Knowledge (XXG)

Hall-effect thruster

Source 📝

949: 909: 231: 940:
erosion, pole piece erosion is still a concern. As an alternative, an unconventional Hall thruster design called external discharge Hall thruster or external discharge plasma thruster (XPT) has been introduced. The external discharge Hall thruster does not possess any discharge channel walls or pole pieces. Plasma discharge is produced and sustained completely in the open space outside the thruster structure, and thus erosion-free operation is achieved.
493: 33: 3058: 562:
inside the thruster and are able to ionize almost all of the xenon propellant, allowing mass use of 90–99%. The mass use efficiency of the thruster is thus around 90%, while the discharge current efficiency is around 70%, for a combined thruster efficiency of around 63% (= 90% × 70%). Modern Hall thrusters have achieved efficiencies as high as 75% through advanced designs.
1027:, which are used to adjust and maintain the station's orbit. Hall-effect thrusters are created with crewed mission safety in mind with effort to prevent erosion and damage caused by the accelerated ion particles. A magnetic field and specially designed ceramic shield was created to repel damaging particles and maintain integrity of the thrusters. According to the 242:, was launched December 1971. They were mainly used for satellite stabilization in north–south and in east–west directions. Since then until the late 1990s 118 SPT engines completed their mission and some 50 continued to be operated. Thrust of the first generation of SPT engines, SPT-50 and SPT-60 was 20 and 30 mN respectively. In 1982, the SPT-70 and 468:
innovation that sets them apart from the competition by increasing life and redundancy of the system. The spacetech startup had earlier developed world’s first commercial Microwave Plasma Thruster, which used water as fuel instantaneously heating it by microwave-induced plasma, and for which the company had bagged an order from ISRO.
627:. Xenon is relatively easy to store, and as a gas at spacecraft operating temperatures does not need to be vaporized before usage, unlike metallic propellants such as bismuth. Xenon's high atomic weight means that the ratio of energy expended for ionization per mass unit is low, leading to a more efficient thruster. 526:
gas, is fed through the anode, which has numerous small holes in it to act as a gas distributor. As the neutral xenon atoms diffuse into the channel of the thruster, they are ionized by collisions with circulating high-energy electrons (typically 10–40 eV, or about 10% of the discharge voltage).
638:
is another choice of propellant for Hall thrusters. Xenon has an ionization potential of 12.1298 eV, while krypton has an ionization potential of 13.996 eV. This means that thrusters utilizing krypton need to expend a slightly higher energy per mole to ionize, which reduces efficiency. Additionally,
144:
between 10 and 80 km/s (1,000–8,000 s specific impulse), with most models operating between 15 and 30 km/s. The thrust produced depends on the power level. Devices operating at 1.35 kW produce about 83 mN of thrust. High-power models have demonstrated up to 5.4 N in the
960:
Hall thrusters have been flying in space since December 1971, when the Soviet Union launched an SPT-50 on a Meteor satellite. Over 240 thrusters have flown in space since that time, with a 100% success rate. Hall thrusters are now routinely flown on commercial LEO and GEO communications satellites,
452:
In 2013, ISRO funded development of another class of electric thruster called Magnetoplasmadynamic Electric Propulsion Thruster. The project subsequently developed a technology demonstrator prototype Magneto Plasma Dynamic Thruster (MPD) using Argon propellant with a specific impulse of 2500s at a
930:
profile. The cylindrical Hall thruster more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster. The primary reason for cylindrical Hall thrusters is that it is difficult to achieve a regular Hall thruster that operates over a broad envelope
295:
Since in the early 1990s, Hall thrusters have been the subject of a large number of research efforts throughout the United States, India, France, Italy, Japan, and Russia (with many smaller efforts scattered in various countries across the globe). Hall thruster research in the US is conducted at
939:
Sputtering erosion of discharge channel walls and pole pieces that protect the magnetic circuit causes failure of thruster operation. Therefore, annular and cylindrical Hall thrusters have limited lifetime. Although magnetic shielding has been shown to dramatically reduce discharge channel wall
561:
About 20–30% of the discharge current is an electron current, which does not produce thrust, thus limiting the energetic efficiency of the thruster; the other 70–80% of the current is in the ions. Because the majority of electrons are trapped in the Hall current, they have a long residence time
467:
became the first commercial firm to bring out commercial hall effect thrusters. The current model of the thruster uses Xenon as fuel. Tests were carried out at the spacecraft propulsion research laboratory in the Indian Institute of Science, Bengaluru. Heaterless Cathode Technology is the key
534:
between the anode and the cathode. For discharge voltages of 300 V, the ions reach speeds of around 15 km/s (9.3 mi/s) for a specific impulse of 1,500 s (15 kN·s/kg). Upon exiting, however, the ions pull an equal number of electrons with them, creating a
1042:, for its Magnetically Shielded Miniature (MaSMi) Hall thruster technology. In January 2021, Apollo Fusion announced they had secured a contract with York Space Systems for an order of its latest iteration named the "Apollo Constellation Engine". 1031:, the ion drive used on Tiangong has burned continuously for 8,240 hours without a glitch, indicating their suitability for the Chinese space station's designated 15-year lifespan. This is the world's first Hall thruster on a human-rated mission. 999:(GEO). Like most Hall thruster propulsion systems used in commercial applications, the Hall thruster on SMART-1 could be throttled over a range of power, specific impulse, and thrust. It has a discharge power range of 0.46–1.19 kW, a 398:
GEO communications satellite. At 4.5 kW, the BPT-4000 is also the highest power Hall thruster ever flown in space. Besides the usual stationkeeping tasks, the BPT-4000 is also providing orbit-raising capability to the spacecraft. The
558:, and it is from this that the Hall thruster gets its name. Collisions with other particles and walls, as well as plasma instabilities, allow some of the electrons to be freed from the magnetic field, and they drift towards the anode. 288:, visited Russian laboratories and experimentally evaluated the SPT-100 (i.e., a 100 mm diameter SPT thruster). Hall thrusters continue to be used on Russian spacecraft and have also flown on European and American spacecraft. 448:
carried by GSLV Mk2 D3. It had four Xenon powered thrusters for North-South station keeping. Two of them were Russian and the other two were Indian. The Indian thrusters were rated at 13mN. However, GSLV D3 didn't make it to orbit.
456:
The following year in 2014, ISRO was pursuing development of 75mN & 250 mN SPT thrusters to be used in its future high power communication satellites. The 75 mN thrusters were put to use for the GSAT-9 communication satellite.
410:
constellation, the largest satellite constellation in the world, uses Hall-effect thrusters. Starlink initially used krypton gas, but with its V2 satellites swapped to argon due to its cheaper price and widespread availability.
