Knowledge

Hydrophosphination

Source 📝

287:. Some however proceed by metal-phosphinidene intermediates, i.e. species with M=PR double bonds. One such example is the Ti-catalyzed hydrophosphination of diphenylacetylene with phenylphosphine. This system involves a cationic catalyst precursor that is stabilized by the bulky 2,4,6-tri(isopropyl)phenyl- substituent on the phosphinidene and the close ionic association of methyltris(pentafluorophenyl)borate. This precursor undergoes exchange with phenylphosphine to give the titanium-phenylphosphinidene complex, which is the catalyst. The Ti=PPh species undergoes a cycloaddition with diphenylacetylene to make the corresponding metallacyclobutene. The substrate, phenylphosphine, protonolyzes the Ti-C bond and after a proton shift regenerates the catalyst and releases the new phosphine. 17: 220: 327: 319: 253: 461:
Douglass, M. R.; Ogasawara, M.; Hong, S.; Metz, M. V.; Marks, T. J. (2002). ""Widening the Roof": Synthesis and Characterization of New ChiralC1-Symmetric Octahydrofluorenyl Organolanthanide Catalysts and Their Implementation in the Stereoselective Cyclizations of Aminoalkenes and Phosphinoalkenes".
1216:
Zhao, G.; Basuli, F.; Kilgore, U. J.; Fan, H.; Aneetha, H.; Huffman, J. C.; Wu, G.; Mindiola, D. J. (2006). "Neutral and Zwitterionic Low-Coordinate Titanium Complexes Bearing the Terminal Phosphinidene Functionality. Structural, Spectroscopic, Theoretical, and Catalytic Studies Addressing the Ti−P
505:
Scriban, C.; Glueck, D. S.; Zakharov, L. N.; Kassel, W. S.; Dipasquale, A. G.; Golen, J. A.; Rheingold, A. L. (2006). "P−C and C−C Bond Formation by Michael Addition in Platinum-Catalyzed Hydrophosphination and in the Stoichiometric Reactions of Platinum Phosphido Complexes with Activated Alkenes".
279:
or alkyne inserts into the Ln-P bond. Finally, protonolysis of the Ln-C bond with the starting primary phosphine releases the new phosphine and regenerates the catalyst. Given that the metal is electron-poor, the M-C bond is sufficiently enough to be protonolyzed by the substrate primary phosphine.
39:
bond forming a new phosphorus-carbon bond. Like other hydrofunctionalizations, the rate and regiochemistry of the insertion reaction is influenced by the catalyst. Catalysts take many forms, but most prevalent are bases and free-radical initiators. Most hydrophosphinations involve reactions of
338:
of a P-H bond. For example, a Pt(0) catalyst undergoes oxidative addition of a secondary phosphine to form the corresponding hydrido Pt(II) phosphido complex. These systems catalyze hydrophosphination of acrylonitrile, although this reaction can be achieved without metal catalysts. The key P-C
342:
The usual mechanism for hydrophosphination for late metal catalysts involves insertion of the alkene into the metal-phosphorus bond. Insertion into the metal-hydrogen bond is also possible. The product phosphine is produced through reductive elimination of a P-C bond rather than a P-H bond in
227:
The reactions proceed by abstraction of an H atom the phosphine precursor, producing the phosphino radical, a seven electron species. This radical then adds to the alkene, and subsequent H-atom transfer completes the cycle. Some highly efficient hydrophosphinations appear not to proceed via
670:
Xu, C.; Jun Hao Kennard, G.; Hennersdorf, F.; Li, Y.; Pullarkat, S. A.; Leung, P. H. (2012). "Chiral Phosphapalladacycles as Efficient Catalysts for the Asymmetric Hydrophosphination of Substituted Methylidenemalonate Esters: Direct Access to Functionalized Tertiary Chiral Phosphines".
570:
Kovacik, I.; Wicht, D. K.; Grewal, N. S.; Glueck, D. S.; Incarvito, C. D.; Guzei, I. A.; Rheingold, A. L. (2000). "Pt(Me-Duphos)-Catalyzed Asymmetric Hydrophosphination of Activated Olefins: Enantioselective Synthesis of Chiral Phosphines".
