Knowledge (XXG)

Thermal radiation

Source đź“ť

4166:
three-dimensional potential traps, including wells, wires, and dots. Such spatial confinement concentrates photon states and enhances thermal emission at select frequencies. To achieve the required level of photon confinement, the dimensions of the radiating objects should be on the order of or below the thermal wavelength predicted by Planck's law. Most importantly, the emission spectrum of thermal wells, wires and dots deviates from Planck's law predictions not only in the near field, but also in the far field, which significantly expands the range of their applications.
237: 3733: 3817: 1340:, and painting them matt black would make little difference to their efficacy. Acrylic and urethane based white paints have 93% blackbody radiation efficiency at room temperature (meaning the term "black body" does not always correspond to the visually perceived color of an object). These materials that do not follow the "black color = high emissivity/absorptivity" caveat will most likely have functional spectral emissivity/absorptivity dependence. 979: 3900:, where the motion of the craft slightly deviated from that expected from gravity alone, was eventually tracked down to asymmetric thermal radiation from the spacecraft. Similarly, the orbits of asteroids are perturbed since the asteroid absorbs solar radiation on the side facing the Sun, but then re-emits the energy at a different angle as the rotation of the asteroid carries the warm surface out of the Sun's view (the 2839:. For frequency-dependent emissivity, the solution for the integrated power depends on the functional form of the dependence, though in general there is no simple expression for it. Practically speaking, if the emissivity of the body is roughly constant around the peak emission wavelength, the gray body model tends to work fairly well since the weight of the curve around the peak emission tends to dominate the integral. 688:. It is frequently described that surfaces "emit" radiation, however this is purely a simplification. According to the conservation of energy, emission always takes place at the expense of other forms of energy (electrical, chemical, etc.). Hence only material particles can emit heat, not geometrical volumes or surfaces. In reality, the radiation comes from the particles within a body and passes through its surfaces. 4162:
orders in magnitude) when the emitter and absorber support surface polariton modes that can couple through the gap separating cold and hot objects. However, to take advantage of the surface-polariton-mediated near-field radiative heat transfer, the two objects need to be separated by ultra-narrow gaps on the order of microns or even nanometers. This limitation significantly complicates practical device designs.
3880:
interior of the surface. "Low-emittance (low-E) coatings are microscopically thin, virtually invisible, metal or metallic oxide layers deposited on a window or skylight glazing surface primarily to reduce the U-factor by suppressing radiative heat flow". By adding this coating we are limiting the amount of radiation that leaves the window thus increasing the amount of heat that is retained inside the window.
3939:
not in the visible spectrum, but rather infrared. Emissivities at those wavelengths are largely unrelated to visual emissivities (visible colors); in the far infra-red, most objects have high emissivities. Thus, except in sunlight, the color of clothing makes little difference as regards warmth; likewise, paint color of houses makes little difference to warmth except when the painted part is sunlit.
2073: 620: 40: 3868:
an additional cooling mechanism. Most conventional fabrics are opaque to infrared radiation and block thermal emission from the body to the environment. Fabrics for personalized cooling applications have been proposed that enable infrared transmission to directly pass through clothing, while being opaque at visible wavelengths, allowing the wearer to remain cooler.
1325: 3643: 2328: 807: 818: 1336:), they are not necessarily equally reflective (and thus non-emissive) in the thermal infrared – see the diagram at the left. Most household radiators are painted white, which is sensible given that they are not hot enough to radiate any significant amount of heat, and are not designed as thermal radiators at all – instead, they are actually 312:. At these lower frequencies, the atmosphere is largely opaque and radiation from Earth's surface is absorbed or scattered by the atmosphere. Though about 10% of this radiation escapes into space, most is absorbed and then re-emitted by atmospheric gases. It is this spectral selectivity of the atmosphere that is responsible for the planetary 3779:
emissivity of 0.9 and a cut off wavelength of 2.0 ÎĽm, the equilibrium temperature is approximately 1250 K (1790 Â°F). The calculations were made neglecting convective heat transfer and neglecting the solar irradiation absorbed in the clouds/atmosphere for simplicity, the theory is still the same for an actual problem.
3935:, continuously radiates approximately 1000 W. If people are indoors, surrounded by surfaces at 296 K, they receive back about 900 W from the wall, ceiling, and other surroundings, resulting in a net loss of 100 W. These estimates are highly dependent on extrinsic variables, such as wearing clothes. 3938:
Lighter colors and also whites and metallic substances absorb less of the illuminating light, and as a result heat up less. However, color makes little difference in the heat transfer between an object at everyday temperatures and its surroundings. This is because the dominant emitted wavelengths are
3916:
of photovoltaic cells and buildings. These applications require high emittance in the frequency range corresponding to the atmospheric transparency window in 8 to 13 micron wavelength range. A selective emitter radiating strongly in this range is thus exposed to the clear sky, enabling the use of the
3773:
can be used when energy is being extracted from the sun. Selective surfaces can also be used on solar collectors. We can find out how much help a selective surface coating is by looking at the equilibrium temperature of a plate that is being heated through solar radiation. If the plate is receiving a
3879:
windows in houses are a more complicated technology, since they must have low emissivity at thermal wavelengths while remaining transparent to visible light. To reduce the heat transfer from a surface, such as a glass window, a clear reflective film with a low emissivity coating can be placed on the
3858:
are devices that convert energy into infrared radiation that are designed to increase a user's perceived temperature. They typically are either gas-powered or electric. In domestic and commercial applications, gas-powered radiant heaters can produce a higher heat flux than electric heaters which are
452:
considered that radiation of heat was concerned with the condition of the surface of a physical body rather than the material of which it was composed. Lavoisier described a poor radiator to be a substance with a polished or smooth surface as it possessed its molecules lying in a plane closely bound
434:
wrote a letter describing his experiments on the relationship between color and heat absorption. He found that darker color clothes got hotter when exposed to sunlight than lighter color clothes. One experiment he performed consisted of placing square pieces of cloth of various color out in the snow
3867:
Personalized cooling technology is an example of an application where optical spectral selectivity can be beneficial. Conventional personal cooling is typically achieved through heat conduction and convection. However, the human body is a very efficient emitter of infrared radiation, which provides
3930:
In a practical, room-temperature setting, humans lose considerable energy due to infrared thermal radiation in addition to that lost by conduction to air (aided by concurrent convection, or other air movement like drafts). The heat energy lost is partially regained by absorbing heat radiation from
1351:
control volume bodies considered) can achieve reasonable steady-state heat flux estimates through the Stefan-Boltzmann law. Encountering this "ideally calculable" situation is almost impossible (although common engineering procedures surrender the dependency of these unknown variables and "assume"
1367:
deviates from the other properties in that it is bidirectional in nature. In other words, this property depends on the direction of the incident of radiation as well as the direction of the reflection. Therefore, the reflected rays of a radiation spectrum incident on a real surface in a specified
703:
Scattering occurs due to the presence of discontinuities in every medium that arise from their atomic structure. An example of scattering is when thermal radiation from the sun scatters after entering the earth's atmosphere. On a clear day at noon, only about two-thirds of this radiation actually
663:
Bodies at higher temperatures emit radiation at higher frequencies with an increasing energy per quantum. While the propagation of electromagnetic waves of all wavelengths is often referred as "radiation", thermal radiation is often constrained to the visible and infrared regions. For engineering
142:
create an image by sensing infrared radiation. These images can represent the temperature gradient of a scene and are commonly used to locate objects at a higher temperature than their surroundings. In a dark environment where visible light is at low levels, infrared images can be used to locate
4161:
Planck's law of thermal radiation has been challenged in recent decades by predictions and successful demonstrations of the radiative heat transfer between objects separated by nanoscale gaps that deviate significantly from the law predictions. This deviation is especially strong (up to several
304:
of the black body. The photosphere of the sun, at a temperature of approximately 6000 K, emits radiation principally in the (human-)visible portion of the electromagnetic spectrum. Earth's atmosphere is partly transparent to visible light, and the light reaching the surface is absorbed or
3778:
of 1350 W/m (minimum is 1325 W/m on 4 July and maximum is 1418 W/m on 3 January) from the sun the temperature of the plate where the radiation leaving is equal to the radiation being received by the plate is 393 K (248 Â°F). If the plate has a selective surface with an
3895:
Since any electromagnetic radiation, including thermal radiation, conveys momentum as well as energy, thermal radiation also induces very small forces on the radiating or absorbing objects. Normally these forces are negligible, but they must be taken into account when considering spacecraft
2025:
with the radiating object. Planck's law shows that radiative energy increases with temperature, and explains why the peak of an emission spectrum shifts to shorter wavelengths at higher temperatures. It can also be found that energy emitted at shorter wavelengths increases more rapidly with
1466:
Radiation emitted from a surface can propagate in any direction from the surface. Irradiation can also be incident upon a surface from any direction. The amount of irradiation on a surface is therefore dependent on the relative orientation of both the emitter and the receiver. The parameter
4165:
Another way to modify the object thermal emission spectrum is by reducing the dimensionality of the emitter itself. This approach builds upon the concept of confining electrons in quantum wells, wires and dots, and tailors thermal emission by engineering confined photon states in two- and
3433: 573:
are associated with high frequencies. Since every body or fluid is submerged in the ether, due to the vibration of the molecules, any body or fluid can potentially initiate an electromagnetic wave. All bodies generate and receive electromagnetic waves at the expense of its stored energy.
496:, wherein all objects both radiates and absorb heat. When an object is cooler than its surroundings, it absorbs more heat than it emits, causing its temperature to increase until it reaches equilibrium. Even at equilibrium, it continues to radiate heat, balancing absorption and emission. 453:
together thus creating a surface layer of caloric fluid which insulated the release of the rest within. He described a great radiator to be a substance with a rough surface as only a small amount of molecules held caloric in within a given plane allowing for greater escape from within.
