary and can benefit one another. In fact, Cao and Hall combined both approaches in developing the model that describes how hydrogen molecules are oxidized or produced within the active site of hydrogenases. While more research and experimental data are
293:
Although originally believed to be "metal-free", the -only hydrogenases contain Fe at the active site and no iron-sulfur clusters. and hydrogenases have some common features in their structures: Each enzyme has an active site and a few Fe-S clusters that are buried in protein. The active site,
676:
in different steps of catalysis such as intramolecular transport of substrates. For instance, Cornish et al. conducted mutagenesis studies and found out that four amino acids located along the putative channel connecting the active site and protein surface are critical to enzymatic function of
659:
oxidation/production, which is the case for the other two types of hydrogenases. While the exact mechanism of the catalysis is still under study, recent finding suggests that molecular hydrogen is first heterolytically cleaved by Fe(II), followed by transfer of hydride to the carbocation of the
841:
Despite these findings, research is still under progress for engineering oxygen tolerance in hydrogenases. While researchers have found oxygen-tolerant hydrogenases, they are only efficient in hydrogen uptake and not production. Bingham et al.'s recent success in engineering hydrogenase from
382:
growth media. This finding increased hope that hydrogenases can be used in photosynthetic production of molecular hydrogen via splitting water. Another , called Huc or Hyd1 or cyanobacterial-type uptake hydrogenase, has been found to be oxygen insensitive while having a very high affinity for
474:
The active site of the diiron hydrogenase is known as the H-cluster. The H-cluster consists of a cubane-shaped structure, coupled to the low valent diiron co-factor by a cysteine derived thiol. The diiron co-factor includes two iron atoms, connected by a bridging aza-dithiolate ligand
824:
first converts into a reactive species at the active site of hydrogenases, and then damages its domain. Cohen et al. investigated how oxygen can reach the active site that is buried inside the protein body by molecular dynamics simulation approach; their results indicate that
709:
Recent studies have revealed other biological functions of hydrogenases. To begin with, bidirectional hydrogenases can also act as "valves" to control excess reducing equivalents, especially in photosynthetic microorganisms. Such a role makes hydrogenases play a vital role in
338:. On the basis of sequence similarity, however, the and hydrogenases should be considered a single superfamily. To date, periplasmic, cytoplasmic, and cytoplasmic membrane-bound hydrogenases have been found. The hydrogenases, when isolated, are found to catalyse both H 2551:
Cao Z, Hall MB (April 2001). "Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for -hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center".
829:
diffuses through mainly two pathways that are formed by enlargement of and interconnection between cavities during dynamic motion. These works, in combination with other reports, suggest that inactivation is governed by two phenomena:
886:
catalyzed by hydrogenase allows for the capture and storage of renewable energy as fuel with use on demand. This can be demonstrated through the chemical storage of electricity obtained from a renewable source (e.g. solar, wind,
722:
uptake can help heavy metal contaminants to be recovered in intoxicated forms. These uptake hydrogenases have been recently discovered in pathogenic bacteria and parasites and are believed to be involved in their virulence.
655:-forming methylenetetrahydromethanopterin (methylene-H4MPT) dehydrogenase, because its function is the reversible reduction of methenyl-H4MPT to methylene-H4MPT. The hydrogenation of a methenyl-H4MPT+ occurs instead of H 594:). A closely related subclass from Group D has a similar location on the bacterial gene and share similar domain structure to a subclass from Group E but it lacks the PAS domain. Within Group D, the -hydrogenase from 714:. Moreover, hydrogenases may also be involved in membrane-linked energy conservation through the generation of a transmembrane protonmotive force.There is a possibility that hydrogenases have been responsible for 462:
In contrast to hydrogenases, hydrogenases are generally more active in production of molecular hydrogen. Turnover frequency (TOF) in the order of 10,000 s have been reported in literature for hydrogenases from
681:(CpI). On the other hand, one can also rely on computational analysis and simulations. Nilsson Lill and Siegbahn have recently taken this approach in investigating the mechanism by which hydrogenases catalyze H 333:
while the large subunit contains the active site, a nickel-iron centre which is connected to the solvent by a molecular tunnel. In some hydrogenases, one of the Ni-bound cysteine residues is replaced by
1457:
Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, et al. (2005). "-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation".
686:
required to complete our understanding of the mechanism, these findings have allowed scientists to apply the knowledge in, e.g., building artificial catalysts mimicking active sites of hydrogenases.
668:
The molecular mechanism by which protons are converted into hydrogen molecules within hydrogenases is still under extensive study. One popular approach employs mutagenesis to elucidate roles of
207:
known as hydrogenases. Hydrogenases are sub-classified into three different types based on the active site metal content: iron-iron hydrogenase, nickel-iron hydrogenase, and iron hydrogenase.
2246:
Chongdar N, Birrell JA, Pawlak K, Sommer C, Reijerse EJ, Rüdiger O, et al. (January 2018). "Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory Hydrogenase".
1363:
Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, et al. (January 2010). "Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase".
2847:
Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, et al. (April 2005). "Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution".
3202: 1505:"An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture" 2330:
Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, et al. (July 2008). "The crystal structure of -hydrogenase reveals the geometry of the active site".
3323: 629: 706:
are not available. Based on these grounds, the primary role of hydrogenases are believed to be energy generation, and this can be sufficient to sustain an ecosystem.
2882:
Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, et al. (May 2011). "A unique iron-sulfur cluster is crucial for oxygen tolerance of a -hydrogenase".
765:
matrices. Understanding the catalytic mechanism of hydrogenase might help scientists design clean biological energy sources, such as algae, that produce hydrogen.
1822:
Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, et al. (January 2012). "Catalytic turnover of -hydrogenase based on single-molecule imaging".
694:
Assuming that the Earth's atmosphere was initially rich in hydrogen, scientists hypothesize that hydrogenases were evolved to generate energy from/as molecular H
2430:
Shima S, Vogt S, Göbels A, Bill E (December 2010). "Iron-chromophore circular dichroism of -hydrogenase: the conformational change required for H2 activation".
781:. Different catalysts require unequal overpotential for this reduction reaction to take place. Hydrogenases are attractive since they require a relatively low 349:
acting as either electron donors or acceptors, depending on their oxidation state. Generally speaking, however, hydrogenases are more active in oxidizing H
2587:
Tard C, Liu X, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, et al. (February 2005). "Synthesis of the H-cluster framework of iron-only hydrogenase".
789:
evolution reaction. Among three different types of hydrogenases, hydrogenases is considered as a strong candidate for an integral part of the solar H
1859: 1719: 2978:"Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects" 572:
I). No representative examples of Group B has been characterized yet but it is phylogenetically distinct even when it shares similar amino acid
3195: 1940:
Land H, Senger M, Berggren G, Stripp ST (2020-05-28). "Current State of -Hydrogenase Research: Biodiversity and Spectroscopic Investigations".
2191:"Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival" 2075:
Glick BR, Martin WG, Martin SM (October 1980). "Purification and properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans".
3174: 2516:
Lill SO, Siegbahn PE (February 2009). "An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition".
3328: 2110:
Nakos G, Mortenson L (March 1971). "Purification and properties of hydrogenase, an iron sulfur protein, from Clostridium pasteurianum W5".
383:
hydrogen. Hydrogen is able to penetrate narrow channels in the enzyme that oxygen molecules cannot enter. This allows bacteria such as
1317:
Jugder BE, Welch J, Aguey-Zinsou KF, Marquis CP (2013-05-14). "Fundamentals and electrochemical applications of -uptake hydrogenases".