314:
Late transition metal hydrophosphination catalysts, i.e. those reliant on the nickel-triad and neighboring elements, generally require alkenes and alkynes with electron withdrawing substituents. A strong base is required as a cocatalyst.
692:
Huang, Y.; Pullarkat, S. A.; Teong, S.; Chew, R. J.; Li, Y.; Leung, P. H. (2012). "Palladacycle-Catalyzed Asymmetric Intermolecular Construction of Chiral Tertiary P-Heterocycles by Stepwise Addition of H–P–H Bonds to Bis(enones)".
527:
Scriban, C.; Kovacik, I.; Glueck, D. S. (2005). "A Protic Additive Suppresses Formation of Byproducts in Platinum-Catalyzed Hydrophosphination of Activated Olefins. Evidence for P−C and C−C Bond Formation by Michael Addition".
483:
Kawaoka, A. M.; Douglass, M. R.; Marks, T. J. (2003). "Homoleptic Lanthanide Alkyl and Amide Precatalysts Efficiently Mediate Intramolecular Hydrophosphination/Cyclization. Observations on Scope and Mechanism".
410:
Douglass, M. R.; Stern, C. L.; Marks, T. J. (2001). "Intramolecular Hydrophosphination/Cyclization of Phosphinoalkenes and Phosphinoalkynes Catalyzed by Organolanthanides: Scope, Selectivity, and Mechanism".
1357:
Han, Li-Biao; Ono, Yutaka; Xu, Qing; Shimada, Shigeru (2010). "Highly Selective Markovnikov Addition of Hypervalent H-Spirophosphoranes to Alkynes Mediated by Palladium Acetate: Generality and Mechanism".
1322:
Kazankova, M. A.; Shulyupin, M. O.; Borisenko, A. A.; Beletskaya, I. P. (2002). "Synthesis of Alkyl(diphenyl)phosphines by Hydrophosphination of Vinylarenes Catalyzed by Transition Metal Complexes".
389:
Motta, A.; Fragalà, I. L.; Marks, T. J. (2005). "Energetics and Mechanism of Organolanthanide-Mediated Phosphinoalkene Hydrophosphination/Cyclization. A Density Functional Theory Analysis".
714:
Huang, Y.; Pullarkat, S. A.; Li, Y.; Leung, P. H. (2012). "Palladacycle-Catalyzed Asymmetric Hydrophosphination of Enones for Synthesis of C*- and P*-Chiral Tertiary Phosphines".
1181:
Trifonov, A. A.; Basalov, I. V.; Kissel, A. A. (2016). "Use of organolanthanides in the catalytic intermolecular hydrophosphination and hydroamination of multiple C–C bonds".
549:
Wicht, D. K.; Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. (1997). "Platinum-Catalyzed Acrylonitrile Hydrophosphination via Olefin Insertion into a Pt−P Bond".
641:
Huang, Y.; Pullarkat, S. A.; Li, Y.; Leung, P. H. (2010). "Palladium(ii)-catalyzed asymmetric hydrophosphination of enones: Efficient access to chiral tertiary phosphines".
236:
Metal-catalyzed hydrophosphinations are not widely used, although they have been extensively researched. Studies mainly focus on secondary and primary organophosphines (R
440:
Douglass, M. R.; Marks, T. J. (2000). "Organolanthanide-Catalyzed Intramolecular Hydrophosphination/Cyclization of Phosphinoalkenes and Phosphinoalkynes".
351:
Utilizing phosphorus(V) precursors hydrophosphorylation entails the insertion of alkenes and alkynes into the P-H bonds of secondary phosphine oxides:
264:
configurations are effective catalysts for hydrophosphinations of simple alkenes and alkynes. Intramolecular reactions are facile, e.g. starting with
855:
Gibson, G. L.; Morrow, K. M. E.; McDonald, R.; Rosenberg, L. (2011). "Diastereoselective synthesis of a "chiral-at-Ru" secondary phosphine complex".
1008:
Alonso, Francisco; Moglie, Yanina; Radivoy, Gabriel; Yus, Miguel (2012). "Solvent- and catalyst-free regioselective hydrophosphanation of alkenes".