401:
reported on the heat resented by his face, emitted by a remote candle and facilitated by a concave metallic mirror. He also reported the cooling felt from a solid ice block. Della Porta experiment would be replicated many times with increasing accuracy. It was replicated by astronomers
842:
object radiates mainly in the long wavelengths (red and orange) of the visible band. If it is heated further, it also begins to emit discernible amounts of green and blue light, and the spread of frequencies in the entire visible range cause it to appear white to the human eye; it is
4157:
thermal radiation at distances from surfaces of more than one wavelength is generally not coherent to any extent, near-field thermal radiation (i.e., radiation at distances of a fraction of various radiation wavelengths) may exhibit a degree of both temporal and spatial coherence.
696:
The propagation of radiation in a medium that is assumed to be homogeneous, isotropic, and at rest takes place in straight lines and has the same velocity in all directions. Unless if propagating through a vacuum, thermal radiation does decay over time as energy is
2015: 279:, absorptivity and emissivity for any particular wavelength are equal at equilibrium – a good absorber is necessarily a good emitter, and a poor absorber is a poor emitter. The temperature determines the wavelength distribution of the electromagnetic radiation. 3757:. In principle, any kind of lens can be used, but only the Fresnel lens design is practical for very large lenses. Either method can be used to quickly vaporize water into steam using sunlight. For example, the sunlight reflected from mirrors heats the 3348: 3947:
Thermal radiation is a phenomenon that can burn skin and ignite flammable materials. The time to a damage from exposure to thermal radiation is a function of the rate of delivery of the heat. Radiative heat flux and effects are given as follows:
3013: 3801:
are in the visible spectrum. Most of the energy is associated with photons of longer wavelengths; these do not help a person see, but still transfer heat to the environment, as can be deduced empirically by observing an incandescent light bulb.
474:. He says that Newton imagined particles of light traversing space uninhibited by the caloric medium filling it, and refutes this view (never actually held by Newton) by saying that a body under illumination would increase indefinitely in heat. 1811:
Blackbodies are idealized surfaces that act as the perfect absorber and emitter. They serve as the standard against which real surfaces are compared when characterizing thermal radiation. A blackbody is defined by three characteristics:
671:. Radiation allows waves to travel from a heated body through a cold non-absorbing or partially absorbing medium and reach a warmer body again. An example is the case of the radiation waves that travel from the Sun to the Earth. 742:
is used to describe the change of heat into other forms of energy when it contacts particle or body. Only material particles can absorb heat rays, not elements of surfaces. For a given frequency of radiation, all mediums have a
635:
in 1900. According to this theory, energy emitted by a radiator is not continuous but is in the form of quanta. Planck noted that energy was emitted in quantas of frequency of vibration similarly to the wave theory. The energy
730:
phenomena that occur within a fraction of a micrometer of the surface. For example, a highly polished piece of steel will be highly reflective, regardless of the material under the surface. Transmission on the other hand is a
252:. The radiation is not monochromatic, i.e., it does not consist of only a single frequency, but comprises a continuous spectrum of photon energies, its characteristic spectrum. If the radiating body and its surface are in 3638:{\displaystyle {\dot {Q}}={\frac {\sigma \left(T_{1}^{4}-T_{2}^{4}\right)}{\displaystyle {\frac {1-\epsilon _{1}}{A_{1}\epsilon _{1}}}+{\frac {1}{A_{1}F_{1\rightarrow 2}}}+{\frac {1-\epsilon _{2}}{A_{2}\epsilon _{2}}}}}} 935:. A kitchen oven, at a temperature about double room temperature on the absolute temperature scale (600 K vs. 300 K) radiates 16 times as much power per unit area. An object at the temperature of the filament in an 1376:, radiation is reflected equally in all directions. Reflection from smooth and polished surfaces can be assumed to be specular reflection, whereas reflection from rough surfaces approximates diffuse reflection. In 2246: 1679: 1883: 1792: 3706:
Formulas for radiative heat transfer can be derived for more particular or more elaborate physical arrangements, such as between parallel plates, concentric spheres and the internal surfaces of a cylinder.
3180: 704:
reaches the surface. The rest is intercepted by particles in the air and changed into heat in the process. Scattering is noticeably larger for rays of shorter wave length; hence the blue color of skylight.
791:. It is therefore possible to have thermal radiation which is polarized, coherent, and directional; though polarized and coherent forms are fairly rare in nature far from sources (in terms of wavelength). 2767:. This factor has to be multiplied with the radiation spectrum formula before integration. If it is taken as a constant, the resulting formula for the power output can be written in a way that contains 3888:
Shiny metal surfaces, have low emissivities both in the visible wavelengths and in the far infrared. Such surfaces can be used to reduce heat transfer in both directions; an example of this is the
3901: 2407: 2171: 735:
phenomena that is dependent on the properties of the entire thickness of the body. A glass window for instance must be translucent through its entire thickness for radiation to get through.
435:
on a sunny day. He waited some time and then measured that the black pieces sank furthest into the snow of all the colors, indicating that they got the hottest and melted the most snow.
1352:
this to be the case). Optimistically, these "gray" approximations will get close to real solutions, as most divergence from Stefan-Boltzmann solutions is very small (especially in most
1073: 135:, the latter process being the reason why the sky is visibly blue. Much of the Sun's radiation transmits through the atmosphere to the surface where it is either absorbed or reflected. 2830: 1168: 1319: 76:. Thermal radiation transmits as an electromagnetic wave through both matter and vacuum. When matter absorbs thermal radiation its temperature will tend to rise. All matter with a 4314: 3235: 3227: 3100: 2293: 1368:
direction forms an irregular shape that is not easily predictable. In practice, surfaces are often assumed to reflect either in a perfectly specular or a diffuse manner. In a
293:
at which the power emitted is a maximum. Wien's displacement law, and the fact that the frequency is inversely proportional to the wavelength, indicates that the peak frequency
4894: 1451: 826:
A comparison of a thermal image (top) and an ordinary photograph (bottom). The plastic bag is mostly transparent to long-wavelength infrared, but the man's glasses are opaque.
2765: 2892: 2111: 1874: 3699: 3672: 2525: 1729: 775:
The rate of electromagnetic radiation emitted at a given frequency is proportional to the amount of absorption that it would experience by the source, a property known as
3423: 2364: 5322:
Kuenzer, C. and S. Dech (2013): Thermal Infrared Remote Sensing: Sensors, Methods, Applications (= Remote Sensing and Digital Image Processing 17). Dordrecht: Springer.
4636: 4146:
At distances on the scale of the wavelength of a radiated electromangetic wave or smaller, Planck's law is not accurate. For objects this small and close together, the
2785: 2557: 1275: 1192: 1699: 1040: 3370: 2313: 2056: 1565: 1415: 1241: 1217: 765: 3063: 1585: 1016: 2589: 2484: 2452: 3931:
walls or other surroundings. Human skin has an emissivity of very close to 1.0. A human, having roughly 2 m in surface area, and a temperature of about 307 
457:
would later cite this explanation of caloric movement as insufficient to explain the radiation of cold becoming a point of contention for the theory as a whole.
5761: 3912:
Nanostructures with spectrally selective thermal emittance properties offer numerous technological applications for energy generation and efficiency, e.g., for
3394: 3036: 2668: 2632: 1609: 1536: 1488: 1093: 4153:
A more sophisticated framework involving electromagnetic theory must be used for smaller distances from the thermal source or surface. For example, although
3837: 244:
The characteristics of thermal radiation depend on various properties of the surface from which it is emanating, including its temperature and its spectral
5746: 5115:
R. Bowling Barnes (24 May 1963). "Thermography of the Human Body Infrared-radiant energy provides new concepts and instrumentation for medical diagnosis".
2178: 1621: 838:
The dominant frequency (or color) range of the emitted radiation shifts to higher frequencies as the temperature of the emitter increases. For example, a
2882:
radiative heat transfer from one surface to another is the radiation leaving the first surface for the other minus that arriving from the second surface.
2859:, which give the proportion of radiation leaving any given surface that hits another specific surface. These calculations are important in the fields of 1808:
A "black body" is a body which has the property of allowing all incident rays to enter without surface reflection and not allowing them to leave again.
1736: 986:
Thermal radiation is characteristically different from conduction and convection in that it does not require a medium and, in fact it reaches maximum
664:
purposes, it may be stated that thermal radiation is a form of electromagnetic radiation which varies on the nature of a surface and its temperature.
153:
is a concept used to analyze thermal radiation in idealized systems. This model applies if a radiation object meets the physical characteristics of a
2058:, of each photon is multiplied by the number of states available at that frequency, and the probability that each of those states will be occupied. 5226:
Rephaeli, Eden; Raman, Aaswath; Fan, Shanhui (2013). "Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling".
4748:"Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie" 1278: 832: 779:. Thus, a surface that absorbs more red light thermally radiates more red light. This principle applies to all properties of the wave, including 586: 249: 485:, it was reported that a thermometer detected a lower temperature when a set of mirror were used to focus "frigorific rays" from a cold object. 5715: 1195: 4927:
Shao, Gaofeng; et al. (2019). "Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems".
5296: 4859: 4805: 4551: 4367: 4339: 4281: 4251: 3797:
has a spectrum overlapping the black body spectra of the sun and the earth. Some of the photons emitted by a tungsten light bulb filament at
144: 4750:[Derivation of Stefan's law, concerning the dependency of heat radiation on temperature, from the electromagnetic theory of light]. 1383:
a surface is defined as smooth if the height of the surface roughness is much smaller relative to the wavelength of the incident radiation.
84:
emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material.