920:
power regime, they become inefficient when scaled to small sizes. This is due to the difficulties associated with holding the performance scaling parameters constant while decreasing the channel size and increasing the applied
489:) is used to confine the electrons, where the combination of the radial magnetic field and axial electric field cause the electrons to drift in azimuth thus forming the Hall current from which the device gets its name. 172:. They were first described publicly in the US in the early 1960s. However, the Hall thruster was first developed into an efficient propulsion device in the Soviet Union. In the US, scientists focused on developing 925:
strength. This led to the design of the cylindrical Hall thruster. The cylindrical Hall thruster can be more readily scaled to smaller sizes due to its nonconventional discharge-chamber geometry and associated
480:
to accelerate ions up to high speeds. In a Hall thruster, the attractive negative charge is provided by an electron plasma at the open end of the thruster instead of a grid. A radial magnetic field of about
1693:
Using the Reference Price column, as the cost per unit weight values are inconsistent. The table provides dates that appear to be when quotes were obtained, but has links only to generic supplier websites.
1363: 565:
Compared to chemical rockets, the thrust is very small, on the order of 83 mN for a typical thruster operating at 300 V and 1.5 kW. For comparison, the weight of a coin like the
403:
has been used as a testbed for the Hall thruster for the AEHF satellite series. Several countries worldwide continue efforts to qualify Hall thruster technology for commercial uses. The
2316: 1811:
Goebel, Dan M.; Jorns, Benjamin; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira (2014). "Pole-piece Interactions with the Plasma in a Magnetically Shielded Hall Thruster".
603:
Another advantage is that these thrusters can use a wider variety of propellants supplied to the anode, even oxygen, although something easily ionized is needed at the cathode.
639:
krypton is a lighter ion, so the unit mass per ionization energy is further reduced compared to xenon. However, xenon can be more than ten times as expensive as krypton per
1844:
Karadag, Burak; Cho, Shinatora; Oshio, Yuya; Hamada, Yushi; Funaki, Ikkoh; Komurasaki, Kimiya (2016). "Preliminary Investigation of an External Discharge Plasma Thruster".
460:
By 2021 development of a 300 mN thruster was complete. Alongside it, RF powered 10kW plasma engine & Krypton based low power electric propulsion were being pursued.
2392: 2788: 1359: 2906: 546:
and are hardly impeded. The majority of electrons are thus stuck orbiting in the region of high radial magnetic field near the thruster exit plane, trapped in
542:
The radial magnetic field is designed to be strong enough to substantially deflect the low-mass electrons, but not the high-mass ions, which have a much larger
2273:
Daniel A. Herman, Todd A. Tofil, Walter Santiago, Hani Kamhawi, James E. Polk, John S. Snyder, Richard R. Hofer, Frank Q. Picha, Jerry Jackson and May Allen.
1902:"Low–voltage External Discharge Plasma Thruster and Hollow Cathodes Plasma Plume Diagnostics Utilising Electrostatic Probes and Retarding Potential Analyser" 1884: 1905: 2527: 2329: 574: 1443: 1013:
constellation used krypton-fueled Hall thrusters for position-keeping and deorbiting, while later Starlink satellites used argon-fueled Hall thrusters.
619:
has been the typical choice of propellant for many electric propulsion systems, including Hall thrusters. Xenon propellant is used because of its high
1088:'s 100 kW X3 Nested Channel Hall Thruster. The thruster is approximately 80 cm in diameter and weighs 230 kg, and has demonstrated a thrust of 5.4 N. 325: 1248:. Proceedings of the NASA-University Conference on the Science and Technology of Space Exploration. Vol. 2. Chicago, Illinois. pp. 171–176. 2804: 2078: 156:
and efficiency in the range of 45–60 percent. The applications of Hall-effect thrusters include control of the orientation and position of orbiting
2277:(PDF). NASA; NASA/TM–2018-219761. 35th International Electric Propulsion Conference. Atlanta, Georgia, October 8–12, 2017. Retrieved 27 July 2018. 1502: 1144: 1045:
The NASA mission to the asteroid Psyche utilizes xenon gas Hall thrusters. The electricity comes from the craft's 75 square meter solar panels.
678:'s previous thruster that used krypton. Argon is approximately 100 times less expensive than Krypton and 1000 times less expensive than Xenon. 285: 1613: 1934: 1861: 1828: 1666: 1323: 2313: 3087: 1736: 313: 2293: 2037: 1965: 1926: 2385: 1784:
Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets
1092: 1053: 519:
and is surrounded by an annular space, and around that is the other pole of the electromagnet, with a radial magnetic field in between.
2709: 1711: 2229: 2783: 1341: 1072:. The high specific impulse of Hall thrusters will allow for efficient orbit raising and station keep for the Lunar Gateway's polar 395: 333: 2308: 2093: 2059: 1111:
Hofer, Richard R. (June 2004). Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters.
1480: 264:
Over 200 Hall thrusters have been flown on Soviet/Russian satellites since the 1980s. No failures have ever occurred on orbit.
2151: 2809: 2674: 2378: 296:
several government laboratories, universities and private companies. Government and government funded centers include NASA's
2302: 2913: 2768: 2737: 2732: 305: 281: 102:
s) space propulsion technology and has benefited from considerable theoretical and experimental research since the 1960s.
2339: 1989: 1259: 1061: 272:
Soviet-built thrusters were introduced to the West in 1992 after a team of electric propulsion specialists from NASA's
1073: 1039: 1028: 390:
technology demonstration spacecraft. The first flight of an American Hall thruster on an operational mission, was the
3097: 1516: 1048:
NASA's first Hall thrusters on a human-rated mission will be a combination of 6 kW Hall thrusters provided by
996: 292:, an American commercial satellite manufacturer, now flies Fakel SPT-100's on their GEO communications spacecraft. 238:
The SPT design was largely the work of A. I. Morozov. The first SPT to operate in space, an SPT-50 aboard a Soviet
141: 1877: 1231:. Proceedings of Third Symposium on Advanced Propulsion Concepts. Vol. 1. Cincinnati, Ohio. pp. 177–190. 1216:. Proceedings of third symposium on advanced propulsion concepts. Vol. 2. Cincinnati, Ohio. pp. 153–175. 527:
Most of the xenon atoms are ionized to a net charge of +1, but a noticeable fraction (c. 20%) have +2 net charge.
2868: 2727: 2203: 2123: 1901: 1035: 976: 309: 297: 273: 40: 2901: 2660: 2634: 2576: 2560: 2550: 908: 2326: 2957: 2930: 2885: 2873: 2853: 2619: 2581: 2555: 1878:"Numerical Investigation of an External Discharge Hall Thruster Design Utilizing Plasma-lens Magnetic Field" 1391: 962: 644: 592:, is that the generation and acceleration of the ions takes place in a quasi-neutral plasma, so there is no 477: 995:. This use of the PPS-1350-G, starting on September 28, 2003, was the first use of a Hall thruster outside 3008: 2858: 2758: 2500: 1085: 1016: 968:
The first Hall thruster to fly on a western satellite was a Russian D-55 built by TsNIIMASH, on the NRO's
554:(axial electric field and radial magnetic field). This orbital rotation of the electrons is a circulating 496:
Hall thruster. Hall thrusters are largely axially symmetric. This is a cross-section containing that axis.
317: 1586: 2593: 2586: 2401: 2274: 980: 600:
limitation on the thrust density. This allows much smaller thrusters compared to gridded ion thrusters.