343:
Glueck's system. The Ni(0) catalyst involves oxidation addition of a P-H bond to the metal, followed by insertion of the alkene into the M-H bond.
244:, respectively). These substrates bind to metals, and the resulting adducts insert alkenes and alkynes into the P-H bonds via diverse mechanisms. 797:
Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L. (2010). "Concerted Cycloaddition of Alkenes to a Ruthenium-Phosphorus Double Bond".
776:
Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L. (2007). "A Highly Reactive Ruthenium Phosphido Complex Exhibiting Ru−P π-Bonding".
1102: 284: 929:
Trofimov, Boris A.; Arbuzova, Svetlana N.; Gusarova, Nina K. (1999). "Phosphine in the synthesis of organophosphorus compounds".
906: 743:
Huang, Y.; Chew, R. J.; Li, Y.; Pullarkat, S. A.; Leung, P. H. (2011). "Direct Synthesis of Chiral Tertiary Diphosphinesvia
1252:
Perrier, A.; Comte, V.; Moïse, C.; Le Gendre, P. (2010). "First Titanium-Catalyzed 1,4-Hydrophosphination of 1,3-Dienes".
612:; Togni, A. (2005). "Enantioselective Addition of Secondary Phosphines to Methacrylonitrile: Catalysis and Mechanism". 1390: 108:
Acid catalysis is applicable to hydrophosphination with alkenes that form stable carbocations. These alkenes include
1400: 275:
with the bis(trimethylsilyl)methylene ligand forming the lanthanide-phosphido complex. Subsequently, the pendant
69: 1395: 256:
Mechanism proposed for intramolecular hydrophosphination of α, ω-pentenylphosphine catalyzed by lanthanocenes.
201: 1405: 1287:
Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. (2002). "Catalytic Hydrophosphination of Styrenes".
193: 145: 269: 1045:
Greenberg, S.; Stephan, D. W. (2008). "Stoichiometric and catalytic activation of P–H and P–P bonds".
938: 826:
Derrah, E. J.; McDonald, R.; Rosenberg, L. (2010). "The cycloaddition of alkynes at a Ru–P π-bond".
998:
Quin, L. D. A Guide to Organophosphorus Chemistry; John Wiley & Sons: New York, 2000; pp 28-29.
592:
Pringle, P. G.; Smith, M. B. (1990). "Platinum(0)-catalysed hydrophosphination of acrylonitrile".
1339: 1119:
Rosenberg, L. (2013). "Mechanisms of Metal-Catalyzed Hydrophosphination of Alkenes and Alkynes".
954: 335: 1304: 1269: 1234: 1198: 1163: 1098: 1062: 902: 843: 814: 764: 731: 658: 629: 428: 299: 291: 205: 16: 1367: 1331: 1296: 1261: 1226: 1190: 1155: 1128: 1090: 1054: 1025: 1017: 981: 946: 894: 889:
Svara, Jürgen; Weferling, Norbert; Hofmann, Thomas (2006). "Phosphorus Compounds, Organic".
864: 835: 806: 785: 756: 723: 702: 680: 650: 621: 597: 580: 558: 537: 515: 493: 471: 449: 420: 398: 219: 61: 1146:
Bange, Christine A.; Waterman, Rory (2016). "Challenges in Catalytic Hydrophosphination".
276: 942: 1384: 958: 65: 1343: 950: 379:
The reaction can be effected both using metal catalysts or free-radical initiators.
189: 1085:
Glueck, David S. (2010). "Recent Advances in Metal-Catalyzed C–P Bond Formation".
898: 322:
Mechanism proposed for hydrophosphination catalyzed by a Pt(II) phosphido complex.
1094: 609: 109: 28: 1335: 972:
King, R. Bruce (1972). "Poly(tertiary Phosphines) and Their Metal Complexes".
868: 326: 298:
catalyst. In the first step, the Ti(II) precursor inserted in the P-H bond of
32: 53: 41: 1308: 1273: 1265: 1238: 1202: 1167: 1159: 1066: 847: 818: 810: 768: 735: 662: 633: 432: 1371: 601: 339:
bond-forming step occurs through an outer-sphere, Michael-type addition.