5741: 5710: 5655: 5374: 2118: 419: 305:
reflected. Earth's surface emits the absorbed radiation, approximating the behavior of a black body at 300 K with spectral peak at
2847:
Calculation of radiative heat transfer between groups of objects, including a 'cavity' or 'surroundings' requires solution of a set of
831:
Thermal radiation emitted by a body at any temperature consists of a wide range of frequencies. The frequency distribution is given by
363: 5842: 5690: 4185: 4141: 3821: 173:
gives the radiant intensity. Where blackbody radiation is not an accurate approximation, emission and absorption can be modeled using
3113: 4901: 4524: 4482: 1353: 2835:
This type of theoretical model, with frequency-independent emissivity lower than that of a perfect black body, is often known as a
1246:. These components are a function of the wavelength of the electromagnetic wave as well as the material properties of the medium. 213:
in matter. It is present in all matter of nonzero temperature. These atoms and molecules are composed of charged particles, i.e.,
5756: 5058:
Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo (10 March 2017).
321: 225:
oscillation. This results in the electrodynamic generation of coupled electric and magnetic fields, resulting in the emission of
3715:
Thermal radiation is an important factor of many engineering applications, especially for those dealing with high temperatures.
1045: 847:. Even at a white-hot temperature of 2000 K, 99% of the energy of the radiation is still in the infrared. This is determined by 324:(but also critically contributing to climate stability when the composition and properties of the atmosphere are not changing). 2335:. Although this shows relatively high temperatures, the same relationships hold true for any temperature down to absolute zero. 5170: 4644: 776: 276: 4129:
potentially within 30 minutes. Sunburn is NOT a thermal burn. It is caused by cellular damage due to ultraviolet radiation.
3373: 2561: 5342: 5822: 3981: 2372: 2010:{\displaystyle I_{\lambda ,b}(\lambda ,T)={\frac {2hc^{2}}{\lambda ^{5}}}\cdot {\frac {1}{e^{hc/k_{\rm {B}}T\lambda }-1}}} 962:. It entails the emission of a spectrum of electromagnetic radiation due to an object's temperature. Other mechanisms are 411: 229:, radiating energy away from the body. Electromagnetic radiation, including visible light, will propagate indefinitely in 2248:
The solution of the above integral yields a remarkably elegant equation for the total emissive power of a blackbody, the
931:
The total radiation intensity of a black body rises as the fourth power of the absolute temperature, as expressed by the
2255: 4205: 3840:. Various technologies have been developed to enhance thermal comfort, including personal heating and cooling devices. 5578: 4982: 3855: 1494: 1424: 5282: 2855:
method. In these calculations, the geometrical configuration of the problem is distilled to a set of numbers called
394:. In 1612 he published his results on the heating effects from the Sun, and attempts to measure heat from the Moon. 5810: 5665: 5638: 4504: 2738:
For surfaces which are not black bodies, one has to consider the (generally frequency dependent) emissivity factor
2488: 2340: 2332: 848: 489: 166: 165:
describes the spectrum of blackbody radiation, and relates the radiative heat flux from a body to its temperature.
117: 236: 5695: 5548: 4570: 3913: 3746: 2852: 995: 508: 253: 158: 65: 31: 3183: 2067: 998:
which is often modeled by the propagation of waves. These waves have the standard wave properties of frequency,
932: 602: 170: 5633: 5407: 3844: 398: 5543: 4875: 2793: 2029:
The equation is derived as an infinite sum over all possible frequencies in a semi-sphere region. The energy,
3847:
is a metric used to quantify the exchange of radiant heat between a human and their surrounding environment.
1541: 1134: 5852: 5573: 5367: 3794: 3788: 3343:{\displaystyle {\dot {Q}}_{1\rightarrow 2}=\sigma A_{1}F_{1\rightarrow 2}\left(T_{1}^{4}-T_{2}^{4}\right)\!} 2868: 1291: 936: 504: 403: 351: 174: 4596: 5847: 5814: 5725: 5399: 4747: 3889: 3758: 2872: 2848: 2018: 482: 240:
Beer can being imaged by a FLIR thermal camera to demonstrate temperature differences caused by emissivity
202: 340:
are known to date back to about 700 BC. One of the first accurate mentions of burning glasses appears in
5818: 5553: 3189: 3072: 566: 550: 493: 461: 415: 186: 4892:
S. Tanemura, M. Tazawa, P. Jing, T. Miki, K. Yoshimura, K. Igarashi, M. Ohishi, K. Shimono, M. Adachi.
3008:{\displaystyle {\dot {Q}}_{1\rightarrow 2}=A_{1}E_{b1}F_{1\rightarrow 2}-A_{2}E_{b2}F_{2\rightarrow 1}} 4709:"I. On the relation between the radiating and absorbing powers of different bodies for light and heat" 5857: 5675: 5563: 5520: 5470: 5235: 5192: 5124: 5071: 5014: 4946: 4759: 4407: 4180: 2860: 2741: 1803: 1347:
systems (relative equivalent emissivity/absorptivity and no directional transmissivity dependence in
784: 261: 150: 48: 2083: 2076:
Power emitted by a black body plotted against the temperature according to the Stefan–Boltzmann law.
1846: 5792: 5751: 5670: 5583: 3677: 3650: 2500: 2022: 1369: 1328:
Spectral response of two paints and a mirrored surface, in the visible and the infrared. From NASA.
788: 582: 542: 478: 5347: 5060:"Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling" 1707: 939:—roughly 3000 K, or 10 times room temperature—radiates 10,000 times as much energy per unit area. 138:
Thermal radiation can be used to detect objects or phenomena normally invisible to the human eye.
5787: 5608: 5588: 5568: 5452: 5360: 5332: 5312: 5259: 5208: 5148: 4962: 4936: 4708: 4618: 4154: 4147: 2529: 1373: 614: 545:. Ether supposedly fills all evacuated or non-evacuated spaces. The transmission of light or of 541:
First, the earlier theory which originated from the concept of a hypothetical medium referred as
407: 113: 4395: 3816: 3399: 2348: 378:
on how to focus light in order to produce heat, but the book might have been written in 300 AD.
4850:
Incropera, Frank P.; DeWitt, David P.; Bergman, Theodore L.; Lavine, Adrienne S., eds. (2013).
4108:
Human skin: burns after prolonged exposure, radiant flux exposure typically encountered during
3732: 2770: 2541: 1260: 1176: 5680: 5495: 5460: 5292: 5251: 5166: 5140: 5097: 5089: 5040: 5032: 4855: 4811: 4801: 4728: 4547: 4520: 4516: 4509: 4478: 4363: 4335: 4287: 4277: 4247: 4210: 3798: 3775: 3770: 1684: 1461: 1337: 1025: 947: 943: 851:. In the diagram the peak value for each curve moves to the left as the temperature increases. 628: 454: 449: 431: 387: 313: 3355: 2298: 2032: 1394: 1225: 1201: 750: 5685: 5243: 5200: 5132: 5079: 5022: 4954: 4767: 4720: 4608: 4470: 4415: 4195: 1506: 598: 578: 500: 101: 89: 4246:(Sixth ed.). Boca Raton, Fla. London New York: CRC Press, Taylor & Francis Group. 3041: 2017:
This formula mathematically follows from calculation of spectral distribution of energy in
1112:
is the rate at which radiation is incident upon a surface per unit area. It is measured in
358:
is purported to have developed mirrors to concentrate heat rays in order to burn attacking
260:. A black body is also a perfect emitter. The radiation of such perfect emitters is called 5797: 5782: 5598: 5510: 5500: 4986: 4200: 3897: 3811: 2456: 1570: 1333: 1001: 967: 653: 536: 139: 43:
Thermal radiation in visible light can be seen on this hot metalwork. Its emission in the
17: 2573: 2468: 2436: 1877: 1838: 283: 282:
The distribution of power that a black body emits with varying frequency is described by
162: 5239: 5196: 5128: 5075: 5018: 4950: 4763: 4462: 4411: 2080:
The Planck distribution can be used to find the spectral emissive power of a blackbody,
1822:
No surface can emit more energy than a blackbody for a given temperature and wavelength.
978: 275:, and emissivity of all bodies are dependent on the wavelength of the radiation. Due to 5645: 5603: 5593: 5515: 5505: 5475: 5316: 4474: 3876: 3754: 3379: 3021: 2653: 2617: 2593: 1794:
where both spectral emissive power and emissive intensity are functions of wavelength.
1594: 1521: 1473: 1078: 444: 317: 198: 93: 85: 69: 256:
and the surface has perfect absorptivity at all wavelengths, it is characterized as a
5836: 5720: 5480: 5465: 5337: 5212: 5003:"Nanophotonic control of thermal radiation for energy applications [Invited]" 4966: 4419: 4190: 4175: 1243: 959: 337: 194: 109: 81: 5263: 5152: 2366:
for which the emission intensity is highest is given by Wien's displacement law as:
221:. The kinetic interactions among matter particles result in charge acceleration and 5700: 5660: 5525: 4109: 3750: 3745:
Thermal radiation can be concentrated on a tiny spot via reflecting mirrors, which
3729:
Electromagnetic radiation from the sun has a peak wavelength of about 550 nm.
3724: 2331:
The peak wavelength and total-s radiated amount vary with temperature according to
1817:
A blackbody absorbs all incident radiation, regardless of wavelength and direction.
1364: 767:
that represents how much heat will be absorbed per unit distance through a medium.
594: 590: 546: 465: 341: 272: 53: 264:. The ratio of any body's emission relative to that of a black body is the body's 5352: 5136: 4958: 4541: 3761:, and during the day it can heat water to 285 Â°C (558 K; 545 Â°F). 5442: 4396:"History of infrared detection—part I. The first detectors of thermal radiation" 4215: 3107: 3103: 3066: 2856: 2637: 1704:
The spectral emissive power can also be determined from the spectral intensity,
1219: 1104: 1019: 570: 562: 524: 391: 190: 77: 4713:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
4540:
Lemons, Don S.; Shanahan, William R.; Buchholtz, Louis J. (20 September 2022).