702:. Microbial communities driven by molecular hydrogen have, in fact, been found in deep-sea settings where other sources of energy from 698:. Accordingly, hydrogenases can either help microorganisms to proliferate under such conditions, or to set up ecosystems empowered by H 643:
contains neither nickel nor iron-sulfur clusters but an iron-containing cofactor that was recently characterized by X-ray diffraction.
2283:"Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture" 3685: 3384: 3188: 2734: 2717: 2808:"A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain" 3161: 3145: 3129: 3109: 3089: 1610:"Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence" 1561:"Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications" 1275:
Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (October 2007). "Structure/function relationships of - and -hydrogenases".
3282: 3246: 3241: 1042: 329:
The hydrogenases are heterodimeric proteins consisting of small (S) and large (L) subunits. The small subunit contains three
2036:"Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii" 1400:"A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases" 816:
reaction. Past research efforts by various groups around the world have focused on understanding the mechanisms involved in O
590:
HydS) which shows only modest catalytic rates compared to Group A enzymes and an apparent high sensitivity toward hydrogen (H
3540: 777:
and H from incident sunlight. Likewise, numerous catalysts, either chemical or biological, can reduce the produced H into H
2638:
Vignais PM, Billoud B (October 2007). "Occurrence, classification, and biological function of hydrogenases: an overview".
762: 758: 3655: 2383:"The iron-site structure of [Fe]-hydrogenase and model systems: an X-ray absorption near edge spectroscopy study" 1985:"Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy" 294:
which is believed to be the place where catalysis takes place, is also a metallocluster, and each iron is coordinated by
820:-inactivation of hydrogenases. For instance, Stripp et al. relied on protein film electrochemistry and discovered that O 731:
Hydrogenases were first discovered in the 1930s, and they have since attracted interest from many researchers including
17: 533: 576:
around the H-cluster as Group A -hydrogenases. Group C has been classified as "sensory" based on the presence of a
552: 3525: 3641: 3628: 3615: 3602: 3589: 3576: 3563: 3343: 3318: 3310: 3292: 3274: 3264: 3256: 3228: 1087: 992: 524: 374:, and several other so-called Knallgas-bacteria, were found to be oxygen-tolerant. The soluble hydrogenase from 3535: 1148:
5,10-methenyltetrahydromethanopterin hydrogenase (hydrogen:5,10-methenyltetrahydromethanopterin oxidoreductase)
389:
to utilize the small amount of hydrogen in the atmosphere as a source of energy when other sources are lacking.
3489: 3432: 3219: 940: 928: 546: 522:. Group A comprises the best characterized and catalytically most active enzymes such as the -hydrogenase from 455: 3437: 385: 3351: 3300: 3236: 3017:
Bingham AS, Smith PR, Swartz JR (2012). "Evolution of an hydrogenase with decreased oxygen sensitivity".
1064: 949: 859: 417: 3180: 785:. In fact, its catalytic activity is more effective than platinum, which is the best known catalyst for H 3458: 3377: 2767:"Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture" 907:
This is one solution to the challenge in the development of technologies for the capture and storage of
454:
evolution. The ferredoxin functions as natural electron donor linking the enzyme to the photosynthetic
3530: 2930: 2596: 2339: 2202: 1778: 1731: 1672: 1411: 1326: 507: 491: 3494: 1857:
Smith PR, Bingham AS, Swartz JR (2012). "Generation of hydrogen from NADPH using an hydrogenase".
883: 732: 582: 515: 330: 467:. This has led to intense research focusing on use of hydrogenase for sustainable production of H 3427: 2917:
Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, et al. (October 2009).
2747: 2698: 2620: 2363: 1965: 1747: 1482: 741: 370: 125: 2381:
Salomone-Stagni M, Stellato F, Whaley CM, Vogt S, Morante S, Shima S, et al. (March 2010).
2281:
Land H, Sekretareva A, Huang P, Redman HJ, Németh B, Polidori N, et al. (September 2020).
502:
as a redox partner while bifurcating types perform the same reaction using both ferredoxin and
3695: 3117: 3097: 3066: 2999: 2958: 2899: 2864: 2829: 2788: 2739: 2690: 2655: 2612: 2569: 2533: 2498: 2447: 2412: 2355: 2312: 2263: 2228: 2171: 2127: 2092: 2057: 2016: 1957: 1919: 1839: 1804: 1700: 1641: 1590: 1536: 1474: 1439: 1380: 1342: 1292: 1257: 1219: 736: 511: 58: 1765:
Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, et al. (July 2013).
3690: 3473: 3468: 3442: 3370: 3058: 3026: 2989: 2948: 2938: 2891: 2856: 2819: 2778: 2729: 2682: 2647: 2604: 2561: 2525: 2488: 2478: 2439: 2402: 2394: 2347: 2302: 2294: 2255: 2218: 2210: 2189:
Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. (March 2016).
2161: 2119: 2084: 2047: 2006: 1996: 1949: 1909: 1899: 1868: 1831: 1794: 1786: 1739: 1690: 1680: 1659:
Grinter R, Kropp A, Venugopal H, Senger M, Badley J, Cabotaje PR, et al. (March 2023).
1631: 1621: 1580: 1572: 1526: 1516: 1466: 1429: 1419: 1372: 1334: 1284: 1249: 1209: 573: 364:
Like hydrogenases, hydrogenases are known to be usually deactivated by molecular oxygen (O
2673:
Adams MW, Stiefel EI (December 1998). "Biological hydrogen production: not so elementary".
3520: 3504: 3417: 3333: 3165: 3149: 3133: 3113: 3093: 2467:"Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum" 1237: 863: 813: 495: 295: 2150:"The surprising diversity of clostridial hydrogenases: a comparative genomic perspective" 1608:
Cordero PR, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, et al. (December 2019).
2934: 2600: 2343: 2206: 1782: 1735: 1695: 1676: 1660: 1415: 1330: 796:
Low overpotential and high catalytic activity of hydrogenases are accompanied by high O
3669: 3558: 3499: 3211: 2953: 2918: 2493: 2466: 2407: 2382: 2307: 2282: 2223: 2190: 2052: 2035: 2011: 1984: 1914: 1887: 1799: 1766: 1636: 1609: 1585: 1560: 1531: 1504: 1434: 1399: 1214: 1197: 715: 703: 519: 335: 141: 88: 1743: 793:
production system since they offer an additional advantage of high TOF (over 9000 s).
3679: 3463: 3422: 3158: 3142: 3126: 3106: 3086: 2367: 2123: 1969: 1751: 782: 487: 204: 2751: 2702: 919:
catalysts minus the catalyst poisoning, and thus is very efficient. In the case of H
210: 3412: 3030: 2624: 1872: 1486: 888: 506:
as electron donor or acceptor. In order to conserve energy, anaerobic bacteria use
2686: 1156:+ 5,10-methenyltetrahydromethanopterin ⇌ H + 5,10-methylenetetrahydromethanopterin 342:
evolution and uptake, with low-potential multihaem cytochromes such as cytochrome
3636: 3571: 3407: 2783: 2766: 754: 424:
cytoplasmic, soluble, monomeric hydrogenases, found in strict anaerobes such as
379: 3664: 2923:
Proceedings of the National Academy of Sciences of the United States of America
1685: 1404:
Proceedings of the National Academy of Sciences of the United States of America
408: 321: 2994: 2977: 2919:"How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms" 1576: 1521: 711: 669: 637: 577: 499: 167: 166:
fermentation). Both low-molecular weight compounds and proteins such as FNRs,
159: 3100:
Structure of the Apoenzyme of the Iron-sulphur cluster-free hydrogenase from
2001: 1961: 1953: 1626: 1346: 214:
The structures of the active sites of the three types of hydrogenase enzymes.