213: 209: 197: 36: 985: 330:
Mechanism proposed for hydrophosphination catalyzed by a Ni(0) catalyst.
1194: 1030: 1021: 654: 1300: 1230: 1132: 789: 760: 727: 706: 684: 625: 584: 562: 541: 519: 497: 475: 453: 424: 402: 1089:. Topics in Organometallic Chemistry. Vol. 31. pp. 65–100. 1058: 839: 318: 252: 325: 317: 251: 218: 52:
The usual application of hydrophosphination involves reactions of
15: 290:
Titanium-catalyzed 1,4-hydrophosphination of 1,3-dienes with
747:(II)-Catalyzed Asymmetric Hydrophosphination of Dienones". 334:
Some late metal hydrophosphination catalysts proceed via
594:
Journal of the Chemical Society, Chemical Communications
268:-pentenylphosphine. The primary phosphine undergoes a 208:
and trioctylphosphine are prepared in good yields from
144:
Bases catalyze the addition of secondary phosphines to
283:
Most metal catalyzed hydrophosphinations proceed via
228:
radicals, but alternative explanations are lacking.
188:Many hydrophosphination reactions are initiated by 294:has been demonstrated. It is a rare example of a 60:). Typically base-catalysis allows addition of 248:Early transition metal and lanthanide catalysts 891:Ullmann's Encyclopedia of Industrial Chemistry 8: 204:. In this way, the commercially important 1117:Rosenberg, L. R. ACS Catal. 2013, 3, 2845. 347:Hydrophosphorylation and related reactions 1360:Bulletin of the Chemical Society of Japan 1029: 924: 922: 920: 918: 1219:Journal of the American Chemical Society 1080: 1078: 1076: 614:Journal of the American Chemical Society 551:Journal of the American Chemical Society 442:Journal of the American Chemical Society 413:Journal of the American Chemical Society 881: 799:Angewandte Chemie International Edition 7: 1324:Russian Journal of Organic Chemistry 200:are typical initiators, as well as 14: 20:Hydrophosphination of an alkene. 951:10.1070/RC1999v068n03ABEH000464 310:Late transition metal catalysts 1254:Chemistry – A European Journal 1148:Chemistry - A European Journal 1: 974:Accounts of Chemical Research 899:10.1002/14356007.a19_545.pub2 285:metal phosphido intermediates 1095:10.1007/978-3-642-12073-2_4 223:Radical hydrophosphination. 29:carbon-carbon multiple bond 1422: 869:10.1016/j.ica.2010.12.058 232:Metal-catalyzed reactions 70:tris(cyanoethyl)phosphine 1047:Chemical Society Reviews 931:Russian Chemical Reviews 1336:10.1023/A:1022552404812 857:Inorganica Chimica Acta 828:Chemical Communications 643:Chemical Communications 202:Ultraviolet irradiation 1266:10.1002/chem.200901863 1160:10.1002/chem.201602749 811:10.1002/anie.201000356 331: 323: 257: 224: 146:vinyldiphenylphosphine 27:is the insertion of a 21: 1372:10.1246/bcsj.20100141 329: 321: 255: 222: 19: 602:10.1039/C39900001701 184:Free-radical methods 140:(R = Me, alkyl, etc) 112:and many analogues: 1189:(48): 19172–19193. 1183:Dalton Transactions 1154:(36): 12598–12605. 