301: 277: 230: 86:
to limit the electrons' axial motion and then use them to ionize propellant, efficiently accelerate the
47: 2347: 2275:"Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)" 2253: 1494: 1136: 588:
that are typical for electric propulsion. One particular advantage of Hall thrusters, as compared to a
3092: 3082: 2699: 2603: 2517: 1286: 1178: 624: 589: 378:
Hall thrusters were first demonstrated on a western satellite on the Naval Research Laboratory (NRL)
329: 173: 2863: 2848: 2763: 2650: 2629: 2598: 1624: 566: 464: 415: 321: 289: 3057: 1755:
Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters
1243: 382:
spacecraft, which flew the Russian D-55. The first American Hall thruster to fly in space was the
3062: 3028: 2993: 2833: 2178: 1535: 1302: 1057: 1020: 597: 501: 371:
The first use of Hall thrusters on lunar orbit was the European Space Agency (ESA) lunar mission
239: 148:
As of 2009, Hall-effect thrusters ranged in input power levels from 1.35 to 10 kilowatts and had
1958: 1786:. 3rd Spacecraft Propulsion Subcommittee (SPS) meeting/JANNAF Interagency Propulsion Committee. 1729: 2290: 2029: 948: 437:
Research in India is carried out by both public and private research institutes and companies.
3023: 2978: 2878: 2778: 2480: 2454: 1930: 1920: 1857: 1824: 1662: 1481:"Spacetech Startup Bellatrix Aerospace Test Fires India's First Privately Built Hall Thruster" 1327: 1194: 365: 1419: 1360:"Aerojet Rocketdyne's Modified XR-5 Hall Thruster Demonstrates Successful On-Orbit Operation" 1095:(AEPS), meant to propel large-scale science missions and cargo transportation in deep space. 3043: 3033: 2983: 2689: 2442: 2011: 1849: 1816: 1791: 1762: 1658: 1654: 1461: 1294: 1186: 1116: 1000: 585: 578: 536: 361: 211: 189: 149: 145:
laboratory. Power levels up to 100 kW have been demonstrated for xenon Hall thrusters.
95: 1704: 2655: 2459: 2425: 2351: 2333: 2320: 2297: 1520: 1069: 956:
in orbit around the Moon. The orbit of the Gateway will be maintained with Hall thrusters.
357: 341: 94:, and neutralize the ions in the plume. The Hall-effect thruster is classed as a moderate 1345: 1277:
Morozov, A.I. (March 2003). "The conceptual development of stationary plasma thrusters".
674:
V2 mini. The new thruster had 2.4 times the thrust and 1.5 times the specific impulse as
246:
were introduced, their thrusts being 40 and 83 mN, respectively. In the post-Soviet
1559: 1290: 1182: 2988: 2923: 2624: 2464: 2101: 2010:. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, Ohio. 927: 922: 531: 83: 63: 1190: 3076: 2998: 2918: 2773: 2742: 2522: 2512: 2507: 2430: 2420: 2362: 2156: 2128: 1306: 1065: 953: 620: 516: 422: 2008:
PPS®1350 Qualification Demonstration: 10500 hrs on the Ground and 5000 hrs in Flight
912:
An Exotrail ExoMG – nano (60 W) Hall Effect Thruster firing in a vacuum chamber
3003: 2962: 2935: 2694: 2490: 2485: 1682: 1420:"NASA's Psyche spacecraft will blaze an unusual blue trail across the solar system" 1024: 593: 486: 482: 337: 258:, SPT-160, SPT-200, T-160, and low-power (less than 500 W) SPT-35 were introduced. 169: 55: 32: 991:-G Hall thruster. SMART-1 was a technology demonstration mission that orbited the 931:
from c.1 kW down to c. 100 W while maintaining an efficiency of 45–55%.
414:
The first deployment of Hall thrusters beyond Earth's sphere of influence was the
1982: 1514: 3018: 3013: 2819: 2006:
Cornu, Nicolas; Marchandise, Frédéric; Darnon, Franck; Estublier, Denis (2007).
555: 492: 153: 79: 2357: 340:. A considerable amount of development is being conducted in industry, such as 261:
Soviet and Russian TAL-type thrusters include the D-38, D-55, D-80, and D-100.
3038: 2495: 543: 134: 67: 59: 2256:. Plasmadynamics & Electric Propulsion Laboratory, University of Michigan 1263: 17: 1796: 1767: 1396: 1121: 570: 426: 223: 205: 160:
and use as a main propulsion engine for medium-size robotic space vehicles.
157: 126: 1922:
Rocket and Spacecraft Propulsion: Principles, Practice and New Developments
1198: 1137:"Ion Thruster Prototype Breaks Records in Tests, Could Send Humans to Mars" 900:
As well as the Soviet SPT and TAL types mentioned above, there are :
1649:
Shuen-Chen Hwang; Robert D. Lein; Daniel A. Morgan (2005). "Noble Gases".
1084:
The highest power Hall-effect thruster in development (as of 2021) is the
105:
Hall thrusters operate on a variety of propellants, the most common being
1010: 988: 917: 671: 652: 640: 407: 387: 251: 2370: 2015: 1853: 1820: 1782:
Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J. (8 December 2008).
1753:
Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J. (25 July 2010).
476:
The essential working principle of the Hall thruster is that it uses an
2814: 2447: 2060:"Three Decades in the Making, China's Space Station Launches This Week" 984: 758: 635: 509: 391: 372: 345: 255: 243: 168:
Hall thrusters were studied independently in the United States and the
118: 110: 2152:"Apollo Fusion wins electric propulsion order from York Space Systems" 1298: 1038:(JPL) granted exclusive commercial licensing to Apollo Fusion, led by 2437: 2415: 1344:. Air Force Institute of Technology. 13 November 2007. Archived from 1007: 860: 675: 663: 648: 445: 404: 353: 247: 122: 91: 2030:"Ion engine gets SMART-1 to the Moon: Electric Propulsion Subsystem" 1730:"Experimental and theoretical studies of cylindrical Hall thrusters" 1056:(AEPS) Hall thrusters. They will serve as the primary propulsion on 916:
Although conventional (annular) Hall thrusters are efficient in the
1049: 947: 907: 792: 724: 667: 616: 523: 505: 500:
A schematic of a Hall thruster is shown in the adjacent image. An
491: 400: 383: 349: 229: 114: 106: 2305:—Page presenting Hall effect thruster products & data sheets 1983:"National Reconnaissance Office Satellite Successfully Launched" 1587:"The elements of the periodic table sorted by ionization energy" 992: 969: 826: 441: 379: 184:
Two types of Hall thrusters were developed in the Soviet Union:
130: 37: 2374: 2230:"We're Fired Up! Gateway's Propulsion System Passes First Test" 2079:"How China's space station could help power astronauts to Mars" 2033: 1988:. Naval Research Laboratory (Press Release). October 3, 1998. 1705:"Parametric Investigations of a Nonconventional Hall Thruster" 87: 2344: 1169:
Choueiri, Edgar Y. (2009). "New Dawn for Electric Rockets".
655:
V1, whose original Hall thrusters were fueled with krypton.