3610: 3584: 2943: 2483: 2351: 1661:"Structural basis for bacterial energy extraction from atmospheric hydrogen" 1424: 908: 831: 621: 32: 3070: 3003: 2962: 2903: 2868: 2833: 2824: 2807: 2743: 2659: 2616: 2573: 2537: 2502: 2451: 2443: 2416: 2359: 2316: 2267: 2232: 2214: 2175: 2166: 2149: 2020: 1923: 1843: 1808: 1704: 1645: 1594: 1540: 1478: 1443: 1384: 1296: 1261: 1223: 1179:+ 2-(2,3-dihydropentaprenyloxy)phenazine ⇌ 2-dihydropentaprenyloxyphenazine 866:
at either both cathode and anode or at one electrode. In hydrogenase-based
2792: 2694: 2131: 2096: 2061: 483:
S-, adt), the iron atoms are coordinated by carbonyl and cyanide ligands.
420:
are called hydrogenases. Three families of hydrogenases are recognized:
3215: 2895: 2259: 1376: 916: 192: 163: 149: 40: 2735:
10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B
2608: 1790: 1503:
Jugder BE, Chen Z, Ping DT, Lebhar H, Welch J, Marquis CP (March 2015).
1162: 1142: 1119: 1081: 633: 183:
can act as physiological electron donors or acceptors for hydrogenases.
3049:
Lubitz W, Ogata H, Rüdiger O, Reijerse E (April 2014). "Hydrogenases".
2298: 1904: 1338: 1058: 1036: 986: 966: 943: 911:
energy as fuel with use on demand. The generation of electricity from H
867: 846:
was also limited to retained activity (during exposure to oxygen) for H
640: 299: 137: 133: 3062: 2860: 2651: 2565: 2529: 1835: 1470: 1288: 1253: 494:-hydrogenases. In nature, prototypical -hydrogenases perform hydrogen 232:), the hydrogenases catalyze the reversible heterolytic cleavage of H 3623: 3393: 2398: 1720:"Soil bacteria enzyme generates electricity from hydrogen in the air" 838:
to the active site, and destructive modification of the active site.
673: 446:
soluble, monomeric hydrogenases, found in chloroplasts of green alga
162:(FNR), and serves to dispose excess electrons in cells (essential in 129: 28: 2088: 2465:
Cornish AJ, Gärtner K, Yang H, Peters JW, Hegg EL (November 2011).
1888:"Monitoring H-cluster assembly using a semi-synthetic HydF protein" 1767:"Biomimetic assembly and activation of [FeFe]-hydrogenases" 753:
oxidation and is relatively oxygen-tolerant. It can be produced on
3597: 620: 407: 320: 222:
uptake. The and hydrogenases are true redox catalysts, driving H
209: 36: 2976:
Cohen J, Kim K, King P, Seibert M, Schulten K (September 2005).
503: 3366: 3184: 1559:
Jugder BE, Lebhar H, Aguey-Zinsou KF, Marquis CP (2016-01-01).
1398:
Greening C, Berney M, Hards K, Cook GM, Conrad R (March 2014).
1240:, Ogata H, Rüdiger O, Reijerse E (April 2014). "Hydrogenases". 895:
during periods of low energy demands. When energy is desired, H
199:. Most of these species are microbes and their ability to use H 972:
hydrogen dehydrogenase (NADP) (hydrogen:NADPH oxidoreductase)
416:
The hydrogenases containing a di-iron center with a bridging
3362: 1125:
hydrogenase (acceptor) (hydrogen:acceptor oxidoreductase)
870:
cells, hydrogenase enzymes are present at the anode for H
158:) is coupled to the oxidation of electron donors such as 2148:
Calusinska M, Happe T, Joris B, Wilmotte A (June 2010).
191:
It has been estimated that 99% of all organisms utilize
2143: 2141: 718:
of chlorinated compounds. Hydrogenases proficient in H
1886:
Németh B, Esmieu C, Redman HJ, Berggren G (May 2019).
3653: 773:
Various systems are capable of splitting water into O
927:
fuel cells, where the product is water, there is no
651:
in the process. -only hydrogenase is also known as H
3549: 3513: 3482: 3451: 3400: 3342: 3309: 3291: 3273: 3255: 3227: 1983:Schuchmann K, Chowdhury NP, Müller V (2018-12-04). 1459:
Journal of Molecular Microbiology and Biotechnology
486:-hydrogenases can be separated into four distinct 490:groups A−D. Group A consists of prototypical and 3324:5,10-Methenyltetrahydromethanopterin hydrogenase 2112:Biochimica et Biophysica Acta (BBA) - Enzymology 1554: 1552: 1550: 915:is comparable with the similar functionality of 630:5,10-methenyltetrahydromethanopterin hydrogenase 580:. One example of a Group C -hydrogenase is from 1075:+ oxidized ferredoxin ⇌ 2H + reduced ferredoxin 800:sensitivity. It is necessary to engineer them O 1358: 1356: 1198:"Classification and phylogeny of hydrogenases" 1196:Vignais PM, Billoud B, Meyer J (August 2001). 218:Hydrogenases catalyze, sometimes reversibly, H 203:as a metabolite arises from the expression of 3378: 3196: 2806:Florin L, Tsokoglou A, Happe T (March 2001). 1312: 1310: 1308: 1306: 439:periplasmic, heterodimeric hydrogenases from 226:oxidation and proton (H) reduction (equation 8: 2718:"Hydrogenases: hydrogen-activating enzymes" 1498: 1496: 3385: 3371: 3363: 3203: 3189: 3181: 749:-based biofuel application as it favours H 518:redox reactions are coupled to circumvent 3044: 3042: 3040: 2993: 2952: 2942: 2823: 2782: 2733: 2492: 2482: 2406: 2306: 2222: 2165: 2051: 2010: 2000: 1913: 1903: 1798: 1694: 1684: 1635: 1625: 1584: 1530: 1520: 1433: 1423: 1213: 745:H16 is a promising candidate enzyme for H 3019:International Journal of Hydrogen Energy 2849:Journal of the American Chemical Society 2554:Journal of the American Chemical Society 2248:Journal of the American Chemical Society 1860:International Journal of Hydrogen Energy 1824:Journal of the American Chemical Society 899:can be oxidized to produce electricity. 