986:10.1021/ar50053a003 943:1999RuCRv..68..215T 716:Inorganic Chemistry 620:(48): 17012–17024. 419:(42): 10221–10238. 260:Metal complexes of 1391:Addition reactions 1195:10.1039/C6DT03913H 1087:C-X Bond Formation 1022:10.1039/c2gc35898k 655:10.1039/C0CC00925C 336:oxidative addition 332: 324: 258: 225: 25:Hydrophosphination 22: 1301:10.1021/ol017238s 1231:10.1021/ja064853o 1133:10.1021/cs400685c 1127:(12): 2845–2855. 1104:978-3-642-12072-5 834:(25): 4592–4594. 805:(19): 3367–3370. 790:10.1021/om0700056 761:10.1021/ol202480r 728:10.1021/ic202472f 707:10.1021/om300405h 685:10.1021/om201115n 626:10.1021/ja0555163 585:10.1021/om990882e 563:10.1021/ja970355r 542:10.1021/om050433g 520:10.1021/om060631n 498:10.1021/om030439a 476:10.1021/om0104013 454:10.1021/ja993633q 425:10.1021/ja010811i 403:10.1021/om050570d 300:diphenylphosphine 292:diphenylphosphine 206:tributylphosphine 62:Michael acceptors 1413: 1401:Organophosphanes 1376: 1375: 1366:(9): 1086–1099. 1354: 1348: 1347: 1319: 1313: 1312: 1284: 1278: 1277: 1249: 1243: 1242: 1225:(41): 13575–85. 1217:Multiple Bond". 1213: 1207: 1206: 1178: 1172: 1171: 1143: 1137: 1136: 1115: 1109: 1108: 1082: 1071: 1070: 1059:10.1039/B612306F 1053:(8): 1482–1489. 1042: 1036: 1035: 1033: 1005: 999: 996: 990: 989: 969: 963: 962: 926: 913: 912: 886: 872: 851: 840:10.1039/C002765K 822: 793: 772: 739: 710: 688: 666: 637: 605: 588: 566: 545: 523: 501: 479: 457: 436: 406: 273:-bond metathesis 216:, respectively. 48:Acid-base routes 1421: 1420: 1416: 1415: 1414: 1412: 1411: 1410: 1396:Green chemistry 1381: 1380: 1379: 1356: 1355: 1351: 1321: 1320: 1316: 1289:Organic Letters 1286: 1285: 1281: 1251: 1250: 1246: 1215: 1214: 1210: 1180: 1179: 1175: 1145: 1144: 1140: 1118: 1116: 1112: 1105: 1084: 1083: 1074: 1044: 1043: 1039: 1010:Green Chemistry 1007: 1006: 1002: 997: 993: 971: 970: 966: 928: 927: 916: 909: 888: 887: 883: 879: 854: 825: 796: 778:Organometallics 775: 749:Organic Letters 742: 713: 695:Organometallics 691: 673:Organometallics 669: 640: 608: 591: 573:Organometallics 569: 548: 530:Organometallics 526: 508:Organometallics 504: 486:Organometallics 482: 464:Organometallics 460: 439: 409: 391:Organometallics 388: 385: 383:Further reading 374: 370: 366: 362: 358: 349: 312: 305: 277:terminal alkene 250: 243: 239: 234: 186: 179: 175: 171: 167: 163: 159: 155: 139: 135: 131: 127: 123: 119: 103: 99: 95: 91: 87: 83: 79: 59: 50: 12: 11: 5: 1419: 1417: 1409: 1408: 1403: 1398: 1393: 1383: 1382: 1378: 1377: 1349: 1314: 1279: 1244: 1208: 1173: 1138: 1110: 1103: 1072: 1037: 1000: 991: 980:(5): 177–185. 964: 937:(3): 215–227. 914: 907: 880: 878: 875: 874: 873: 852: 823: 794: 773: 755:(21): 5862–5. 740: 722:(4): 2533–40. 711: 689: 667: 649:(37): 6950–2. 