643:, making krypton a more economical choice for building out 2124:"Apollo Fusion obtains Hall thruster technology from JPL" 1536:"Krypton Hall effect thruster for spacecraft propulsion" 1326:(in Russian). Novosti Kosmonavtiki. 1999. Archived from 577:, thrust is limited by available power, efficiency, and 1757:. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 140:
Hall thrusters are able to accelerate their exhaust to
152:
of 10–50 kilometers per second, with thrust of 40–600
1091:
Other high power thrusters include NASA's 40 kW
394:
BPT-4000, which launched August 2010 on the military
1392:"SpaceX launches first upgraded Starlink satellites" 504:
of between 150 and 800 volts is applied between the
2971: 2950: 2894: 2841: 2832: 2797: 2751: 2720: 2682: 2673: 2643: 2612: 2569: 2543: 2536: 2473: 2408: 1813:
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
1003:of 1,100–1,600 s and thrust of 30–70 mN. 66:. Hall-effect thrusters (based on the discovery by 1362:(Press release). Aerojet Rocketdyne. 1 July 2015. 573:is approximately 60 mN. As with all forms of 2309:Snecma SA (France) page on PPS-1350 Hall thruster 1023:is propelled by both chemical thrusters and four 1444:"ISRO to Test Electric Propulsion on Satellites" 1245:Generation of Thrust – Electromagnetic Thrusters 1651:Kirk Othmer Encyclopedia of Chemical Technology 1462:"ISRO Electric Propulsion - General Discussion" 687:Noble gas properties and cost comparison table 224:Central Research Institute for Machine Building 1846:52nd AIAA/SAE/ASEE Joint Propulsion Conference 1499:Electric Propulsion for Inter-Orbital Vehicles 1385: 1383: 1381: 961:where they are used for orbital insertion and 463:With private firms entering the space domain, 210:thrusters with narrow acceleration zone, DAS ( 2386: 1229:Momentum Transfer Through the Electric Fields 444:used Hall effect ion propulsion thrusters in 8: 584:However, Hall thrusters operate at the high 188:thrusters with wide acceleration zone, SPT ( 36:6 kW Hall thruster in operation at the 1581: 1579: 530:The xenon ions are then accelerated by the 2838: 2679: 2540: 2393: 2379: 2371: 1342:"AFIT SPASS Lab Achieves '(AF) Blue Glow'" 1324:"Native Electric Propulsion Engines Today" 1212:Janes, G.; Dotson, J.; Wilson, T. (1962). 1164: 1162: 575:electrically powered spacecraft propulsion 1795: 1766: 1495:"Hall-Effect Stationary Plasma thrusters" 1214:Momentum transfer through magnetic fields 1120: 972:spacecraft, launched on October 3, 1998. 326:The Massachusetts Institute of Technology 113:. Other propellants of interest include 2805:Atmosphere-breathing electric propulsion 2358:"How the Hall Effect Still Reverberates" 1735:. Physics of Plasmas 14, 057106 (2007). 685: 31: 2204:"Up Close With a Solar Panel on Psyche" 1995:from the original on November 13, 2011. 1957:Meyer, Mike; et al. (April 2012). 1728:Smirnov, A.; Raitses, Y.; Fisch, N. J. 1659:10.1002/0471238961.0701190508230114.a01 1530: 1528: 1103: 515:The central spike forms one pole of an 1710:. Physics of Plasmas, 8, 2579 (2001). 1019:is fitted with Hall-effect thrusters. 286:Ballistic Missile Defense Organization 194:СПД, стационарный плазменный двигатель 2092:张 (Zhang), 保淑 (Baoshu) (2021-06-21). 2040:from the original on January 29, 2011 1959:"In-space propulsion systems roadmap" 1927:Springer Science & Business Media 1608: 1606: 222:, Thruster with Anode Layer), at the 7: 1318: 1316: 1285:(3). Nauka/Interperiodica: 235–250. 314:US Air Force Institute of Technology 2254:"X3 – Nested Channel Hall Thruster" 1683:"Chemical elements by market price" 1093:Advanced Electric Propulsion System 1054:Advanced Electric Propulsion System 666:developed a new thruster that used 2710:Field-emission electric propulsion 1147:from the original on 20 March 2018 27:Type of electric propulsion system 25: 2784:Microwave electrothermal thruster 1191:10.1038/scientificamerican0209-58 396:Advanced Extremely High Frequency 334:Michigan Technological University 3056: 2150:Foust, Jeff (January 27, 2021). 1971:from the original on 2022-10-09. 1908:from the original on 2017-08-29. 1890:from the original on 2017-08-14. 1742:from the original on 2010-05-27. 1717:from the original on 2010-05-27. 1479:Gautam, Kushagr (May 28, 2021). 1390:Foust, Jeff (28 February 2023). 1366:from the original on 9 July 2015 935:External discharge Hall thruster 704:unit mass per ionization energy 234:Soviet and Russian SPT thrusters 2314:Electric Propulsion Sub-Systems 2058:Jones, Andrew (28 April 2021). 1505:from the original on 2013-07-17 421:, launched in 2023 towards the 308:(Edwards AFB, California), and 70:) are sometimes referred to as 2914:Pulsed nuclear thermal rocket‎ 2810:High Power Electric Propulsion 2208:NASA Jet Propulsion Laboratory 2183:NASA Jet Propulsion Laboratory 1006:Early small satellites of the 216:ДАС, двигатель с анодным слоем 1: 2769:Helicon double-layer thruster 2738:Electrodeless plasma thruster 2733:Magnetoplasmadynamic thruster 2291:New Dawn for Electric Rockets 2077:Chen, Stephen (2 June 2021). 1919:Turner, Martin J. L. (2008). 1788:NASA Technical Reports Server 1759:NASA Technical Reports Server 1623:. 