5490: 5437: 5204: 4724: 4075:
Human skin: Pain after 3 seconds, second-degree burn blisters after 9 seconds
4037: 3994: 3859:
limited by the amount of current that can be drawn through a circuit breaker.
2887:
For black bodies, the rate of energy transfer from surface 1 to surface 2 is:
1282: 1255: 987: 963: 780: 632: 619: 554: 359: 355: 346: 265: 257: 245: 154: 132: 5183:
Greffet, Jean-Jacques; Henkel, Carsten (2007). "Coherent thermal radiation".
5093: 5036: 4815: 4772: 4732: 4291: 1490:
is used to quantify how much radiation makes it from one surface to another.
712:
When a heat ray arrives at a body they may interact in three different ways:
414:
who performed it in 1611. In 1660, della Porta experiment was updated by the
131:
is thermal radiation. This energy is partially absorbed and scattered in the
5777: 5650: 5485: 5432: 5422: 5383: 5084: 5059: 4062: 4023: 3966: 3428:
For two grey-body surfaces forming an enclosure, the heat transfer rate is:
2072: 1588: 1515: 1514:
is the rate at which radiation is emitted per unit area. It is a measure of
1377: 806: 668: 5255: 5144: 5101: 5044: 4979: 4795: 4613: 817: 39: 4543:
On the Trail of Blackbody Radiation: Max Planck and the Physics of his Era
4271: 3425:
indicates that net radiation heat transfer is from surface 2 to surface 1.
1324: 1128:. The components of irradiation can then be characterized by the equation 5427: 5412: 5165:
John J. Lentini - Scientific Protocols for Fire Investigation, CRC 2006,
5027: 5002: 4879: 4122: 1380: 218: 210: 108:(IR) spectrum. Thermal radiation is one of the fundamental mechanisms of 105: 44: 3820:
Radiant heat panel for testing precisely quantified energy exposures at
982:
Electromagnetic wave with perpendicular electric and magnetic components
5705: 4126: 4044: 3829: 512: 169:
determines the most likely frequency of the emitted radiation, and the
5247: 4854:(7. ed., international student version ed.). Hoboken, NJ: Wiley. 4622: 2327: 1285:
if this holds for all frequencies, and the following formula applies:
667:
Radiation waves may travel in unusual patterns compared to conduction
523:
part of the spectrum, as an increase in the temperature recorded on a
27:
Electromagnetic radiation generated by the thermal motion of particles
4433: 3932: 3825: 2864: 2643: 2241:{\displaystyle E_{b}=\int _{0}^{\infty }\pi I_{\lambda ,b}d\lambda .} 991: 589:). By 1884 the emissive power of a perfect blackbody was inferred by 470: 375: 230: 226: 222: 214: 97: 73: 4597:"Experiments on the refrangibility of the invisible rays of the Sun" 4511:
The Edge of Objectivity: An Essay in the History of Scientific Ideas
1674:{\displaystyle E=\int _{0}^{\infty }E_{\lambda }(\lambda )d\lambda } 561:
broadcasting waves are types of electromagnetic waves with specific
5319:. Radiation Heat Transfer. Hemisphere Publishing Corporation, 1978. 4941: 4276:. Isabel Pérez-Grande, Angel Sanz-Andrés. Cambridge: Woodhead Pub. 601:
from fundamental statistical principles. This relation is known as
5530: 5417: 5173:, table from NFPA 921, Guide for Fire and Explosion Investigations 3815: 2326: 2071: 1323: 977: 558: 235: 128: 38: 5281:
Siegel, John R. Howell, Robert; Howell. John R. (November 2001).
1787:{\displaystyle E_{\lambda }(\lambda )=\pi I_{\lambda }(\lambda )} 4895:"Optical Properties and Radiative Cooling Power of White Paints" 4434:
Franklin’s Experiments on Heat Absorption as a Function of Color
4058: 4041: 4008: 2673: 1113: 206: 5356: 4150:
of EM waves has a significant impact on the rate of radiation.
3175:{\displaystyle A_{1}F_{1\rightarrow 2}=A_{2}F_{2\rightarrow 1}} 370:
213–212 BC), but no sources from the time have been confirmed.
2175:
The total emissive power of a blackbody is then calculated as,
1614:
The total emissive power can also be found by integrating the
958:
Thermal radiation is one of the three principal mechanisms of
520: 516: 499:
The discovery of infrared radiation is ascribed to astronomer
464:
responded to a view he extracted from a French translation of
205:. Thermal energy is the kinetic energy of random movements of 124: 920:
white (yellowish if seen from a distance through atmosphere)
856:
Subjective color to the eye of a black body thermal radiator
640:
an electromagnetic wave in vacuum is found by the expression
5287:. New York: Taylor & Francis, Inc. pp. (xix – xxvi 4678:. Blacksburg, Virginia:D. Van Nostrand Company, Inc.,1962. 4242:
Howell, John R.; Mengüç, M. Pinar; Siegel, Robert (2016).
4601:
Philosophical Transactions of the Royal Society of London
4097:
Human skin: second-degree burn blisters after 30 seconds
4086:
Human skin: second-degree burn blisters after 18 seconds
3836:
Thermal radiation plays a crucial role in human comfort,
1421:
in which case absorptivity and reflectivity sum to unity:
627:
The microscopic theory of radiation is best known as the
30:"Heat radiation" redirects here. Not to be confused with 4980:
The Efficient Windows Collaborative: Window Technologies
1518:. The total emissive power from a surface is denoted as 835:
for an idealized emitter as shown in the diagram at top.
4797:
Heat and mass transfer: fundamentals & applications
1372:, the angles of reflection and incidence are equal. In 684:
The radiation of heat is generally denoted by the word
2417:
Definitions of constants used in the above equations:
3680: 3653: 3502: 3436: 3402: 3382: 3358: 3238: 3192: 3116: 3075: 3044: 3024: 2895: 2796: 2773: 2744: 2656: 2620: 2576: 2544: 2503: 2471: 2439: 2375: 2351: 2301: 2258: 2181: 2121: 2086: 2035: 1886: 1849: 1739: 1710: 1687: 1624: 1618:
over all possible wavelengths. This is calculated as,
1597: 1573: 1544: 1524: 1476: 1427: 1397: 1294: 1263: 1228: 1204: 1179: 1137: 1081: 1048: 1028: 1004: 753: 51:
are capable of capturing this infrared emission (see
2646:(e.g. average surface temperature on Earth = 288 K) 2402:{\displaystyle \lambda _{\text{max}}={\frac {b}{T}}} 503:. Herschel published his results in 1800 before the 5770: 5734: 5621: 5451: 5398: 5391: 1876:was first determined by Max Planck. It is given by 726:Absorption and reflection are typically modeled as 4508: 3693: 3666: 3637: 3417: 3388: 3364: 3342: 3221: 3174: 3094: 3057: 3030: 3007: 2824: 2779: 2759: 2662: 2626: 2583: 2551: 2519: 2478: 2446: 2401: 2358: 2307: 2287: 2240: 2166:{\displaystyle E_{\lambda ,b}=\pi I_{\lambda ,b}.} 2165: 2105: 2050: 2009: 1868: 1786: 1723: 1693: 1673: 1603: 1579: 1559: 1530: 1482: 1445: 1409: 1313: 1269: 1235: 1211: 1186: 1162: 1087: 1067: 1034: 1010: 759: 4467:Men of Physics: Benjamin Thompson – Count Rumford 3917:outer space as a very low temperature heat sink. 3339: 3069:(the rate of emission per unit surface area) and 492:a colleague of Pictet, introduced the concept of 286:. At any given temperature, there is a frequency 143:animals or people due to their body temperature. 3106:from surface 1 to surface 2. Applying both the 2609:Definitions of variables, with example values: 197:. Thermal radiation reflects the conversion of 5289:list of symbols for thermal radiation formulas 4694:New York: Plenum Publishing Corporation, 1986. 4317:, P Blakiston's Son & Co., New York, 1914. 5368: 2026:temperature relative to longer wavelengths. 