443:spp., which can be purified aerobically. 3660: 1188: 357:affinities have also been observed in H 152:. On the other hand, proton reduction ( 3168:- PDB structure of -hydrogenase from 3152:- PDB structure of -hydrogenase from 3136:- PDB structure of -hydrogenase from 1935: 1933: 1067:(hydrogen:ferredoxin oxidoreductase) 7: 3329:Methanosarcina-phenazine hydrogenase 378:H16 can be conveniently produced on 268: 244: 83: 49: 2812:The Journal of Biological Chemistry 2471:The Journal of Biological Chemistry 1614:The Journal of Biological Chemistry 2053:10.1111/j.1432-1033.1993.tb17944.x 1215:10.1111/j.1574-6976.2001.tb00587.x 735:who have synthesized a variety of 14: 739:. The soluble hydrogenase from 625:Crystal structure of hydrogenase 412:Crystal structure of hydrogenase 325:Crystal structure of hydrogenase 124:) is coupled to the reduction of 3663: 2077:Canadian Journal of Microbiology 2040:European Journal of Biochemistry 862:involve the usage of enzymes as 3283:Hydrogen:quinone oxidoreductase 3120:structure of -hydrogenase from 2034:Happe T, Naber JD (June 1993). 1043:hydrogen:quinone oxidoreductase 854:Hydrogenase-based biofuel cells 3247:Hydrogenase (NAD+, ferredoxin) 3242:Hydrogen dehydrogenase (NADP+) 3102:Methanothermococcus jannaschii 3031:10.1016/j.ijhydene.2011.02.048 1873:10.1016/j.ijhydene.2011.03.172 952:(hydrogen:NAD oxidoreductase) 929:production of greenhouse gases 769:Biological hydrogen production 757:growth media and purified via 602:HydS) has been characterized. 1: 2687:10.1126/science.282.5395.1842 1744:10.1016/S0262-4079(23)00459-1 763:size exclusion chromatography 2765:Thauer RK (September 1998). 2124:10.1016/0005-2744(71)90008-8 804:-tolerant for use in solar H 596:Thermoanaerobacter mathranii 18:Hydrogenase (disambiguation) 3177:- Mechanism of -hydrogenase 3122:Desulfovibrio desulfuricans 2784:10.1099/00221287-144-9-2377 534:Desulfovibrio desulfuricans 238: 228: 154: 120: 3712: 3170:Desulfomicrobium baculatum 1686:10.1038/s41586-023-05781-7 1052:+ menaquinone ⇌ menaquinol 1002:(hydrogen:ferricytochrome- 935:Biochemical classification 553:Clostridium acetobutylicum 15: 3541:Michaelis–Menten kinetics 3319:Coenzyme F420 hydrogenase 3265:Cytochrome-c3 hydrogenase 2995:10.1016/j.str.2005.05.013 1989:Frontiers in Microbiology 1718:Wilkins A (Mar 8, 2023). 1577:10.1016/j.mex.2016.03.005 1522:10.1186/s12934-015-0226-4 1202:FEMS Microbiology Reviews 525:Chlamydomonas reinhardtii 361:-oxidizing hydrogenases. 187:Structural classification 3433:Diffusion-limited enzyme 3138:Clostridium pasteurianum 2002:10.3389/fmicb.2018.02911 1954:10.1021/acscatal.0c01614 1627:10.1074/jbc.RA119.011076 1509:Microbial Cell Factories 1171:-phenazine hydrogenase 844:Clostridium pasteurianum 679:Clostridium pasteurianum 547:Clostridium pasteurianum 465:Clostridium pasteurianum 456:electron transport chain 426:Clostridium pasteurianum 2944:10.1073/pnas.0905343106 2884:Nature Chemical Biology 2484:10.1074/jbc.M111.254664 2352:10.1126/science.1158978 1425:10.1073/pnas.1320586111 1365:Nature Chemical Biology 1024:⇌ 4H + ferrocytochrome 860:enzymatic biofuel cells 610:-only hydrogenase": --> 386:Mycobacterium smegmatis 3352:Hydrogenase (acceptor) 3301:Ferredoxin hydrogenase 3237:Hydrogen dehydrogenase 3154:Desulfovibrio vulgaris 2825:10.1074/jbc.M008470200 2444:10.1002/anie.201006255 2215:10.1038/ismej.2015.153 2167:10.1099/mic.0.032771-0 1065:ferredoxin hydrogenase 950:hydrogen dehydrogenase 626: 564:HydA1, referred to as 520:thermodynamic barriers 432:. They catalyse both H 413: 353:. A wide spectrum of H 326: 215: 3526:Eadie–Hofstee diagram 3459:Allosteric regulation 2716:Frey M (March 2002). 882:The bidirectional or 624: 436:evolution and uptake. 411: 324: 213: 3686:Iron–sulfur proteins 3536:Lineweaver–Burk plot 2896:10.1038/nchembio.555 2260:10.1021/jacs.7b11287 1377:10.1038/nchembio.276 1110:⇌ reduced coenzyme F 1094:(hydrogen:coenzyme F 712:anaerobic metabolism 508:electron bifurcation 448:Scenedesmus obliquus 430:Megasphaera elsdenii 368:). Hydrogenase from 331:iron-sulfur clusters 16:For other uses, see 2935:2009PNAS..10617331S 2929:(41): 17331–17336. 2777:(Pt 9): 2377–2406. 2681:(5395): 1842–1843. 2609:10.1038/nature03298 2601:2005Natur.433..610T 2477:(44): 38341–38347. 2387:Dalton Transactions 2344:2008Sci...321..572S 2293:(47): 12789–12801. 2207:2016ISMEJ..10..761G 2160:(Pt 6): 1575–1588. 1892:Dalton Transactions 1791:10.1038/nature12239 1783:2013Natur.499...66B 1736:2023NewSc.257...13W 1677:2023Natur.615..541G 1620:(50): 18980–18991. 1416:2014PNAS..111.4257G 1331:2013RSCAd...3.8142J 884:reversible reaction 850:consumption, only. 812:is a by-product of 690:Biological function 583:Thermotoga maritima 578:Per-Arnt-Sim domain 418:dithiolate cofactor 236:shown by reaction ( 47:), as shown below: 3495:Enzyme superfamily 3428:Enzyme promiscuity 3164:2008-01-24 at the 3148:2008-01-24 at the 3132:2009-01-16 at the 3112:2009-01-16 at the 3092:2008-01-24 at the 2299:10.1039/D0SC03319G 1905:10.1039/C8DT04294B 1339:10.1039/c3ra22668a 1017:+ ferricytochrome 980:+ NADP ⇌ H + NADPH 808:production since O 742:Ralstonia eutropha 737:hydrogenase mimics 733:inorganic chemists 627: 414: 376:Ralstonia eutropha 371:Ralstonia eutropha 327: 216: 126:electron acceptors 3651: 3650: 3360: 3359: 3063:10.1021/cr4005814 2861:10.1021/ja0504690 2855:(15): 5308–5309. 