15 May 2019. Archived from 1113:NASA Technical Reports Server 306:Air Force Research Laboratory 282:Air Force Research Laboratory 2100:(in Chinese). Archived from 1418:Lewis, Briley (2023-10-17). 1262:. 2004-01-14. Archived from 1062:Power and Propulsion Element 3088:Magnetic propulsion devices 2327:Stationary plasma thrusters 2228:Sands, Kelly (2021-03-30). 2122:Foust, Jeff (May 7, 2019). 2094:"配置4台霍尔电推进发动机 "天宫"掀起太空动力变革" 1653:. Wiley. pp. 343–383. 1074:near-rectilinear halo orbit 1029:Chinese Academy of Sciences 312:. Universities include the 284:, under the support of the 3114: 2340:ESA page on Hall thrusters 1703:Raitses, Y.; Fisch, N. J. 997:geosynchronous Earth orbit 904:Cylindrical Hall thrusters 719:cost relative to cheapest 701:ionization potential (eV) 682:Comparison of noble gasses 539:plume with no net charge. 202:Stationary Plasma Thruster 52:Hall-effect thruster (HET) 3054: 2728:Pulsed inductive thruster 1466:forum.nasaspaceflight.com 1036:Jet Propulsion Laboratory 987:spacecraft used a Snecma 977:solar electric propulsion 310:The Aerospace Corporation 298:Jet Propulsion Laboratory 274:Jet Propulsion Laboratory 219: 215: 197: 193: 41:Jet Propulsion Laboratory 2902:Nuclear pulse propulsion 2661:Electric-pump-fed engine 2561:Hybrid-propellant rocket 2551:Liquid-propellant rocket 2179:"Psyche's Hall Thruster" 1227:Meyerand, R. G. (1962). 670:as propellant for their 645:satellite constellations 522:The propellant, such as 2958:Beam-powered propulsion 2931:Fission-fragment rocket 2886:Nuclear photonic rocket 2854:Nuclear electric rocket 2620:Staged combustion cycle 2556:Solid-propellant rocket 1560:"Hall Thruster Project" 1125:. NASA/CR – 2004-21309. 952:An illustration of the 478:electrostatic potential 3009:Non-rocket spacelaunch 2859:Nuclear thermal rocket 2759:Pulsed plasma thruster 1448:The New Indian Express 1279:Plasma Physics Reports 1242:Seikel, G. R. (1962). 1086:University of Michigan 1017:Tiangong space station 957: 913: 497: 472:Principle of operation 318:University of Michigan 235: 76:Hall-current thrusters 43: 2675:Electrical propulsion 2402:Spacecraft propulsion 2303:SITAEL S.p.A. (Italy) 1348:on February 22, 2014. 1266:on February 28, 2004. 981:European Space Agency 951: 911: 594:Child-Langmuir charge 495: 302:Glenn Research Center 278:Glenn Research Center 233: 174:gridded ion thrusters 62:is accelerated by an 48:spacecraft propulsion 35: 2907:Antimatter-catalyzed 2705:Hall-effect thruster 2518:Solar thermal rocket 1614:"Starlink Press Kit" 625:ionization potential 590:gridded ion thruster 330:Princeton University 2849:Direct Fusion Drive 2764:Vacuum arc thruster 2651:Pressure-fed engine 2630:Gas-generator cycle 2537:Chemical propulsion 2474:Physical propulsion 2036:. August 31, 2006. 2016:10.2514/6.2007-5197 1854:10.2514/6.2016-4951 1821:10.2514/6.2014-3899 1291:2003PlPhR..29..235M 1183:2009SciAm.300b..58C 1171:Scientific American 1143:. 13 October 2017. 688: 465:Bellatrix Aerospace 322:Stanford University 290:Space Systems/Loral 206:Design Bureau Fakel 3063:Spaceflight portal 3029:Reactionless drive 2994:Aerogravity assist 2834:Nuclear propulsion 2350:2021-03-14 at the 2332:2019-07-11 at the 2319:2014-01-07 at the 2296:2016-10-18 at the 2289:Edgar, Y. (2009). 1519:2007-10-10 at the 1021:Tianhe core module 958: 914: 686: 502:electric potential 498: 268:Non-Soviet designs 250:high-power (a few 236: 150:exhaust velocities 44: 3098:Soviet inventions 3070: 3069: 3024:Atmospheric entry 2979:Orbital mechanics 2946: 2945: 2828: 2827: 2779:Resistojet rocket 2669: 2668: 2644:Intake mechanisms 2577:Liquid propellant 2481:Cold gas thruster 1936:978-3-540-69203-4 1863:978-1-62410-406-0 1830:978-1-62410-303-2 1668:978-0-471-23896-6 1299:10.1134/1.1561119 893: 892: 598:saturated current 586:specific impulses 453:thrust of 25 mN. 366:Satrec Initiative 240:Meteor spacecraft 16:(Redirected from 3105: 3060: 3044:Alcubierre drive 3034:Field propulsion 2984:Orbital maneuver 2972:Related concepts 2839: 2690:Colloid thruster 2680: 2541: 2443:Specific impulse 2395: 2388: 2381: 2372: 2367: 2278: 2271: 2265: 2264: 2262: 2261: 2250: 2244: 2243: 2241: 2240: 2225: 2219: 2218: 2216: 2214: 2200: 2194: 2193: 2191: 2189: 2175: 2169: 2168: 2166: 2164: 2147: 2141: 2140: 2138: 2136: 2119: 2113: 2112: 2110: 2109: 2089: 2083: 2082: 2074: 2068: 2067: 2055: 2049: 2048: 2046: 2045: 2026: 2020: 2019: 2003: 1997: 1996: 1994: 1987: 1979: 1973: 1972: 1970: 1963: 1954: 1948: 1947: 1945: 1943: 1916: 1910: 1909: 1898: 1892: 1891: 1889: 1882: 1874: 1868: 1867: 1841: 1835: 1834: 1808: 1802: 1801: 1799: 1797:2060/20090014067 1779: 1773: 1772: 1770: 1768:2060/20100035731 1750: 1744: 1743: 1741: 1734: 1725: 1719: 1718: 1716: 1709: 1700: 1694: 1692: 1690: 1689: 1679: 1673: 1672: 1646: 1640: 1639: 1637: 1635: 1629: 1618: 1610: 1601: 1600: 1598: 1597: 1591:www.lenntech.com 1583: 1574: 1573: 1571: 1570: 1556: 1550: 1549: 1547: 1546: 1532: 1523: 1513: 1511: 1510: 1491: 1485: 1484: 1476: 1470: 1469: 1458: 1452: 1451: 1440: 1434: 1433: 1431: 1430: 1415: 1409: 1408: 1406: 1404: 1387: 1376: 1375: 1373: 1371: 1356: 1350: 1349: 1338: 1332: 1331: 1320: 1311: 1310: 1274: 1268: 1267: 1260:"Hall thrusters" 1256: 1250: 1249: 1239: 1233: 1232: 1224: 1218: 1217: 1209: 1203: 1202: 1166: 1157: 1156: 1154: 1152: 1133: 1127: 1126: 1124: 1122:2060/20040084644 1108: 1001:specific impulse 707:Reference Price 689: 579:specific impulse 368:in South Korea. 