638: 606: 589: 567: 546: 524: 502: 480: 458: 437: 407: 384: 381: 377: 376: 372: 368: 364: 360: 356: 348: 345: 311: 308: 303: 249: 246: 241: 237: 233: 230: 185: 182: 181: 180: 177: 173: 169: 165: 161: 157: 153: 142: 141: 137: 133: 129: 125: 121: 117: 106: 105: 101: 97: 93: 89: 85: 81: 77: 57: 49: 46: 13: 10: 9: 6: 4: 3: 2: 1418: 1407: 1406:Stoichiometry 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1388: 1386: 1373: 1369: 1365: 1361: 1353: 1350: 1345: 1341: 1337: 1333: 1329: 1325: 1318: 1315: 1310: 1306: 1302: 1298: 1294: 1290: 1283: 1280: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1245: 1240: 1236: 1232: 1228: 1224: 1220: 1212: 1209: 1204: 1200: 1196: 1192: 1188: 1184: 1177: 1174: 1169: 1165: 1161: 1157: 1153: 1149: 1142: 1139: 1134: 1130: 1126: 1122: 1121:ACS Catalysis 1114: 1111: 1106: 1100: 1096: 1092: 1088: 1081: 1079: 1077: 1073: 1068: 1064: 1060: 1056: 1052: 1048: 1041: 1038: 1032: 1027: 1023: 1019: 1015: 1011: 1004: 1001: 995: 992: 987: 983: 979: 975: 968: 965: 960: 956: 952: 948: 944: 940: 936: 932: 925: 923: 921: 919: 915: 910: 904: 900: 896: 892: 885: 882: 876: 870: 866: 862: 858: 853: 849: 845: 841: 837: 833: 829: 824: 820: 816: 812: 808: 804: 800: 795: 791: 787: 783: 779: 774: 770: 766: 762: 758: 754: 750: 746: 741: 737: 733: 729: 725: 721: 717: 712: 708: 704: 700: 696: 690: 686: 682: 678: 674: 668: 664: 660: 656: 652: 648: 644: 639: 635: 631: 627: 623: 619: 615: 611: 607: 603: 599: 595: 590: 586: 582: 578: 574: 568: 564: 560: 556: 552: 547: 543: 539: 535: 531: 525: 521: 517: 513: 509: 503: 499: 495: 491: 487: 481: 477: 473: 469: 465: 459: 455: 451: 447: 443: 438: 434: 430: 426: 422: 418: 414: 408: 404: 400: 396: 392: 387: 386: 382: 380: 354: 353: 352: 346: 344: 340: 337: 328: 320: 316: 309: 307: 301: 297: 293: 288: 286: 281: 278: 274: 272: 267: 263: 254: 247: 245: 231: 229: 221: 217: 215: 211: 207: 203: 199: 195: 191: 190:free-radicals 183: 151: 150: 149: 147: 115: 114: 113: 111: 84:=CHZ → P(CH 75: 74: 73: 71: 67: 66:acrylonitrile 63: 55: 47: 45: 43: 38: 34: 30: 26: 18: 1363: 1359: 1352: 1330:(10): 1479. 1327: 1323: 1317: 1295:(5): 761–3. 1292: 1288: 1282: 1260:(1): 64–67. 1257: 1253: 1247: 1222: 1218: 1211: 1186: 1182: 1176: 1151: 1147: 1141: 1124: 1120: 1113: 1086: 1050: 1046: 1040: 1016:(10): 2699. 1013: 1009: 1003: 994: 977: 973: 967: 934: 930: 890: 884: 860: 856: 831: 827: 802: 798: 781: 777: 752: 748: 744: 719: 715: 701:(13): 4871. 698: 694: 676: 672: 646: 642: 617: 613: 610:Sadow, A. D. 596:(23): 1701. 593: 576: 572: 557:(21): 5039. 554: 550: 536:(21): 4871. 533: 529: 514:(24): 5757. 511: 507: 492:(23): 4630. 489: 485: 467: 463: 445: 441: 416: 412: 397:(21): 4995. 394: 390: 378: 359:P(O)H + CH 350: 341: 333: 313: 295: 289: 282: 270: 265: 261: 259: 235: 226: 187: 143: 107: 100:, CN, C(O)NH 51: 24: 23: 1031:11336/95357 863:: 133–139. 784:(6): 1473. 679:(8): 3022. 448:(8): 1824. 363:=CHR → R 110:isobutylene 1385:Categories 908:3527306730 877:References 579:(6): 950. 470:(2): 283. 