2652:10.1021/cr050196r 2646:(10): 4206–4272. 2595:(7026): 610–613. 2566:10.1021/ja000116v 2560:(16): 3734–3742. 2530:10.1021/bi801218n 2438:(51): 9917–9921. 2432:Angewandte Chemie 2393:(12): 3057–3064. 2338:(5888): 572–575. 2083:(10): 1214–1223. 1948:(13): 7069–7086. 1898:(18): 5978–5986. 1836:10.1021/ja207461t 1671:(7952): 541–547. 1471:10.1159/000091564 1410:(11): 4257–4261. 1289:10.1021/cr050195z 1283:(10): 4273–4303. 1254:10.1021/cr4005814 677:hydrogenase from 606:-only hydrogenase 397:hydrogenase": --> 310:hydrogenase": --> 291: 290: 267: 266: 176:, and cytochrome 118:Hydrogen uptake ( 116: 115: 82: 81: 3703: 3668: 3667: 3659: 3531:Hanes–Woolf plot 3474:Enzyme activator 3469:Enzyme inhibitor 3443:Enzyme catalysis 3387: 3380: 3373: 3364: 3205: 3198: 3191: 3182: 3075: 3074: 3057:(8): 4081–4148. 3051:Chemical Reviews 3046: 3035: 3034: 3025:(3): 2965–2976. 3014: 3008: 3007: 2997: 2988:(9): 1321–1329. 2973: 2967: 2966: 2956: 2946: 2914: 2908: 2907: 2879: 2873: 2872: 2844: 2838: 2837: 2827: 2818:(9): 6125–6132. 2803: 2797: 2796: 2786: 2762: 2756: 2755: 2737: 2728:(2–3): 153–160. 2713: 2707: 2706: 2670: 2664: 2663: 2640:Chemical Reviews 2635: 2629: 2628: 2584: 2578: 2577: 2548: 2542: 2541: 2524:(5): 1056–1066. 2513: 2507: 2506: 2496: 2486: 2462: 2456: 2455: 2427: 2421: 2420: 2410: 2399:10.1039/b922557a 2378: 2372: 2371: 2327: 2321: 2320: 2310: 2287:Chemical Science 2278: 2272: 2271: 2254:(3): 1057–1068. 2243: 2237: 2236: 2226: 2195:The ISME Journal 2186: 2180: 2179: 2169: 2145: 2136: 2135: 2107: 2101: 2100: 2072: 2066: 2065: 2055: 2031: 2025: 2024: 2014: 2004: 1980: 1974: 1973: 1937: 1928: 1927: 1917: 1907: 1883: 1877: 1876: 1867:(3): 2977–2983. 1854: 1848: 1847: 1830:(3): 1577–1582. 1819: 1813: 1812: 1802: 1762: 1756: 1755: 1715: 1709: 1708: 1698: 1688: 1656: 1650: 1649: 1639: 1629: 1605: 1599: 1598: 1588: 1556: 1545: 1544: 1534: 1524: 1500: 1491: 1490: 1465:(2–4): 181–196. 1454: 1448: 1447: 1437: 1427: 1395: 1389: 1388: 1360: 1351: 1350: 1314: 1301: 1300: 1277:Chemical Reviews 1272: 1266: 1265: 1248:(8): 4081–4148. 1242:Chemical Reviews 1234: 1228: 1227: 1217: 1193: 1098:oxidoreductase) 1009:oxidoreductase) 960:+ NAD ⇌ H + NADH 864:electrocatalysts 618: 617: 613: 598:(referred to as 405: 404: 400: 318: 317: 313: 285: 269: 261: 245: 110: 84: 76: 50: 3711: 3710: 3706: 3705: 3704: 3702: 3701: 3700: 3676: 3675: 3674: 3662: 3654: 3652: 3647: 3559:Oxidoreductases 3545: 3521:Enzyme kinetics 3509: 3505:List of enzymes 3478: 3447: 3418:Catalytic triad 3396: 3391: 3361: 3356: 3338: 3334:Sulfhydrogenase 3305: 3287: 3269: 3251: 3223: 3212:Oxidoreductases 3209: 3166:Wayback Machine 3150:Wayback Machine 3134:Wayback Machine 3114:Wayback Machine 3094:Wayback Machine 3083: 3078: 3048: 3047: 3038: 3016: 3015: 3011: 2975: 2974: 2970: 2916: 2915: 2911: 2881: 2880: 2876: 2846: 2845: 2841: 2805: 2804: 2800: 2764: 2763: 2759: 2715: 2714: 2710: 2672: 2671: 2667: 2637: 2636: 2632: 2586: 2585: 2581: 2550: 2549: 2545: 2515: 2514: 2510: 2464: 2463: 2459: 2429: 2428: 2424: 2380: 2379: 2375: 2329: 2328: 2324: 2280: 2279: 2275: 2245: 2244: 2240: 2188: 2187: 2183: 2147: 2146: 2139: 2109: 2108: 2104: 2089:10.1139/m80-203 2074: 2073: 2069: 2033: 2032: 2028: 1982: 1981: 1977: 1939: 1938: 1931: 1885: 1884: 1880: 1856: 1855: 1851: 1821: 1820: 1816: 1777:(7456): 66–69. 1764: 1763: 1759: 1717: 1716: 1712: 1658: 1657: 1653: 1607: 1606: 1602: 1558: 1557: 1548: 1502: 1501: 1494: 1456: 1455: 1451: 1397: 1396: 1392: 1362: 1361: 1354: 1316: 1315: 1304: 1274: 1273: 1269: 1236: 1235: 1231: 1195: 1194: 1190: 1186: 1178: 1155: 1136: 1132: 1113: 1109: 1105: 1097: 1091: 1074: 1051: 1030: 1023: 1016: 1008: 999: 979: 959: 937: 926: 922: 914: 905: 898: 894: 880: 873: 856: 849: 837: 828: 823: 819: 814:water splitting 811: 807: 803: 799: 792: 788: 780: 776: 771: 752: 748: 729: 721: 701: 697: 692: 684: 666: 658: 654: 650: 619: 615: 611: 609: 608: 593: 482: 478: 470: 453: 435: 406: 402: 398: 396: 395: 367: 360: 356: 352: 348: 341: 319: 315: 311: 309: 308: 296:carbon monoxide 283: 275: 259: 251: 235: 225: 221: 202: 198: 189: 182: 175: 147: 108: 101: 97: 93: 74: 67: 63: 56: 46: 35:the reversible 21: 12: 11: 5: 3709: 3707: 3699: 3698: 3693: 3688: 3678: 3677: 3673: 3672: 3649: 3648: 3646: 3645: 3632: 3619: 3606: 3593: 3580: 3567: 3553: 3551: 3547: 3546: 3544: 3543: 3538: 3533: 3528: 3523: 3517: 3515: 3511: 3510: 3508: 3507: 3502: 3497: 3492: 3486: 3484: 3483:Classification 3480: 3479: 3477: 3476: 3471: 3466: 3461: 3455: 3453: 3449: 3448: 3446: 3445: 3440: 3435: 3430: 3425: 3420: 3415: 3410: 3404: 3402: 3398: 3397: 3392: 3390: 3389: 3382: 3375: 3367: 3358: 3357: 3355: 3354: 3348: 3346: 3340: 3339: 3337: 3336: 3331: 3326: 3321: 3315: 3313: 3307: 3306: 3304: 3303: 3297: 3295: 3289: 3288: 3286: 3285: 3279: 3277: 3271: 3270: 3268: 3267: 3261: 3259: 3253: 3252: 3250: 3249: 3244: 3239: 3233: 3231: 3225: 3224: 3210: 3208: 3207: 3200: 3193: 3185: 3179: 3178: 3172: 3156: 3140: 3124: 3104: 3082: 3081:External links 3079: 3077: 3076: 3036: 3009: 2968: 2909: 2890:(5): 310–318. 