1493:Radiation intensity is often modeled using a 597:'s experimental measurements, and derived by 569:travel at the same speed; therefore, shorter 8: 4794:Çengel, Yunus A.; Ghajar, Afshin J. (2011). 1116:per square meter. Irradiation can either be 519:and detected the calorific rays, beyond the 300:is proportional to the absolute temperature 268:, so a black body has an emissivity of one. 3838:influencing perceived temperature sensation 2021:electromagnetic field which is in complete 1391:A medium that experiences no transmission ( 1332:If objects appear white (reflective in the 5395: 5375: 5361: 5353: 4353: 4351: 3736:Diagram of a solar radiation balance model 1068:{\displaystyle \lambda ={\frac {c}{\nu }}} 5083: 5026: 4940: 4771: 4686: 4684: 4612: 3685: 3679: 3658: 3652: 3623: 3613: 3601: 3588: 3570: 3560: 3550: 3538: 3528: 3516: 3503: 3490: 3485: 3472: 3467: 3452: 3438: 3437: 3435: 3404: 3403: 3401: 3381: 3357: 3328: 3323: 3310: 3305: 3284: 3274: 3252: 3241: 3240: 3237: 3213: 3197: 3191: 3160: 3150: 3131: 3121: 3115: 3080: 3074: 3049: 3043: 3023: 2993: 2980: 2970: 2951: 2938: 2928: 2909: 2898: 2897: 2894: 2816: 2795: 2772: 2743: 2655: 2619: 2580: 2575: 2548: 2543: 2516: 2509: 2508: 2502: 2475: 2470: 2443: 2438: 2389: 2380: 2374: 2355: 2350: 2300: 2279: 2263: 2257: 2217: 2204: 2199: 2186: 2180: 2148: 2126: 2120: 2091: 2085: 2034: 1983: 1982: 1973: 1966: 1956: 1945: 1934: 1921: 1891: 1885: 1854: 1848: 1769: 1744: 1738: 1715: 1709: 1686: 1650: 1640: 1635: 1623: 1596: 1572: 1543: 1523: 1475: 1426: 1396: 1310: 1293: 1262: 1232: 1227: 1208: 1203: 1183: 1178: 1159: 1136: 1080: 1055: 1047: 1027: 1003: 752: 581:published a mathematical description of 147:is another example of thermal radiation. 4362:. Oxford University Press. p. 247. 3980:Thermal Protective Performance test for 3950: 3749:takes advantage of. Instead of mirrors, 3731: 2825:{\displaystyle P=\epsilon \sigma AT^{4}} 2611: 2419: 1254:The spectral absorption is equal to the 854: 708:Absorption, reflection, and transmission 618: 4800:(4th ed.). New York: McGraw-Hill. 4515:. Princeton University Press. pp.  4227: 1843:The spectral intensity of a blackbody, 1163:{\displaystyle \alpha +\rho +\tau =1\,} 410:in 1603, and supplied instructions for 5716:Wireless electronic devices and health 5001:Fan, Shanhui; Li, Wei (11 June 2018). 4845: 4670: 4668: 4666: 4664: 4662: 1314:{\displaystyle \alpha =\epsilon =1.\,} 722:The heat may transmit through the body 350:, written in 423 BC. According to the 4996: 4994: 4843: 4841: 4839: 4837: 4835: 4833: 4831: 4829: 4827: 4825: 4789: 4787: 4785: 4783: 4702: 4700: 4565: 4563: 4456: 4454: 4452: 4450: 4026:at floor level of a residential room 3701:are the emissivities of the surfaces. 3396:is temperature. A negative value for 1095:is the speed of light in the medium. 185:Thermal radiation is the emission of 145:Cosmic microwave background radiation 7: 5742:List of civilian radiation accidents 5711:Wireless device radiation and health 5706:Biological dose units and quantities 5656:Electromagnetic radiation and health 5348:Infrared Temperature Calibration 101 4852:Principles of heat and mass transfer 4389: 4387: 4385: 4383: 4381: 4379: 4325: 4323: 4309: 4307: 4305: 4303: 4301: 4265: 4263: 4237: 4235: 4233: 4231: 1279:Kirchhoff's law of thermal radiation 833:Planck's law of black-body radiation 587:Kirchhoff's law of thermal radiation 4876:"The Physics of Coloured Fireworks" 4637:"Herschel Discovers Infrared Light" 420:Ferdinand II, Grand Duke of Tuscany 5691:Radioactivity in the life sciences 4475:10.1016/b978-0-08-012179-6.50008-3 4186:Interior radiation control coating 4142:Near-field radiative heat transfer 4136:Near-field radiative heat transfer 3222:{\displaystyle E_{b}=\sigma T^{4}} 3095:{\displaystyle F_{1\rightarrow 2}} 2566:5.670 373 (21)Ă—10 W·m·K 2510: 2288:{\displaystyle E_{b}=\sigma T^{4}} 2205: 1984: 1641: 917:> 1,400 Â°C (2,550 Â°F) 549:are allowed by the propagation of 25: 4358:S. Blundell, K. Blundell (2006). 4334:(2nd ed.). New York: Wiley. 2642:For units used above, must be in 2534:1.380 650 5(24)Ă—10 J·K 2493:2.897 768 5(51)Ă—10 m·K 2461:6.626 069 3(11)Ă—10 J·s 1827:A blackbody is a diffuse emitter. 1354:standard temperature and pressure 1042:which are related by the equation 994:. Thermal radiation is a type of 390:came up with one of the earliest 104:, most of the emission is in the 4061:produces ignitable volatiles by 4040:: sudden pain and second-degree 3965:Maximum flux measured in a post- 3926:Metabolic temperature regulation 3753:can also be used to concentrate 2734:Emission from non-black surfaces 2322: 1446:{\displaystyle \rho +\alpha =1.} 816: 805: 418:using a thermometer invented by 123:The primary method by which the 5284:Thermal radiation heat transfer 4692:Heat Transfer a Modern Approach 4244:Thermal radiation heat transfer 2760:{\displaystyle \epsilon (\nu )} 47:is invisible to the human eye. 5333:Black Body Emission Calculator 4917:ISES 1999 Solar World Congress 4878:. 21 July 2011. Archived from 3574: 3288: 3256: 3164: 3135: 3084: 2997: 2955: 2913: 2843:Heat transfer between surfaces 2754: 2748: 2106:{\displaystyle E_{\lambda ,b}} 1915: 1903: 1869:{\displaystyle I_{\lambda ,b}} 1781: 1775: 1756: 1750: 1662: 1656: 1356:lab controlled environments). 1: 4752:Annalen der Physik und Chemie 3982:personal protective equipment 3892:used to insulate spacecraft. 3694:{\displaystyle \epsilon _{2}} 3667:{\displaystyle \epsilon _{1}} 2520:{\displaystyle k_{\rm {B}}\,} 909:1,300 Â°C (2,370 Â°F) 901:1,100 Â°C (2,010 Â°F) 719:The body may reflect the heat 412:Rudolf II, Holy Roman Emperor 5137:10.1126/science.140.3569.870 4959:10.1016/j.corsci.2018.11.006 4469:, Elsevier, pp. 16–24, 4420:10.1016/0020-0891(82)90030-6 4315:The Theory of Heat Radiation 2489:Wien's displacement constant 1724:{\displaystyle I_{\lambda }} 1277:; this relation is known as 888:bright red, slightly orange 716:The body may absorb the heat 5579:Cosmic background radiation 4707:Kirchhoff, G. (July 1860). 4641:Coolcosmos.ipac.caltech.edu 4505:Gillispie, Charles Coulston 4360:Concepts in Thermal Physics 2873:raytraced computer graphics 1495:spherical coordinate system 1250:Absorptivity and emissivity 948:Super-Poissonian statistics 893:930 Â°C (1,710 Â°F) 885:730 Â°C (1,350 Â°F) 877:580 Â°C (1,076 Â°F) 189:from all matter that has a 5874: 5808: 5666:Lasers and aviation safety 4746:Boltzmann, Ludwig (1884). 4595:Herschel, William (1800). 4461:Brown, Sanborn C. (1967), 4273:Spacecraft thermal control 4139: 3809: 3786: 3722: 3418:{\displaystyle {\dot {Q}}} 2598:299 792 458 m·s 2359:{\displaystyle \lambda \,} 2338: 2317:Steffan-Boltzmann constant 2065: 1836: 1801: 1504: 1459: 1102: 612: 534: 442: 29: 18:Heat transfer by radiation 5843:Electromagnetic radiation 5806: 5696:Radioactive contamination 5549:Electromagnetic radiation 5539: 5205:10.1080/00107510701690380 4725:10.1080/14786446008642901 4676:Engineering Heat Transfer 3914:daytime radiative cooling 3822:National Research Council 3747:concentrating solar power 3374:Stefan–Boltzmann constant 2780:{\displaystyle \epsilon } 2562:Stefan–Boltzmann constant 2552:{\displaystyle \sigma \,} 1538:and can be determined by, 1270:{\displaystyle \epsilon } 1187:{\displaystyle \alpha \,} 996:electromagnetic radiation 869:480 Â°C (896 Â°F) 745:coefficient of absorption 631:and was first offered by 386:During the same period, 322:climate change in general 254:thermodynamic equilibrium 159:thermodynamic equilibrium 66:electromagnetic radiation 32:Heat-Ray (disambiguation) 5809:See also the categories 5747:1996 Costa Rica accident 5408:Acoustic radiation force 4773:10.1002/andp.18842580616 4270:Meseguer, JosĂ©. (2012). 