221: 217: 199: 195: 101: 96:specific impulse 82:thrusters use a 21: 3113: 3112: 3108: 3107: 3106: 3104: 3103: 3102: 3073: 3072: 3071: 3066: 3050: 2967: 2942: 2890: 2824: 2793: 2747: 2721:Electromagnetic 2716: 2665: 2656:Pump-fed engine 2639: 2608: 2565: 2532: 2469: 2460:Rocket equation 2426:Reaction engine 2404: 2399: 2356: 2352:Wayback Machine 2334:Wayback Machine 2321:Wayback Machine 2298:Wayback Machine 2286: 2281: 2272: 2268: 2259: 2257: 2252: 2251: 2247: 2238: 2236: 2227: 2226: 2222: 2212: 2210: 2202: 2201: 2197: 2187: 2185: 2177: 2176: 2172: 2162: 2160: 2149: 2148: 2144: 2134: 2132: 2121: 2120: 2116: 2107: 2105: 2091: 2090: 2086: 2076: 2075: 2071: 2057: 2056: 2052: 2043: 2041: 2028: 2027: 2023: 2005: 2004: 2000: 1992: 1985: 1981: 1980: 1976: 1968: 1961: 1956: 1955: 1951: 1941: 1939: 1937: 1929:. p. 197. 1918: 1917: 1913: 1900: 1899: 1895: 1887: 1880: 1876: 1875: 1871: 1864: 1843: 1842: 1838: 1831: 1810: 1809: 1805: 1781: 1780: 1776: 1752: 1751: 1747: 1739: 1732: 1727: 1726: 1722: 1714: 1707: 1702: 1701: 1697: 1687: 1685: 1681: 1680: 1676: 1669: 1648: 1647: 1643: 1633: 1631: 1627: 1616: 1612: 1611: 1604: 1595: 1593: 1585: 1584: 1577: 1568: 1566: 1558: 1557: 1553: 1544: 1542: 1534: 1533: 1526: 1521:Wayback Machine 1508: 1506: 1493: 1492: 1488: 1478: 1477: 1473: 1460: 1459: 1455: 1442: 1441: 1437: 1428: 1426: 1424:Popular Science 1417: 1416: 1412: 1402: 1400: 1389: 1388: 1379: 1369: 1367: 1358: 1357: 1353: 1340: 1339: 1335: 1330:on 6 June 2011. 1322: 1321: 1314: 1276: 1275: 1271: 1258: 1257: 1253: 1241: 1240: 1236: 1226: 1225: 1221: 1211: 1210: 1206: 1168: 1167: 1160: 1150: 1148: 1135: 1134: 1130: 1110: 1109: 1105: 1101: 1082: 1070:Artemis program 946: 937: 906: 898: 684: 661: 633: 614: 609: 596:(space charge) 474: 435: 342:IHI Corporation 270: 182: 166: 99: 28: 23: 22: 15: 12: 11: 5: 3111: 3109: 3101: 3100: 3095: 3090: 3085: 3075: 3074: 3068: 3067: 3055: 3052: 3051: 3049: 3048: 3047: 3046: 3041: 3031: 3026: 3021: 3016: 3011: 3006: 3001: 2996: 2991: 2989:Gravity assist 2986: 2981: 2975: 2973: 2969: 2968: 2966: 2965: 2960: 2954: 2952: 2951:External power 2948: 2947: 2944: 2943: 2941: 2940: 2939: 2938: 2928: 2927: 2926: 2924:Bussard ramjet 2916: 2911: 2910: 2909: 2898: 2896: 2892: 2891: 2889: 2888: 2883: 2882: 2881: 2876: 2871: 2866: 2856: 2851: 2845: 2843: 2836: 2830: 2829: 2826: 2825: 2823: 2822: 2817: 2812: 2807: 2801: 2799: 2795: 2794: 2792: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2755: 2753: 2752:Electrothermal 2749: 2748: 2746: 2745: 2740: 2735: 2730: 2724: 2722: 2718: 2717: 2715: 2714: 2713: 2712: 2707: 2702: 2692: 2686: 2684: 2677: 2671: 2670: 2667: 2666: 2664: 2663: 2658: 2653: 2647: 2645: 2641: 2640: 2638: 2637: 2632: 2627: 2625:Expander cycle 2622: 2616: 2614: 2610: 2609: 2607: 2606: 2601: 2596: 2594:Monopropellant 2591: 2590: 2589: 2584: 2573: 2571: 2567: 2566: 2564: 2563: 2558: 2553: 2547: 2545: 2538: 2534: 2533: 2531: 2530: 2525: 2520: 2515: 2510: 2505: 2504: 2503: 2493: 2488: 2483: 2477: 2475: 2471: 2470: 2468: 2467: 2465:Thermal rocket 2462: 2457: 2452: 2451: 2450: 2445: 2435: 2434: 2433: 2428: 2418: 2412: 2410: 2406: 2405: 2400: 2398: 2397: 2390: 2383: 2375: 2369: 2368: 2354: 2342: 2337: 2324: 2311: 2306: 2300: 2285: 2284:External links 2282: 2280: 2279: 2266: 2245: 2220: 2195: 2170: 2142: 2114: 2084: 2069: 2050: 2021: 1998: 1974: 1949: 1935: 1911: 1893: 1869: 1862: 1836: 1829: 1803: 1774: 1745: 1720: 1695: 1674: 1667: 1641: 1630:on 15 May 2019 1602: 1575: 1551: 1524: 1486: 1471: 1453: 1435: 1410: 1377: 1351: 1333: 1312: 1269: 1251: 1234: 1219: 1204: 1158: 1128: 1102: 1100: 1097: 1081: 1080:In development 1078: 1064:(PPE) for the 979:system of the 963:stationkeeping 945: 942: 936: 933: 928:magnetic field 923:magnetic field 905: 902: 897: 894: 891: 890: 887: 884: 881: 878: 875: 872: 869: 866: 863: 857: 856: 853: 850: 847: 844: 841: 838: 835: 832: 829: 823: 822: 819: 816: 813: 810: 809:$ 0.12 / cu ft 807: 804: 801: 798: 795: 789: 788: 785: 782: 779: 776: 773: 770: 767: 764: 761: 755: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 721: 720: 717: 714: 711: 708: 705: 702: 699: 696: 693: 683: 680: 660: 657: 632: 629: 613: 610: 608: 605: 532:electric field 473: 470: 434: 433:Indian designs 431: 364:in Italy, and 269: 266: 228: 227: 208: 181: 180:Soviet designs 178: 165: 162: 84:magnetic field 72:Hall thrusters 64:electric field 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3110: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3080: 3078: 3065: 3064: 3059: 3053: 3045: 3042: 3040: 3037: 3036: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2999:Oberth effect 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2976: 2974: 2970: 2964: 2961: 2959: 2956: 2955: 2953: 2949: 2937: 2934: 2933: 2932: 2929: 2925: 2922: 2921: 2920: 2919:Fusion rocket 2917: 2915: 2912: 2908: 2905: 2904: 2903: 2900: 2899: 2897: 2893: 2887: 2884: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2861: 2860: 2857: 2855: 2852: 2850: 2847: 2846: 2844: 2842:Closed system 2840: 2837: 2835: 2831: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2802: 2800: 