2874: 2839: 2798: 2757: 2708: 2665: 2630: 2579: 2543: 2508: 2457: 2422: 2373: 2322: 2273: 2238: 2201:(3): 761–777. 2181: 2137: 2118:(3): 576–583. 2102: 2067: 2046:(2): 475–481. 2026: 1975: 1929: 1878: 1849: 1814: 1757: 1710: 1651: 1600: 1546: 1492: 1449: 1390: 1352: 1302: 1267: 1229: 1208:(4): 455–501. 1187: 1185: 1182: 1181: 1180: 1176: 1169:Methanosarcina 1166: 1165: 1158: 1157: 1153: 1146: 1145: 1138: 1137: 1134: 1130: 1123: 1122: 1115: 1114: 1111: 1107: 1103: 1095: 1089: 1085: 1084: 1077: 1076: 1072: 1062: 1061: 1054: 1053: 1049: 1040: 1039: 1032: 1031: 1028: 1021: 1014: 1006: 997: 990: 989: 982: 981: 977: 970: 969: 962: 961: 957: 947: 946: 936: 933: 924: 920: 912: 904: 901: 896: 892: 879: 876: 871: 855: 852: 847: 835: 826: 821: 817: 809: 805: 801: 797: 790: 786: 778: 774: 770: 767: 759:anion exchange 750: 746: 728: 725: 719: 716:bioremediation 704:photosynthesis 699: 695: 691: 688: 682: 665: 662: 656: 652: 648: 607: 604: 591: 480: 476: 468: 460: 459: 451: 444: 437: 433: 394: 391: 365: 358: 354: 350: 346: 339: 336:selenocysteine 307: 304: 302:(CN) ligands. 289: 288: 279: 277: 273: 265: 264: 255: 253: 249: 233: 223: 219: 205:metalloenzymes 200: 196: 188: 185: 180: 173: 145: 142:carbon dioxide 114: 113: 104: 102: 99: 95: 91: 80: 79: 70: 68: 65: 61: 54: 44: 13: 10: 9: 6: 4: 3: 2: 3708: 3697: 3694: 3692: 3689: 3687: 3684: 3683: 3681: 3671: 3666: 3661: 3657: 3643: 3639: 3638: 3633: 3630: 3626: 3625: 3620: 3617: 3613: 3612: 3607: 3604: 3600: 3599: 3594: 3591: 3587: 3586: 3581: 3578: 3574: 3573: 3568: 3565: 3561: 3560: 3555: 3554: 3552: 3548: 3542: 3539: 3537: 3534: 3532: 3529: 3527: 3524: 3522: 3519: 3518: 3516: 3512: 3506: 3503: 3501: 3500:Enzyme family 3498: 3496: 3493: 3491: 3488: 3487: 3485: 3481: 3475: 3472: 3470: 3467: 3465: 3464:Cooperativity 3462: 3460: 3457: 3456: 3454: 3450: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3423:Oxyanion hole 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3405: 3403: 3399: 3395: 3388: 3383: 3381: 3376: 3374: 3369: 3368: 3365: 3353: 3350: 3349: 3347: 3345: 3341: 3335: 3332: 3330: 3327: 3325: 3322: 3320: 3317: 3316: 3314: 3312: 3308: 3302: 3299: 3298: 3296: 3294: 3290: 3284: 3281: 3280: 3278: 3276: 3272: 3266: 3263: 3262: 3260: 3258: 3254: 3248: 3245: 3243: 3240: 3238: 3235: 3234: 3232: 3230: 3226: 3221: 3217: 3213: 3206: 3201: 3199: 3194: 3192: 3187: 3186: 3183: 3176: 3173: 3171: 3167: 3163: 3160: 3157: 3155: 3151: 3147: 3144: 3141: 3139: 3135: 3131: 3128: 3125: 3123: 3119: 3115: 3111: 3108: 3105: 3103: 3099: 3095: 3091: 3088: 3085: 3084: 3080: 3072: 3068: 3064: 3060: 3056: 3052: 3045: 3043: 3041: 3037: 3032: 3028: 3024: 3020: 3013: 3010: 3005: 3001: 2996: 2991: 2987: 2983: 2979: 2972: 2969: 2964: 2960: 2955: 2950: 2945: 2940: 2936: 2932: 2928: 2924: 2920: 2913: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2878: 2875: 2870: 2866: 2862: 2858: 2854: 2850: 2843: 2840: 2835: 2831: 2826: 2821: 2817: 2813: 2809: 2802: 2799: 2794: 2790: 2785: 2780: 2776: 2772: 2768: 2761: 2758: 2753: 2749: 2745: 2741: 2736: 2731: 2727: 2723: 2719: 2712: 2709: 2704: 2700: 2696: 2692: 2688: 2684: 2680: 2676: 2669: 2666: 2661: 2657: 2653: 2649: 2645: 2641: 2634: 2631: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2580: 2575: 2571: 2567: 2563: 2559: 2555: 2547: 2544: 2539: 2535: 2531: 2527: 2523: 2519: 2512: 2509: 2504: 2500: 2495: 2490: 2485: 2480: 2476: 2472: 2468: 2461: 2458: 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2423: 2418: 2414: 2409: 2404: 2400: 2396: 2392: 2388: 2384: 2377: 2374: 2369: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2323: 2318: 2314: 2309: 2304: 2300: 2296: 2292: 2288: 2284: 2277: 2274: 2269: 2265: 2261: 2257: 2253: 2249: 2242: 2239: 2234: 2230: 2225: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2185: 2182: 2177: 2173: 2168: 2163: 2159: 2155: 2151: 2144: 2142: 2138: 2133: 2129: 2125: 2121: 2117: 2113: 2106: 2103: 2098: 2094: 2090: 2086: 2082: 2078: 2071: 2068: 2063: 2059: 2054: 2049: 2045: 2041: 2037: 2030: 2027: 2022: 2018: 2013: 2008: 2003: 1998: 1994: 1990: 1986: 1979: 1976: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1942:ACS Catalysis 1936: 1934: 1930: 1925: 1921: 1916: 1911: 1906: 1901: 1897: 1893: 1889: 1882: 1879: 1874: 1870: 1866: 1862: 1861: 1853: 1850: 1845: 1841: 1837: 1833: 1829: 1825: 1818: 1815: 1810: 1806: 1801: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1761: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1724:New Scientist 1721: 1714: 1711: 1706: 1702: 1697: 1692: 1687: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1652: 1647: 1643: 1638: 1633: 1628: 1623: 1619: 1615: 1611: 1604: 1601: 1596: 1592: 1587: 1582: 1578: 1574: 1570: 1566: 1562: 1555: 1553: 1551: 1547: 1542: 1538: 1533: 1528: 1523: 1518: 1514: 1510: 1506: 1499: 1497: 1493: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1453: 1450: 1445: 1441: 1436: 1431: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1394: 1391: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1357: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1311: 1309: 1307: 1303: 1298: 1294: 1290: 1286: 1282: 1278: 1271: 1268: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1233: 1230: 1225: 1221: 1216: 1211: 1207: 1203: 1199: 1192: 1189: 1183: 1174: 1173: 1172: 1170: 1164: 1160: 1159: 1151: 1150: 1149: 