3997:ignites at five seconds 3856:Radiant personal heaters 3845:mean radiant temperature 3783:Incandescent light bulbs 1694:{\displaystyle \lambda } 1611:is the total intensity. 1281:. An object is called a 1035:{\displaystyle \lambda } 399:Giambattista della Porta 374:is a book attributed to 5721:Radiation heat-transfer 5574:Gravitational radiation 5085:10.1126/science.aai7899 4206:Sakuma–Hattori equation 3795:incandescent light bulb 3789:Incandescent light bulb 3365:{\displaystyle \sigma } 2341:Wien's displacement law 2333:Wien's displacement law 2323:Wien's displacement law 2308:{\displaystyle \sigma } 2051:{\displaystyle E=h\nu } 1880:per unit wavelength as: 1833:The Planck distribution 1701:represents wavelength. 1616:spectral emissive power 1560:{\displaystyle E=\pi I} 1410:{\displaystyle \tau =0} 1236:{\displaystyle \tau \,} 1212:{\displaystyle \rho \,} 937:incandescent light bulb 849:Wien's displacement law 760:{\displaystyle \alpha } 505:Royal Society of London 404:Giovanni Antonio Magini 175:quantum electrodynamics 167:Wien's displacement law 5762:1990 Zaragoza accident 5757:1984 Moroccan accident 5726:Linear energy transfer 5400:Non-ionizing radiation 4614:10.1098/rstl.1800.0015 4330:Huang, Kerson (1987). 3890:multi-layer insulation 3833: 3759:PS10 Solar Power Plant 3737: 3695: 3668: 3639: 3419: 3390: 3366: 3344: 3223: 3176: 3096: 3059: 3032: 3009: 2849:simultaneous equations 2826: 2781: 2761: 2664: 2628: 2585: 2553: 2521: 2480: 2448: 2403: 2360: 2336: 2309: 2289: 2242: 2167: 2107: 2077: 2052: 2011: 1870: 1788: 1725: 1695: 1675: 1605: 1581: 1561: 1532: 1484: 1447: 1411: 1329: 1315: 1271: 1237: 1213: 1188: 1164: 1089: 1069: 1036: 1012: 983: 954:Fundamental principles 946:, thermal light obeys 904:pale yellowish orange 761: 624: 241: 203:electromagnetic energy 127:transfers heat to the 58: 5752:1987 Goiânia accident 5554:Synchrotron radiation 5544:Earth's energy budget 5526:Radioactive materials 5521:Particle accelerators 5343:Atmospheric Radiation 4985:26 April 2011 at the 4432:Cohen, I. B. (1943). 4394:Putley, E.H. (1982). 4332:Statistical mechanics 4022:Typical beginning of 3819: 3735: 3696: 3669: 3640: 3420: 3391: 3367: 3345: 3224: 3177: 3097: 3060: 3058:{\displaystyle E_{b}} 3033: 3010: 2827: 2782: 2762: 2665: 2629: 2586: 2554: 2522: 2481: 2449: 2404: 2361: 2330: 2310: 2290: 2243: 2168: 2108: 2075: 2053: 2012: 1871: 1789: 1726: 1696: 1676: 1606: 1582: 1562: 1533: 1485: 1448: 1412: 1327: 1316: 1272: 1238: 1214: 1189: 1165: 1090: 1070: 1037: 1013: 981: 974:Electromagnetic waves 762: 622: 567:electromagnetic waves 551:electromagnetic waves 494:radiative equilibrium 462:Augustin-Jean Fresnel 460:In his first memoir, 416:Accademia del Cimento 239: 187:electromagnetic waves 140:Thermographic cameras 42: 5823:Radiation protection 5676:Radiation protection 5564:Black-body radiation 5471:Background radiation 5386:(physics and health) 5185:Contemporary Physics 5028:10.1364/OE.26.015995 4463:"The Caloric Theory" 4181:Infrared photography 4011:ignites, given time 3678: 3651: 3434: 3400: 3380: 3356: 3236: 3190: 3184:Stefan–Boltzmann law 3114: 3073: 3042: 3022: 2893: 2861:solar thermal energy 2794: 2771: 2742: 2654: 2618: 2574: 2542: 2501: 2469: 2437: 2373: 2349: 2299: 2256: 2252:, which is given as, 2250:Stefan-Boltzmann law 2179: 2119: 2084: 2068:Stefan–Boltzmann law 2062:Stefan-Boltzmann law 2033: 1884: 1847: 1804:Black-body radiation 1737: 1708: 1685: 1622: 1595: 1580:{\displaystyle \pi } 1571: 1542: 1522: 1474: 1469:radiation intensity, 1425: 1395: 1292: 1261: 1226: 1202: 1177: 1135: 1079: 1046: 1026: 1011:{\displaystyle \nu } 1002: 933:Stefan–Boltzmann law 783:(color), direction, 751: 603:Stefan–Boltzmann law 352:Archimedes' heat ray 262:black-body radiation 171:Stefan–Boltzmann law 5793:Radiation hardening 5735:Radiation incidents 5671:Medical radiography 5630:Radiation syndrome 5584:Cherenkov radiation 5240:2013NanoL..13.1457R 5197:2007ConPh..48..183G 5129:1963Sci...140..870B 5076:2017Sci...355.1062Z 5070:(6329): 1062–1066. 5019:2018OExpr..2615995L 5013:(12): 15995–16021. 4951:2019Corro.146..233S 4764:1884AnP...258..291B 4647:on 25 February 2012 4412:1982InfPh..22..125P 3495: 3477: 3333: 3315: 2584:{\displaystyle c\,} 2479:{\displaystyle b\,} 2447:{\displaystyle h\,} 2209: 2023:thermal equilibrium 1798:Blackbody radiation 1645: 1456:Radiation intensity 1370:specular reflection 1110:Thermal irradiation 857: 583:thermal equilibrium 479:Marc-Auguste Pictet 151:Blackbody radiation 94:charge-acceleration 5788:Radioactive source 5609:Radiation exposure 5589:Askaryan radiation 5569:Particle radiation 5453:Ionizing radiation 3834: 3738: 3691: 3664: 3635: 3632: 3481: 3463: 3415: 3386: 3362: 3340: 3319: 3301: 3219: 3172: 3110:for view factors, 3092: 3055: 3028: 3005: 2822: 2777: 2757: 2660: 2624: 2581: 2549: 2530:Boltzmann constant 2517: 2476: 2444: 2429:Value in SI units 2399: 2356: 2337: 2305: 2285: 2238: 2195: 2163: 2103: 2078: 2048: 2007: 1866: 1784: 1721: 1691: 1671: 1631: 1601: 1577: 1557: 1528: 1480: 1443: 1407: 1374:diffuse reflection 1330: 1311: 1267: 1233: 1209: 1184: 1160: 1085: 1065: 1032: 1008: 984: 855: 757: 660:is its frequency. 625: 623:Max Planck in 1901 615:Old quantum theory 507:. Herschel used a 483:experiment of 1790 408:Christopher Heydon 316:, contributing to 248:, as expressed by 242: 59: 5830: 5829: 5811:Radiation effects 5681:Radiation therapy 5617: 5616: 5559:Thermal radiation 5496:Neutron radiation 5461:Radioactive decay 5298:978-1-56032-839-1 5248:10.1021/nl4004283 5123:(3569): 870–877. 4929:Corrosion Science 4907:on 2 January 2007 4861:978-0-470-50197-9 4807:978-0-07-339812-9 4553:978-0-262-04704-3 4369:978-0-19-856769-1 4341:978-0-471-81518-1 4283:978-0-85709-608-1 4253:978-1-4665-9326-8 4211:Thermal dose unit 4148:quantum tunneling 4133: 4132: 3921:Health and safety 3776:solar irradiation 3771:selective surface 3633: 3630: 3583: 3545: 3446: 3412: 3389:{\displaystyle T} 3249: 3038:is surface area, 3031:{\displaystyle A} 2906: 2731: 2730: 2663:{\displaystyle A} 2627:{\displaystyle T} 2602: 2601: 2397: 2383: 2005: 1951: 1604:{\displaystyle I} 1531:{\displaystyle E} 1483:{\displaystyle I} 1462:Radiant intensity 1088:{\displaystyle c} 1063: 944:photon statistics 924: 923: 864:Subjective color 450:Antoine Lavoisier 432:Benjamin Franklin 388:Santorio Santorio 364:Siege of Syracuse 314:greenhouse effect 62:Thermal radiation 16:(Redirected from 5865: 5771:Related articles 5686:Radiation damage 5511:Nuclear reactors 5396: 5377: 5370: 5363: 5354: 5309: 5307: 5305: 5268: 5267: 5234:(4): 1457–1461. 5223: 5217: 5216: 5180: 5174: 5163: 5157: 5156: 5112: 5106: 5105: 5087: 5055: 5049: 5048: 5030: 4998: 4989: 4977: 4971: 4970: 4944: 4924: 4918: 4916: 4914: 4912: 4906: 4900:. Archived from 4899: 4890: 4884: 4883: 4882:on 21 July 2011. 