2796: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2774:Arcjet rocket 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2756: 2754: 2750: 2744: 2743:Plasma magnet 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2725: 2723: 2719: 2711: 2708: 2706: 2703: 2701: 2698: 2697: 2696: 2693: 2691: 2688: 2687: 2685: 2683:Electrostatic 2681: 2678: 2676: 2672: 2662: 2659: 2657: 2654: 2652: 2649: 2648: 2646: 2642: 2636: 2635:Tap-off cycle 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2617: 2615: 2611: 2605: 2604:Tripropellant 2602: 2600: 2597: 2595: 2592: 2588: 2585: 2583: 2580: 2579: 2578: 2575: 2574: 2572: 2568: 2562: 2559: 2557: 2554: 2552: 2549: 2548: 2546: 2542: 2539: 2535: 2529: 2526: 2524: 2523:Photon rocket 2521: 2519: 2516: 2514: 2513:Magnetic sail 2511: 2509: 2508:Electric sail 2506: 2502: 2499: 2498: 2497: 2494: 2492: 2489: 2487: 2484: 2482: 2479: 2478: 2476: 2472: 2466: 2463: 2461: 2458: 2456: 2453: 2449: 2446: 2444: 2441: 2440: 2439: 2436: 2432: 2431:Reaction mass 2429: 2427: 2424: 2423: 2422: 2421:Rocket engine 2419: 2417: 2414: 2413: 2411: 2407: 2403: 2396: 2391: 2389: 2384: 2382: 2377: 2376: 2373: 2366:. 2022-01-28. 2365: 2364: 2363:IEEE Spectrum 2359: 2355: 2353: 2349: 2346: 2345:Apollo Fusion 2343: 2341: 2338: 2335: 2331: 2328: 2325: 2322: 2318: 2315: 2312: 2310: 2307: 2304: 2301: 2299: 2295: 2292: 2288: 2287: 2283: 2276: 2270: 2267: 2255: 2249: 2246: 2235: 2231: 2224: 2221: 2209: 2205: 2199: 2196: 2184: 2180: 2174: 2171: 2159: 2158: 2157:spacenews.com 2153: 2146: 2143: 2131: 2130: 2129:Spacenews.com 2125: 2118: 2115: 2104:on 2021-07-06 2103: 2099: 2095: 2088: 2085: 2080: 2073: 2070: 2065: 2061: 2054: 2051: 2039: 2035: 2031: 2025: 2022: 2017: 2013: 2009: 2002: 1999: 1991: 1984: 1978: 1975: 1967: 1960: 1953: 1950: 1938: 1932: 1928: 1924: 1923: 1915: 1912: 1907: 1903: 1897: 1894: 1886: 1879: 1873: 1870: 1865: 1859: 1855: 1851: 1847: 1840: 1837: 1832: 1826: 1822: 1818: 1814: 1807: 1804: 1798: 1793: 1789: 1785: 1778: 1775: 1769: 1764: 1760: 1756: 1749: 1746: 1738: 1731: 1724: 1721: 1713: 1706: 1699: 1696: 1684: 1678: 1675: 1670: 1664: 1660: 1656: 1652: 1645: 1642: 1626: 1622: 1615: 1609: 1607: 1603: 1592: 1588: 1582: 1580: 1576: 1565: 1561: 1555: 1552: 1541: 1537: 1531: 1529: 1525: 1522: 1518: 1515: 1504: 1500: 1496: 1490: 1487: 1482: 1475: 1472: 1467: 1463: 1457: 1454: 1449: 1445: 1439: 1436: 1425: 1421: 1414: 1411: 1399: 1398: 1393: 1386: 1384: 1382: 1378: 1365: 1361: 1355: 1352: 1347: 1343: 1337: 1334: 1329: 1325: 1319: 1317: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1273: 1270: 1265: 1261: 1255: 1252: 1247: 1246: 1238: 1235: 1230: 1223: 1220: 1215: 1208: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1165: 1163: 1159: 1146: 1142: 1138: 1132: 1129: 1123: 1118: 1114: 1107: 1104: 1098: 1096: 1094: 1089: 1087: 1079: 1077: 1075: 1071: 1068:under NASA's 1067: 1066:Lunar Gateway 1063: 1059: 1055: 1051: 1046: 1043: 1041: 1037: 1032: 1030: 1026: 1025:ion thrusters 1022: 1018: 1014: 1012: 1009: 1004: 1002: 998: 994: 990: 986: 982: 978: 973: 971: 966: 964: 955: 950: 943: 941: 934: 932: 929: 924: 919: 910: 903: 901: 895: 888: 885: 882: 879: 876: 873: 870: 867: 864: 862: 859: 858: 854: 851: 848: 845: 842: 839: 836: 833: 830: 828: 825: 824: 820: 817: 814: 811: 808: 805: 802: 799: 796: 794: 791: 790: 786: 783: 780: 777: 774: 771: 768: 765: 762: 760: 757: 756: 752: 749: 746: 743: 740: 737: 734: 731: 728: 726: 723: 722: 718: 715: 712: 709: 706: 703: 700: 698:At wt (g/mol) 697: 694: 691: 690: 681: 679: 677: 673: 669: 665: 658: 656: 654: 650: 647:like that of 646: 642: 637: 630: 628: 626: 622: 621:atomic weight 618: 611: 606: 604: 601: 599: 595: 591: 587: 582: 580: 576: 572: 569:or a 20-cent 568: 563: 559: 557: 553: 549: 545: 540: 538: 533: 528: 525: 520: 518: 517:electromagnet 513: 511: 507: 503: 494: 490: 488: 484: 481:100–300  479: 471: 469: 466: 461: 458: 454: 450: 447: 443: 438: 432: 430: 428: 424: 423:Asteroid Belt 420: 418: 412: 409: 406: 402: 397: 393: 389: 385: 381: 376: 374: 369: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 299: 293: 291: 287: 283: 279: 275: 267: 265: 262: 259: 257: 253: 249: 245: 241: 232: 225: 213: 209: 207: 203: 191: 187: 186: 185: 179: 177: 175: 171: 163: 161: 159: 155: 151: 146: 143: 138: 136: 132: 128: 124: 120: 116: 112: 108: 103: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 58:in which the 57: 54:is a type of 53: 49: 42: 39: 34: 30: 19: 18:Hall thruster 3061: 3004:Space launch 2936:Fission sail 2864:Radioisotope 2704: 2695:Ion thruster 2613:Power cycles 2599:Bipropellant 2491:Steam rocket 2486:Water rocket 2361: 2269: 2258:. Retrieved 2248: 2237:. Retrieved 2233: 2223: 2211:. Retrieved 2207: 2198: 2186:. Retrieved 2182: 2173: 2161:. Retrieved 2155: 2145: 2133:. Retrieved 2127: 2117: 2106:. Retrieved 2102:the original 2097: 2087: 2072: 2063: 2053: 2042:. Retrieved 2024: 2007: 2001: 1977: 1952: 1940:. Retrieved 1921: 1914: 1896: 1872: 1845: 1839: 1812: 1806: 1787: 1783: 1777: 1758: 1754: 1748: 1723: 1698: 1686:. Retrieved 1677: 1650: 1644: 1632:. Retrieved 1625:the original 1620: 1594:. Retrieved 1590: 1567:. Retrieved 1563: 1554: 1543:. Retrieved 1540:ScienceDaily 1539: 1507:. Retrieved 1498: 1489: 1474: 1465: 1456: 1447: 1438: 1427:. Retrieved 1423: 1413: 1401:. Retrieved 1395: 1368:. Retrieved 1354: 1346:the original 1336: 1328:the original 1282: 1278: 1272: 1264:the original 1254: 1244: 1237: 1228: 1222: 1213: 1207: 1177:(2): 58–65. 