1144: 1140: 1139: 1128: 1127: 1126: 1121: 1117: 1116: 1101: 1100: 1099: 1093: 1083: 1079: 1078: 1070: 1069: 1068: 1066: 1060: 1056: 1055: 1047: 1046: 1045: 1044: 1038: 1034: 1033: 1027: 1020: 1012: 1011: 1010: 1005: 1001: 996: 988: 984: 983: 975: 974: 973: 968: 964: 963: 955: 954: 953: 951: 945: 942: 939: 938: 934: 932: 930: 918: 910: 902: 900: 890: 885: 877: 875: 869: 865: 861: 853: 851: 845: 839: 833: 815: 794: 784: 783:overpotential 768: 766: 764: 760: 756: 755:heterotrophic 744: 743: 738: 734: 726: 724: 717: 713: 707: 705: 689: 687: 680: 675: 671: 663: 661: 644: 642: 639: 635: 631: 623: 614: 605: 603: 601: 597: 589: 585: 584: 579: 575: 571: 567: 563: 559: 555: 554: 549: 548: 543: 539: 535: 531: 527: 526: 521: 517: 513: 509: 505: 501: 497: 493: 489: 484: 472: 466: 457: 450:, catalyses H 449: 445: 442: 441:Desulfovibrio 438: 431: 427: 423: 422: 421: 419: 410: 401: 392: 390: 388: 387: 381: 380:heterotrophic 377: 373: 372: 362: 345: 337: 332: 323: 314: 305: 303: 301: 297: 287: 280: 278: 271: 270: 263: 256: 254: 247: 246: 243: 241: 240: 231: 230: 212: 208: 206: 194: 186: 184: 179: 172: 169: 165: 161: 157: 156: 151: 143: 139: 135: 131: 127: 123: 122: 112: 105: 103: 90: 86: 85: 78: 71: 69: 60: 52: 51: 48: 42: 39:of molecular 38: 34: 30: 26: 19: 3637:Translocases 3634: 3621: 3608: 3595: 3582: 3572:Transferases 3569: 3556: 3413:Binding site 3214:: Acting on 3169: 3153: 3137: 3121: 3101: 3054: 3050: 3022: 3018: 3012: 2985: 2981: 2971: 2926: 2922: 2912: 2887: 2883: 2877: 2852: 2848: 2842: 2815: 2811: 2801: 2774: 2771:Microbiology 2770: 2760: 2725: 2721: 2711: 2678: 2674: 2668: 2643: 2639: 2633: 2592: 2588: 2582: 2557: 2553: 2546: 2521: 2518:Biochemistry 2517: 2511: 2474: 2470: 2460: 2435: 2431: 2425: 2390: 2386: 2376: 2335: 2331: 2325: 2290: 2286: 2276: 2251: 2247: 2241: 2198: 2194: 2184: 2157: 2154:Microbiology 2153: 2115: 2111: 2105: 2080: 2076: 2070: 2043: 2039: 2029: 1992: 1988: 1978: 1945: 1941: 1895: 1891: 1881: 1864: 1858: 1852: 1827: 1823: 1817: 1774: 1770: 1760: 1730:(3430): 13. 1727: 1723: 1713: 1668: 1664: 1654: 1617: 1613: 1603: 1568: 1564: 1512: 1508: 1462: 1458: 1452: 1407: 1403: 1393: 1371:(1): 63–70. 1368: 1364: 1325:(22): 8142. 1322: 1319:RSC Advances 1318: 1280: 1276: 1270: 1245: 1241: 1232: 1205: 1201: 1191: 1168: 1167: 1147: 1124: 1106:+ coenzyme F 1086: 1063: 1041: 1025: 1018: 1003: 994: 991: 971: 948: 906: 889:hydrothermal 881: 857: 843: 840: 795: 772: 740: 730: 727:Applications 708: 693: 678: 667: 645: 638:methanogenic 628: 599: 595: 587: 581: 569: 565: 561: 557: 551: 545: 541: 537: 529: 523: 488:phylogenetic 485: 473: 464: 461: 447: 440: 429: 425: 415: 384: 375: 369: 363: 343: 328: 292: 281: 257: 237: 227: 217: 190: 177: 170: 153: 119: 117: 106: 72: 24: 22: 3408:Active site 2722:ChemBioChem 1571:: 242–250. 1092:hydrogenase 1000:hydrogenase 993:cytochrome- 874:oxidation. 670:amino acids 636:) found in 492:bifurcating 393:hydrogenase 306:hydrogenase 252:⇌ 2 H + 2 e 25:hydrogenase 3680:Categories 3611:Isomerases 3585:Hydrolases 3452:Regulation 3218:as donor ( 1184:References 1088:coenzyme F 903:Advantages 660:acceptor. 560:HydA1 and 516:endergonic 500:ferredoxin 168:cytochrome 160:ferredoxin 3490:EC number 3175:Animation 2982:Structure 2368:206513302 1970:219749715 1962:2155-5435 1752:257625443 1515:(1): 42. 1347:2046-2069 1163:1.12.98.3 1143:1.12.98.2 1120:1.12.99.6 1082:1.12.98.1 909:renewable 878:Principle 832:diffusion 664:Mechanism 634:1.12.98.2 540:HydAB or 512:exergonic 298:(CO) and 37:oxidation 33:catalyses 3696:EC 1.2.1 3514:Kinetics 3438:Cofactor 3401:Activity 3216:hydrogen 3162:Archived 3146:Archived 3130:Archived 3110:Archived 3090:Archived 3071:24655035 3004:16154089 2963:19805068 2904:21390036 2869:15826154 2834:11096090 2752:36754174 2744:11921392 2703:38018712 2660:17927159 2617:15703741 2574:11457105 2538:19138102 2503:21900241 2452:21105038 2417:20221540 2360:18653896 2317:34094474 2268:29251926 2233:26405831 2176:20395274 2021:30564206 1995:: 2911. 1924:30632592 1844:21916466 1809:23803769 1705:36890228 1696:10017518 1646:31624148 1595:27077052 1565:MethodsX 1541:25880663 1479:16645314 1444:24591586 1385:19966788 1297:17850165 1262:24655035 1238:Lubitz W 1224:11524134 1133:+ A ⇌ AH 1059:1.12.7.2 1037:1.12.5.1 987:1.12.2.1 967:1.12.1.3 944:1.12.1.2 917:Platinum 858:Typical 544:H), and 532:HydA1), 496:turnover 193:hydrogen 164:pyruvate 150:fumarate 128:such as 64:→ 2H + A 41:hydrogen 3691:EC 1.12 3670:Biology 3624:Ligases 3394:Enzymes 3344:1.10.99 3311:1.10.98 2954:2765078 2931:Bibcode 2793:9782487 2695:9874636 2675:Science 2625:4430994 2597:Bibcode 2494:3207428 2408:3465567 2340:Bibcode 2332:Science 2308:8163306 2224:4817680 2203:Bibcode 2132:5569125 2097:7006765 2062:8513797 2012:6288185 1915:6509880 1800:3793303 1779:Bibcode 1732:Bibcode 1673:Bibcode 1637:6916507 1586:4816682 1532:4377017 1487:8030367 1435:3964045 1412:Bibcode 1327:Bibcode 868:biofuel 674:ligands 672:and/or 641:Archaea 300:cyanide 276:⇌ H + H 148:), and 138:sulfate 134:nitrate 3656:Portal 3598:Lyases 3293:1.12.7 3275:1.12.5 3257:1.12.2 3229:1.12.1 3069:  3002:  2961:  2951:  2902:  2867:  2832:  2791:  2750:  2742:  2701:  2693:  2658:  2623:  2615:  2589:Nature 2572:  2536:  2501:  2491:  2450:  2415:  2405:  2366:  