4872: 4866: 4865: 4847: 4820: 4819: 4791: 4778: 4777: 4775: 4743: 4737: 4736: 4704: 4695: 4690:Becker, Martin. 4688: 4679: 4672: 4657: 4656: 4654: 4652: 4643:. Archived from 4633: 4627: 4626: 4616: 4592: 4586: 4585: 4583: 4581: 4575:Oxford Reference 4571:"Pierre PrĂ©vost" 4567: 4558: 4557: 4537: 4531: 4530: 4514: 4501: 4495: 4494: 4493: 4491: 4458: 4445: 4430: 4424: 4423: 4400:Infrared Physics 4391: 4374: 4373: 4355: 4346: 4345: 4327: 4318: 4311: 4296: 4295: 4267: 4258: 4257: 4239: 4196:Planck radiation 4118: 4104: 4093: 4082: 4071: 4054: 4047:after 5 seconds 4033: 4018: 4004: 3990: 3976: 3951: 3896:navigation. The 3863:Personal cooling 3851:Personal heating 3700: 3698: 3697: 3692: 3690: 3689: 3673: 3671: 3670: 3665: 3663: 3662: 3644: 3642: 3641: 3636: 3634: 3631: 3629: 3628: 3627: 3618: 3617: 3607: 3606: 3605: 3589: 3584: 3582: 3581: 3580: 3565: 3564: 3551: 3546: 3544: 3543: 3542: 3533: 3532: 3522: 3521: 3520: 3504: 3501: 3500: 3496: 3494: 3489: 3476: 3471: 3453: 3448: 3447: 3439: 3424: 3422: 3421: 3416: 3414: 3413: 3405: 3395: 3393: 3392: 3387: 3371: 3369: 3368: 3363: 3349: 3347: 3346: 3341: 3338: 3334: 3332: 3327: 3314: 3309: 3295: 3294: 3279: 3278: 3263: 3262: 3251: 3250: 3242: 3228: 3226: 3225: 3220: 3218: 3217: 3202: 3201: 3181: 3179: 3178: 3173: 3171: 3170: 3155: 3154: 3142: 3141: 3126: 3125: 3108:reciprocity rule 3101: 3099: 3098: 3093: 3091: 3090: 3064: 3062: 3061: 3056: 3054: 3053: 3037: 3035: 3034: 3029: 3014: 3012: 3011: 3006: 3004: 3003: 2988: 2987: 2975: 2974: 2962: 2961: 2946: 2945: 2933: 2932: 2920: 2919: 2908: 2907: 2899: 2831: 2829: 2828: 2823: 2821: 2820: 2786: 2784: 2783: 2778: 2766: 2764: 2763: 2758: 2669: 2667: 2666: 2661: 2633: 2631: 2630: 2625: 2612: 2590: 2588: 2587: 2582: 2558: 2556: 2555: 2550: 2526: 2524: 2523: 2518: 2515: 2514: 2513: 2485: 2483: 2482: 2477: 2453: 2451: 2450: 2445: 2420: 2408: 2406: 2405: 2400: 2398: 2390: 2385: 2384: 2381: 2365: 2363: 2362: 2357: 2314: 2312: 2311: 2306: 2294: 2292: 2291: 2286: 2284: 2283: 2268: 2267: 2247: 2245: 2244: 2239: 2228: 2227: 2208: 2203: 2191: 2190: 2172: 2170: 2169: 2164: 2159: 2158: 2137: 2136: 2112: 2110: 2109: 2104: 2102: 2101: 2057: 2055: 2054: 2049: 2016: 2014: 2013: 2008: 2006: 2004: 1997: 1996: 1989: 1988: 1987: 1977: 1957: 1952: 1950: 1949: 1940: 1939: 1938: 1922: 1902: 1901: 1875: 1873: 1872: 1867: 1865: 1864: 1793: 1791: 1790: 1785: 1774: 1773: 1749: 1748: 1730: 1728: 1727: 1722: 1720: 1719: 1700: 1698: 1697: 1692: 1680: 1678: 1677: 1672: 1655: 1654: 1644: 1639: 1610: 1608: 1607: 1602: 1586: 1584: 1583: 1578: 1566: 1564: 1563: 1558: 1537: 1535: 1534: 1529: 1507:Radiant exitance 1489: 1487: 1486: 1481: 1452: 1450: 1449: 1444: 1416: 1414: 1413: 1408: 1320: 1318: 1317: 1312: 1276: 1274: 1273: 1268: 1242: 1240: 1239: 1234: 1218: 1216: 1215: 1210: 1193: 1191: 1190: 1185: 1169: 1167: 1166: 1161: 1094: 1092: 1091: 1086: 1074: 1072: 1071: 1066: 1064: 1056: 1041: 1039: 1038: 1033: 1017: 1015: 1014: 1009: 912:yellowish white 858: 820: 809: 766: 764: 763: 758: 599:Ludwig Boltzmann 579:Gustav Kirchhoff 527:in that region. 501:William Herschel 369: 102:room temperature 100:oscillation. At 90:electromagnetism 88:is converted to 72:of particles in 49:Infrared cameras 21: 5873: 5872: 5868: 5867: 5866: 5864: 5863: 5862: 5833: 5832: 5831: 5826: 5825: 5802: 5798:Havana syndrome 5783:Nuclear physics 5766: 5730: 5623: 5613: 5599:Unruh radiation 5535: 5516:Nuclear weapons 5501:Nuclear fission 5447: 5387: 5381: 5329: 5303: 5301: 5299: 5280: 5277: 5275:Further reading 5272: 5271: 5225: 5224: 5220: 5182: 5181: 5177: 5164: 5160: 5114: 5113: 5109: 5057: 5056: 5052: 5000: 4999: 4992: 4987:Wayback Machine 4978: 4974: 4926: 4925: 4921: 4910: 4908: 4904: 4897: 4893: 4891: 4887: 4874: 4873: 4869: 4862: 4849: 4848: 4823: 4808: 4793: 4792: 4781: 4745: 4744: 4740: 4706: 4705: 4698: 4689: 4682: 4673: 4660: 4650: 4648: 4635: 4634: 4630: 4594: 4593: 4589: 4579: 4577: 4569: 4568: 4561: 4554: 4539: 4538: 4534: 4527: 4503: 4502: 4498: 4489: 4487: 4485: 4460: 4459: 4448: 4431: 4427: 4393: 4392: 4377: 4370: 4357: 4356: 4349: 4342: 4329: 4328: 4321: 4312: 4299: 4284: 4269: 4268: 4261: 4254: 4241: 4240: 4229: 4224: 4201:Radiant cooling 4172: 4144: 4138: 4116: 4102: 4091: 4080: 4069: 4052: 4031: 4016: 4002: 3988: 3974: 3945: 3928: 3923: 3910: 3898:Pioneer anomaly 3886: 3874: 3865: 3853: 3814: 3812:Thermal comfort 3808: 3806:Thermal comfort 3791: 3785: 3767: 3743: 3727: 3721: 3713: 3704: 3681: 3676: 3675: 3654: 3649: 3648: 3619: 3609: 3608: 3597: 3590: 3566: 3556: 3555: 3534: 3524: 3523: 3512: 3505: 3462: 3458: 3454: 3432: 3431: 3398: 3397: 3378: 3377: 3354: 3353: 3300: 3296: 3280: 3270: 3239: 3234: 3233: 3209: 3193: 3188: 3187: 3156: 3146: 3127: 3117: 3112: 3111: 3076: 3071: 3070: 3045: 3040: 3039: 3020: 3019: 2989: 2976: 2966: 2947: 2934: 2924: 2896: 2891: 2890: 2845: 2812: 2792: 2791: 2769: 2768: 2740: 2739: 2736: 2723: 2717: 2703: 2697: 2683: 2652: 2651: 2616: 2615: 2607: 2572: 2571: 2540: 2539: 2504: 2499: 2498: 2467: 2466: 2457:Planck constant 2435: 2434: 2415: 2376: 2371: 2370: 2347: 2346: 2345:The wavelength 2343: 2325: 2297: 2296: 2275: 2259: 2254: 2253: 2213: 2182: 2177: 2176: 2144: 2122: 2117: 2116: 2087: 2082: 2081: 2070: 2064: 2031: 2030: 1978: 1962: 1961: 1941: 1930: 1923: 1887: 1882: 1881: 1850: 1845: 1844: 1841: 1835: 1806: 1800: 1765: 1740: 1735: 1734: 1711: 1706: 1705: 1683: 1682: 1646: 1620: 1619: 1593: 1592: 1587:is in units of 1569: 1568: 1540: 1539: 1520: 1519: 1509: 1503: 1472: 1471: 1464: 1458: 1423: 1422: 1393: 1392: 1389: 1362: 1334:visual spectrum 1290: 1289: 1259: 1258: 1252: 1224: 1223: 1200: 1199: 1194:represents the 1175: 1174: 1133: 1132: 1107: 1101: 1077: 1076: 1044: 1043: 1024: 1023: 1000: 999: 976: 956: 929: 872:faint red glow 830: 829: 828: 827: 823: 822: 821: 812: 811: 810: 797: 773: 749: 748: 710: 694: 682: 677: 675:Characteristics 654:Planck constant 617: 611: 553:in the aether. 539: 537:Aether theories 533: 515:light from the 447: 441: 428: 384: 367: 338:Burning glasses 335: 330: 311: 299: 292: 250:Kirchhoff's law 183: 68:emitted by the 35: 28: 23: 22: 15: 12: 11: 5: 5871: 5869: 5861: 5860: 5855: 5853:Thermodynamics 5850: 5845: 5835: 5834: 5828: 5827: 5807: 5804: 5803: 5801: 5800: 5795: 5790: 5785: 5780: 5774: 5772: 5768: 5767: 5765: 5764: 5759: 5754: 5749: 5744: 5738: 5736: 5732: 5731: 5729: 5728: 5723: 5718: 5713: 5708: 5703: 5698: 5693: 5688: 5683: 5678: 5673: 5668: 5663: 5658: 5653: 5648: 5646:Health physics 5643: 5642: 5641: 5636: 5627: 5625: 5619: 5618: 5615: 5614: 5612: 5611: 5606: 5604:Dark radiation 5601: 5596: 5594:Bremsstrahlung 5591: 5586: 5581: 5576: 5571: 5566: 5561: 5556: 5551: 5546: 5540: 5537: 5536: 5534: 5533: 5528: 5523: 5518: 5513: 5508: 5506:Nuclear fusion 5503: 5498: 5493: 5488: 5483: 5478: 5476:Alpha particle 5473: 5468: 5463: 5457: 5455: 5449: 5448: 5446: 5445: 5440: 5435: 5430: 5425: 5420: 5415: 5410: 5404: 5402: 5393: 5389: 5388: 5382: 5380: 5379: 5372: 5365: 5357: 5351: 5350: 5345: 5340: 5335: 5328: 5327:External links 5325: 5324: 5323: 5320: 5310: 5297: 5276: 5273: 5270: 5269: 5218: 5191:(4): 183–194. 5175: 5158: 5107: 5050: 5007:Optics Express 4990: 4972: 4919: 4885: 4867: 4860: 4821: 4806: 4779: 4758:(6): 291–294. 