1174: 1170: 1149:. Retrieved 1140: 1131: 1112: 1106: 1090: 1083: 1047: 1044: 1040:Mike Cassidy 1033: 1015: 1005: 974: 967: 959: 944:Applications 938: 915: 899: 877:$ 7.21 / m^3 741:25 € / liter 662: 634: 615: 602: 583: 567:U.S. quarter 564: 560: 556:Hall current 551: 547: 541: 529: 521: 514: 499: 485:(10–30  475: 462: 459: 455: 451: 439: 436: 416: 413: 377: 370: 360:in Ukraine, 338:Georgia Tech 294: 271: 263: 260: 237: 226:(TsNIIMASH). 201: 183: 170:Soviet Union 167: 154:millinewtons 147: 139: 104: 75: 71: 56:ion thruster 51: 45: 29: 3093:Ion engines 3083:Hall effect 3019:Aerocapture 3014:Aerobraking 2895:Open system 2879:"Lightbulb" 2820:Mass driver 2570:Propellants 2501:Diffractive 2163:January 27, 2135:January 27, 1634:12 November 1564:w3.pppl.gov 843:€ 504 / m^3 775:3 € / liter 607:Propellants 425:to explore 386:BHT-200 on 356:in France, 352:in the US, 218:; English: 196:; English: 90:to produce 80:Hall-effect 3077:Categories 3039:Warp drive 2869:Salt-water 2587:Hypergolic 2496:Solar sail 2260:2021-04-27 2239:2021-04-27 2108:2021-07-18 2044:2011-07-25 1942:28 October 1688:2023-09-17 1596:2021-04-28 1569:2021-04-28 1545:2021-04-28 1509:2014-06-16 1429:2023-10-17 1403:5 December 1370:11 October 1115:(Report). 1099:References 883:0.1786 g/l 849:0.9002 g/l 710:cost / m^3 544:gyroradius 419:spacecraft 344:in Japan, 280:, and the 158:satellites 135:adamantane 68:Edwin Hall 60:propellant 2582:Cryogenic 1397:SpaceNews 1307:122072987 1141:space.com 1052:and NASA 815:1.784 g/l 781:3.749 g/l 750:€ 4241.60 747:5.894 g/l 716:Cost / kg 571:euro coin 440:In 2010, 427:16 Psyche 375:in 2003. 300:, NASA's 252:kilowatts 127:magnesium 2874:Gas core 2409:Concepts 2348:Archived 2330:Archived 2317:Archived 2294:Archived 2038:Archived 1990:Archived 1966:Archived 1906:Archived 1885:Archived 1737:Archived 1712:Archived 1517:Archived 1503:Archived 1364:Archived 1199:19186707 1151:27 April 1145:Archived 1011:Starlink 989:PPS-1350 918:kilowatt 896:Variants 852:€ 559.88 784:€ 800.21 672:Starlink 653:Starlink 641:kilogram 623:and low 408:Starlink 388:TacSat-2 2963:Tethers 2815:MagBeam 2700:Gridded 2455:Staging 2448:Delta-v 2213:8 March 2188:8 March 1287:Bibcode 1179:Bibcode 985:SMART-1 954:Gateway 886:€ 37.84 759:Krypton 744:€ 25000 713:density 636:Krypton 631:Krypton 510:cathode 392:Aerojet 373:SMART-1 346:Aerojet 256:SPT-140 244:SPT-100 212:Russian 190:Russian 164:History 119:bismuth 111:krypton 2789:VASIMR 2438:Thrust 2416:Rocket 1933:  1860:  1827:  1665:  1621:SpaceX 1305:  1197:  1008:SpaceX 880:€ 6.76 861:Helium 818:€ 2.23 812:€ 3.97 778:€ 3000 766:83.798 738:10.824 732:131.29 695:Symbol 676:SpaceX 664:SpaceX 649:SpaceX 537:plasma 446:GSAT-4 417:Psyche 405:SpaceX 362:SITAEL 354:SNECMA 336:, and 304:, the 248:Russia 142:speeds 123:iodine 100:  98:(1,600 92:thrust 2798:Other 2544:State 2336:(PDF) 2323:(PDF) 2098:中国新闻网 1993:(PDF) 1986:(PDF) 1969:(PDF) 1962:(PDF) 1888:(PDF) 1881:(PDF) 1740:(PDF) 1733:(PDF) 1715:(PDF) 1708:(PDF) 1628:(PDF) 1617:(PDF) 1303:S2CID 1058:Maxar 1050:Busek 874:0.163 871:24.59 868:4.002 846:€ 504 840:0.933 837:21.64 834:20.18 806:2.527 803:15.81 800:39.95 793:Argon 772:5.986 769:14.00 753:1905 735:12.13 725:Xenon 668:argon 659:Argon 617:Xenon 612:Xenon 524:xenon 506:anode 401:X-37B 384:Busek 350:Busek 204:) at 115:argon 107:xenon 2528:WINE 2234:NASA 2215:2022 2190:2022 2165:2021 2137:2021 2064:IEEE 1944:2015 1931:ISBN 1858:ISBN 1825:ISBN 1663:ISBN 1636:2019 1405:2023 1372:2016 1195:PMID 1153:2018 1034:The 993:Moon 975:The 970:STEX 855:251 827:Neon 787:359 508:and 442:ISRO 380:STEX 358:LAJP 348:and 133:and 131:zinc 109:and 88:ions 50:, a 38:NASA 2034:ESA 2012:doi 1850:doi 1817:doi 1792:hdl 1763:hdl 1655:doi 1295:doi 1187:doi 1175:300 1117:hdl 1060:'s 983:'s 889:17 692:Gas 651:'s 220:TAL 198:SPT 74:or 46:In 3079:: 2360:. 2232:. 2206:. 2181:. 2154:. 2126:. 2096:. 2062:. 2032:. 1964:. 1925:. 1904:. 1883:. 1856:. 1848:. 1823:. 1815:. 1790:. 1761:. 1661:. 1619:. 1605:^ 1589:. 1578:^ 1562:. 1538:. 1527:^ 1501:. 1497:. 1464:. 1446:. 1422:. 1394:. 1380:^ 1315:^ 1301:. 1293:. 1283:29 1281:. 1193:. 1185:. 1173:. 1161:^ 1139:. 1076:. 965:. 865:He 831:Ne 821:1 797:Ar 763:Kr 729:Xe 581:. 512:. 487:mT 429:. 332:, 328:, 324:, 320:, 316:, 276:, 254:) 214:: 200:, 192:: 176:. 137:. 129:, 125:, 121:, 117:, 78:. 2394:e 2387:t 2380:v 2263:. 2242:. 2217:. 2192:. 2167:. 2139:. 2111:. 2081:. 2066:. 2047:. 2018:. 2014:: 1946:. 1866:. 1852:: 1833:. 1819:: 1800:. 1794:: 1771:. 1765:: 1691:. 1671:. 1657:: 1638:. 1599:. 1572:. 1548:. 1512:. 1483:. 1468:. 1450:. 1432:. 1407:. 1374:. 1309:. 1297:: 1289:: 1201:. 1189:: 1181:: 1155:. 1119:: 552:B 550:× 548:E 483:G 20:)

Index

Hall thruster

NASA
Jet Propulsion Laboratory
spacecraft propulsion
ion thruster
propellant
electric field
Edwin Hall
Hall-effect
magnetic field
ions
thrust
specific impulse
xenon
krypton
argon
bismuth
iodine
magnesium
zinc
adamantane
speeds
exhaust velocities
millinewtons
satellites
Soviet Union
gridded ion thrusters
Russian
Design Bureau Fakel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.