2358:  2315:  2305:  2266:  2231:  2221:  2174:  2130:  2095:  2060:  2019:  2009:  1968:  1960:  1922:  1912:  1842:  1807:  1797:  1771:Nature 1750:  1703:  1693:  1665:Nature 1644:  1634:  1593:  1583:  1539:  1529:  1485:  1477:  1442:  1432:  1383:  1345:  1295:  1260:  1222:  891:) as H 574:motifs 568:I and 510:where 504:NAD(H) 498:using 479:-NH-CH 130:oxygen 29:enzyme 27:is an 3550:Types 3222:1.12) 2748:S2CID 2699:S2CID 2621:S2CID 2364:S2CID 1966:S2CID 1748:S2CID 1483:S2CID 475:(-SCH 87:2H + 31:that 3642:list 3635:EC7 3629:list 3622:EC6 3616:list 3609:EC5 3603:list 3596:EC4 3590:list 3583:EC3 3577:list 3570:EC2 3564:list 3557:EC1 3159:1CC1 3143:1UBR 3127:1C4A 3107:1HFE 3087:2B0J 3067:PMID 3000:PMID 2959:PMID 2900:PMID 2865:PMID 2830:PMID 2789:PMID 2740:PMID 2691:PMID 2656:PMID 2613:PMID 2570:PMID 2534:PMID 2499:PMID 2448:PMID 2413:PMID 2356:PMID 2313:PMID 2264:PMID 2229:PMID 2172:PMID 2128:PMID 2093:PMID 2058:PMID 2017:PMID 1958:ISSN 1920:PMID 1840:PMID 1805:PMID 1701:PMID 1642:PMID 1591:PMID 1537:PMID 1475:PMID 1440:PMID 1381:PMID 1343:ISSN 1293:PMID 1258:PMID 1220:PMID 834:of O 761:and 632:(EC 612:edit 550:and 514:and 428:and 399:edit 312:edit 3118:PDB 3098:PDB 3059:doi 3055:114 3027:doi 2990:doi 2949:PMC 2939:doi 2927:106 2892:doi 2857:doi 2853:127 2820:doi 2816:276 2779:doi 2775:144 2730:doi 2683:doi 2679:282 2648:doi 2644:107 2605:doi 2593:433 2562:doi 2558:123 2526:doi 2489:PMC 2479:doi 2475:286 2440:doi 2403:PMC 2395:doi 2348:doi 2336:321 2303:PMC 2295:doi 2256:doi 2252:140 2219:PMC 2211:doi 2162:doi 2158:156 2120:doi 2116:227 2085:doi 2048:doi 2044:214 2007:PMC 1997:doi 1950:doi 1910:PMC 1900:doi 1869:doi 1832:doi 1828:134 1795:PMC 1787:doi 1775:499 1740:doi 1728:257 1691:PMC 1681:doi 1669:615 1632:PMC 1622:doi 1618:294 1581:PMC 1573:doi 1527:PMC 1517:doi 1467:doi 1430:PMC 1420:doi 1408:111 1373:doi 1335:doi 1285:doi 1281:107 1250:doi 1246:114 1210:doi 1161:EC 1141:EC 1118:EC 1112:420 1108:420 1096:420 1090:420 1080:EC 1057:EC 1035:EC 985:EC 965:EC 600:Tam 242:). 195:, H 144:(CO 98:+ D 94:→ H 92:red 66:red 3682:: 3220:EC 3116:- 3096:- 3065:. 3053:. 3039:^ 3023:37 3021:. 2998:. 2986:13 2984:. 2980:. 2957:. 2947:. 2937:. 2925:. 2921:. 2898:. 2886:. 2863:. 2851:. 2828:. 2814:. 2810:. 2787:. 2773:. 2769:. 2746:. 2738:. 2724:. 2720:. 2697:. 2689:. 2677:. 2654:. 2642:. 2619:. 2611:. 2603:. 2591:. 2568:. 2556:. 2532:. 2522:48 2520:. 2497:. 2487:. 2473:. 2469:. 2446:. 2436:49 2434:. 2411:. 2401:. 2391:39 2389:. 2385:. 2362:. 2354:. 2346:. 2334:. 2311:. 2301:. 2291:11 2289:. 2285:. 2262:. 2250:. 2227:. 2217:. 2209:. 2199:10 2197:. 2193:. 2170:. 2156:. 2152:. 2140:^ 2126:. 2114:. 2091:. 2081:26 2079:. 2056:. 2042:. 2038:. 2015:. 2005:. 1991:. 1987:. 1964:. 1956:. 1946:10 1944:. 1932:^ 1918:. 1908:. 1896:48 1894:. 1890:. 1865:37 1863:. 1838:. 1826:. 1803:. 1793:. 1785:. 1773:. 1769:. 1746:. 1738:. 1726:. 1722:. 1699:. 1689:. 1679:. 1667:. 1663:. 1640:. 1630:. 1616:. 1612:. 1589:. 1579:. 1567:. 1563:. 1549:^ 1535:. 1525:. 1513:14 1511:. 1507:. 1495:^ 1481:. 1473:. 1463:10 1461:. 1438:. 1428:. 1418:. 1406:. 1402:. 1379:. 1367:. 1355:^ 1341:. 1333:. 1321:. 1305:^ 1291:. 1279:. 1256:. 1244:. 1218:. 1206:25 1204:. 1200:. 1013:2H 941:EC 931:. 923:/O 588:Tm 570:Ca 566:Cp 562:Ca 558:Cp 542:Dd 538:Dd 530:Cr 471:. 140:, 136:, 132:, 100:ox 62:ox 57:+ 43:(H 23:A 3658:: 3644:) 3640:( 3631:) 3627:( 3618:) 3614:( 3605:) 3601:( 3592:) 3588:( 3579:) 3575:( 3566:) 3562:( 3386:e 3379:t 3372:v 3204:e 3197:t 3190:v 3073:. 3061:: 3033:. 3029:: 3006:. 2992:: 2965:. 2941:: 2933:: 2906:. 2894:: 2888:7 2871:. 2859:: 2836:. 2822:: 2795:. 2781:: 2754:. 2732:: 2726:3 2705:. 2685:: 2662:. 2650:: 2627:. 2607:: 2599:: 2576:. 2564:: 2540:. 2528:: 2505:. 2481:: 2454:. 2442:: 2419:. 2397:: 2370:. 2350:: 2342:: 2319:. 2297:: 2270:. 2258:: 2235:. 2213:: 2205:: 2178:. 2164:: 2134:. 2122:: 2099:. 2087:: 2064:. 2050:: 2023:. 1999:: 1993:9 1972:. 1952:: 1926:. 1902:: 1875:. 1871:: 1846:. 1834:: 1811:. 1789:: 1781:: 1754:. 1742:: 1734:: 1707:. 1683:: 1675:: 1648:. 1624:: 1597:. 1575:: 1569:3 1543:. 1519:: 1489:. 1469:: 1446:. 1422:: 1414:: 1387:. 1375:: 1369:6 1349:. 1337:: 1329:: 1323:3 1299:. 1287:: 1264:. 1252:: 1226:. 1212:: 1177:2 1175:H 1154:2 1152:H 1135:2 1131:2 1129:H 1104:2 1102:H 1073:2 1071:H 1050:2 1048:H 1029:3 1026:c 1022:3 1019:c 1015:2 1007:3 1004:c 998:3 995:c 978:2 976:H 958:2 956:H 925:2 921:2 913:2 897:2 893:2 872:2 848:2 836:2 827:2 825:O 822:2 818:2 810:2 806:2 802:2 798:2 791:2 787:2 779:2 775:2 751:2 747:2 720:2 700:2 696:2 683:2 657:2 653:2 649:2 616:] 592:2 586:( 556:( 536:( 528:( 481:2 477:2 469:2 458:. 452:2 434:2 403:] 366:2 359:2 355:2 351:2 347:3 344:c 340:2 316:] 286:) 284:4 282:( 274:2 272:H 262:) 260:3 258:( 250:2 248:H 239:4 234:2 229:3 224:2 220:2 201:2 197:2 181:6 178:c 174:3 171:c 155:2 146:2 121:1 111:) 109:2 107:( 96:2 89:D 77:) 75:1 73:( 59:A 55:2 53:H 45:2 20:.

Index

Hydrogenase (disambiguation)
enzyme
catalyses
oxidation
hydrogen
A
D
1
electron acceptors
oxygen
nitrate
sulfate
carbon dioxide
fumarate
2
ferredoxin
pyruvate
cytochrome
hydrogen
metalloenzymes

3
4
carbon monoxide
cyanide

iron-sulfur clusters
selenocysteine
Ralstonia eutropha
heterotrophic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.