240:PH and RPH 33:phosphorus 959:250775640 198:peroxides 54:phosphine 42:phosphine 1344:94929172 1309:11869121 1274:19918817 1239:17031972 1203:27891536 1168:27405918 1067:18648674 848:20458386 819:20358572 769:21985055 736:22289417 663:20730193 634:16316248 433:11603972 214:1-octene 210:1-butene 68:to give 64:such as 37:hydrogen 939:Bibcode 96:(Z = NO 80:+ 3 CH 44:(PH3). 31:into a 1342:  1307:  1272:  1237:  1201:  1166:  1101:  1065:  957:  905:  846:  817:  767:  734:  661:  632:  431:  367:P(O)CH 160:=CHPR' 1340:S2CID 955:S2CID 306:PH). 164:→ R 156:+ CH 1305:PMID 1270:PMID 1235:PMID 1199:PMID 1164:PMID 1099:ISBN 1063:PMID 903:ISBN 844:PMID 815:PMID 765:PMID 732:PMID 659:PMID 630:PMID 429:PMID 212:and 196:and 194:AIBN 136:)CPH 128:→ R 124:C=CH 120:+ R 1368:doi 1332:doi 1297:doi 1262:doi 1227:doi 1223:128 1191:doi 1156:doi 1129:doi 1091:doi 1055:doi 1026:hdl 1018:doi 982:doi 947:doi 895:doi 865:doi 861:369 836:doi 807:doi 786:doi 757:doi 724:doi 703:doi 681:doi 651:doi 622:doi 618:127 598:doi 581:doi 559:doi 555:119 538:doi 516:doi 494:doi 472:doi 450:doi 446:122 421:doi 417:123 399:doi 302:(Ph 266:α,ω 192:. 176:PR' 168:PCH 152:HPR 132:(CH 56:(PH 1387:: 1364:83 1362:. 1338:. 1328:38 1326:. 1303:. 1291:. 1268:. 1258:16 1256:. 1233:. 1221:. 1197:. 1187:45 1185:. 1162:. 1152:22 1150:. 1123:. 1097:. 1075:^ 1061:. 1051:37 1049:. 1024:. 1014:14 1012:. 976:. 953:. 945:. 935:68 933:. 917:^ 901:. 893:. 859:. 842:. 832:46 830:. 813:. 803:49 801:. 782:26 780:. 763:. 753:13 751:. 745:Pd 730:. 720:51 718:. 699:31 697:. 677:31 675:. 657:. 647:46 645:. 628:. 616:. 577:19 575:. 553:. 534:24 532:. 512:25 510:. 490:22 488:. 468:21 466:. 444:. 427:. 415:. 395:24 393:. 371:CH 172:CH 148:: 116:PH 92:Z) 88:CH 76:PH 72:: 1374:. 1370:: 1346:. 1334:: 1311:. 1299:: 1293:4 1276:. 1264:: 1241:. 1229:: 1205:. 1193:: 1170:. 1158:: 1135:. 1131:: 1125:3 1107:. 1093:: 1069:. 1057:: 1034:. 1028:: 1020:: 988:. 984:: 978:5 961:. 949:: 941:: 911:. 897:: 871:. 867:: 850:. 838:: 821:. 809:: 792:. 788:: 771:. 759:: 738:. 726:: 709:. 705:: 687:. 683:: 665:. 653:: 636:. 624:: 604:. 600:: 587:. 583:: 565:. 561:: 544:. 540:: 522:. 518:: 500:. 496:: 478:. 474:: 456:. 452:: 435:. 423:: 405:. 401:: 375:R 373:2 369:2 365:2 361:2 357:2 355:R 304:2 296:d 271:σ 262:d 242:2 238:2 178:2 174:2 170:2 166:2 162:2 158:2 154:2 138:2 134:3 130:2 126:2 122:2 118:3 104:) 102:2 98:2 94:3 90:2 86:2 82:2 78:3 58:3 35:-

Index


carbon-carbon multiple bond
phosphorus
hydrogen
phosphine
phosphine
Michael acceptors
acrylonitrile
tris(cyanoethyl)phosphine
isobutylene
vinyldiphenylphosphine
free-radicals
AIBN
peroxides
Ultraviolet irradiation
tributylphosphine
1-butene
1-octene


σ-bond metathesis
terminal alkene
metal phosphido intermediates
diphenylphosphine
diphenylphosphine


oxidative addition
doi
10.1021/om050570d

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.