4738: 4696: 4680: 4674:Hsu, Shao Ti. 4658: 4628: 4587: 4559: 4552: 4532: 4525: 4496: 4483: 4446: 4425: 4406:(3): 125–131. 4375: 4368: 4347: 4340: 4319: 4297: 4282: 4259: 4252: 4226: 4225: 4223: 4220: 4219: 4218: 4213: 4208: 4203: 4198: 4193: 4188: 4183: 4178: 4171: 4168: 4140:Main article: 4137: 4134: 4131: 4130: 4120: 4117:   4113: 4112: 4106: 4103:   4099: 4098: 4095: 4092:   4088: 4087: 4084: 4081:   4077: 4076: 4073: 4066: 4065: 4056: 4049: 4048: 4035: 4028: 4027: 4020: 4013: 4012: 4006: 3999: 3998: 3992: 3985: 3984: 3978: 3971: 3970: 3963: 3959: 3958: 3955: 3944: 3941: 3927: 3924: 3922: 3919: 3909: 3908:Nanostructures 3906: 3885: 3882: 3877:Low-emissivity 3873: 3870: 3864: 3861: 3852: 3849: 3810:Main article: 3807: 3804: 3787:Main article: 3784: 3781: 3766: 3763: 3755:radiant energy 3751:Fresnel lenses 3742: 3739: 3723:Main article: 3720: 3717: 3712: 3709: 3703: 3702: 3688: 3684: 3661: 3657: 3646: 3645: 3626: 3622: 3616: 3612: 3604: 3600: 3596: 3593: 3587: 3579: 3576: 3573: 3569: 3563: 3559: 3554: 3549: 3541: 3537: 3531: 3527: 3519: 3515: 3511: 3508: 3499: 3493: 3488: 3484: 3480: 3475: 3470: 3466: 3461: 3457: 3451: 3445: 3442: 3426: 3411: 3408: 3385: 3361: 3351: 3350: 3337: 3331: 3326: 3322: 3318: 3313: 3308: 3304: 3299: 3293: 3290: 3287: 3283: 3277: 3273: 3269: 3266: 3261: 3258: 3255: 3248: 3245: 3216: 3212: 3208: 3205: 3200: 3196: 3169: 3166: 3163: 3159: 3153: 3149: 3145: 3140: 3137: 3134: 3130: 3124: 3120: 3089: 3086: 3083: 3079: 3052: 3048: 3027: 3016: 3015: 3002: 2999: 2996: 2992: 2986: 2983: 2979: 2973: 2969: 2965: 2960: 2957: 2954: 2950: 2944: 2941: 2937: 2931: 2927: 2923: 2918: 2915: 2912: 2905: 2902: 2884: 2844: 2841: 2833: 2832: 2819: 2815: 2811: 2808: 2805: 2802: 2799: 2776: 2756: 2753: 2750: 2747: 2735: 2732: 2729: 2728: 2721: 2701: 2681: 2676: 2670: 2659: 2648: 2647: 2640: 2634: 2623: 2606: 2603: 2600: 2599: 2596: 2594:Speed of light 2591: 2579: 2568: 2567: 2564: 2559: 2547: 2536: 2535: 2532: 2527: 2512: 2507: 2495: 2494: 2491: 2486: 2474: 2463: 2462: 2459: 2454: 2442: 2431: 2430: 2427: 2426:Constant name 2424: 2414: 2411: 2410: 2409: 2396: 2393: 2388: 2379: 2354: 2339:Main article: 2324: 2321: 2304: 2282: 2278: 2274: 2271: 2266: 2262: 2237: 2234: 2231: 2226: 2223: 2220: 2216: 2212: 2207: 2202: 2198: 2194: 2189: 2185: 2162: 2157: 2154: 2151: 2147: 2143: 2140: 2135: 2132: 2129: 2125: 2100: 2097: 2094: 2090: 2066:Main article: 2063: 2060: 2047: 2044: 2041: 2038: 2003: 2000: 1995: 1992: 1986: 1981: 1976: 1972: 1969: 1965: 1960: 1955: 1948: 1944: 1937: 1933: 1929: 1926: 1920: 1917: 1914: 1911: 1908: 1905: 1900: 1897: 1894: 1890: 1863: 1860: 1857: 1853: 1837:Main article: 1834: 1831: 1830: 1829: 1824: 1819: 1802:Main article: 1799: 1796: 1783: 1780: 1777: 1772: 1768: 1764: 1761: 1758: 1755: 1752: 1747: 1743: 1718: 1714: 1690: 1670: 1667: 1664: 1661: 1658: 1653: 1649: 1643: 1638: 1634: 1630: 1627: 1600: 1576: 1556: 1553: 1550: 1547: 1527: 1512:Emissive power 1505:Main article: 1502: 1501:Emissive power 1499: 1479: 1460:Main article: 1457: 1454: 1442: 1439: 1436: 1433: 1430: 1406: 1403: 1400: 1388: 1387:Transmissivity 1385: 1361: 1358: 1322: 1321: 1309: 1306: 1303: 1300: 1297: 1266: 1251: 1248: 1244:transmissivity 1231: 1207: 1182: 1171: 1170: 1158: 1155: 1152: 1149: 1146: 1143: 1140: 1103:Main article: 1100: 1097: 1084: 1062: 1059: 1054: 1051: 1031: 1007: 975: 972: 955: 952: 928: 925: 922: 921: 918: 914: 913: 910: 906: 905: 902: 898: 897: 896:bright orange 894: 890: 889: 886: 882: 881: 878: 874: 873: 870: 866: 865: 862: 853: 852: 836: 825: 824: 815: 814: 813: 804: 803: 802: 801: 800: 796: 793: 772: 769: 756: 724: 723: 720: 717: 709: 706: 693: 690: 681: 678: 676: 673: 629:quantum theory 610: 609:Quantum theory 607: 532: 529: 490:Pierre Prevost 445:Caloric theory 443:Main article: 440: 439:Caloric theory 437: 427: 424: 397:Earlier 1589, 383: 380: 334: 333:Ancient Greece 331: 329: 326: 318:global warming 309: 297: 290: 271:Absorptivity, 199:thermal energy 182: 179: 86:Kinetic energy 70:thermal motion 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5870: 5859: 5856: 5854: 5851: 5849: 5848:Heat transfer 5846: 5844: 5841: 5840: 5838: 5824: 5820: 5816: 5815:Radioactivity 5812: 5805: 5799: 5796: 5794: 5791: 5789: 5786: 5784: 5781: 5779: 5776: 5775: 5773: 5769: 5763: 5760: 5758: 5755: 5753: 5750: 5748: 5745: 5743: 5740: 5739: 5737: 5733: 5727: 5724: 5722: 5719: 5717: 5714: 5712: 5709: 5707: 5704: 5702: 5699: 5697: 5694: 5692: 5689: 5687: 5684: 5682: 5679: 5677: 5674: 5672: 5669: 5667: 5664: 5662: 5659: 5657: 5654: 5652: 5649: 5647: 5644: 5640: 5637: 5635: 5632: 5631: 5629: 5628: 5626: 5620: 5610: 5607: 5605: 5602: 5600: 5597: 5595: 5592: 5590: 5587: 5585: 5582: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5557: 5555: 5552: 5550: 5547: 5545: 5542: 5541: 5538: 5532: 5529: 5527: 5524: 5522: 5519: 5517: 5514: 5512: 5509: 5507: 5504: 5502: 5499: 5497: 5494: 5492: 5489: 5487: 5484: 5482: 5481:Beta particle 5479: 5477: 5474: 5472: 5469: 5467: 5466:Cluster decay 5464: 5462: 5459: 5458: 5456: 5454: 5450: 5444: 5441: 5439: 5436: 5434: 5431: 5429: 5426: 5424: 5421: 5419: 5416: 5414: 5411: 5409: 5406: 5405: 5403: 5401: 5397: 5394: 5392:Main articles 5390: 5385: 5378: 5373: 5371: 5366: 5364: 5359: 5358: 5355: 5349: 5346: 5344: 5341: 5339: 5338:Heat transfer 5336: 5334: 5331: 5330: 5326: 5321: 5318: 5314: 5311: 5300: 5294: 5290: 5286: 5285: 5279: 5278: 5274: 5265: 5261: 5257: 5253: 5249: 5245: 5241: 5237: 5233: 5229: 5222: 5219: 5214: 5210: 5206: 5202: 5198: 5194: 5190: 5186: 5179: 5176: 5172: 5168: 5162: 5159: 5154: 5150: 5146: 5142: 5138: 5134: 5130: 5126: 5122: 5118: 5111: 5108: 5103: 5099: 5095: 5091: 5086: 5081: 5077: 5073: 5069: 5065: 5061: 5054: 5051: 5046: 5042: 5038: 5034: 5029: 5024: 5020: 5016: 5012: 5008: 5004: 4997: 4995: 4991: 4988: 4984: 4981: 4976: 4973: 4968: 4964: 4960: 4956: 4952: 4948: 4943: 4938: 4934: 4930: 4923: 4920: 4903: 4896: 4889: 4886: 4881: 4877: 4871: 4868: 4863: 4857: 4853: 4846: 4844: 4842: 4840: 4838: 4836: 4834: 4832: 4830: 4828: 4826: 4822: 4817: 4813: 4809: 4803: 4799: 4798: 4790: 4788: 4786: 4784: 4780: 4774: 4769: 4765: 4761: 4757: 4754:(in German). 4753: 4749: 4742: 4739: 4734: 4730: 4726: 4722: 4719:(130): 1–21. 4718: 4714: 4710: 4703: 4701: 4697: 4693: 4687: 4685: 4681: 4677: 4671: 4669: 4667: 4665: 4663: 4659: 4646: 4642: 4638: 4632: 4629: 4624: 4620: 4615: 4610: 4606: 4602: 4598: 4591: 4588: 4576: 4572: 4566: 4564: 4560: 4555: 4549: 4546:. MIT Press. 4545: 4544: 4536: 4533: 4528: 4526:0-691-02350-6 4522: 4518: 4513: 4512: 4506: 4500: 4497: 4486: 4484:9780080121796 4480: 4476: 4472: 4468: 4464: 4457: 4455: 4453: 4451: 4447: 4444:(5), 404–407. 4443: 4439: 4435: 4429: 4426: 4421: 4417: 4413: 4409: 4405: 4401: 4397: 4390: 4388: 4386: 4384: 4382: 4380: 4376: 4371: 4365: 4361: 4354: 4352: 4348: 4343: 4337: 4333: 4326: 4324: 4320: 4316: 4310: 4308: 4306: 4304: 4302: 4298: 4293: 4289: 4285: 4279: 4275: 4274: 4266: 4264: 4260: 4255: 4249: 4245: 4238: 4236: 4234: 4232: 4228: 4221: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4191:Heat transfer 4189: 4187: 4184: 4182: 4179: 4177: 4176:Incandescence 4174: 4173: 4169: 4167: 4163: 4159: 4156: 4151: 4149: 4143: 4135: 4128: 4124: 4121: 4115: 4114: 4111: 4107: 4101: 4100: 4096: 4090: 4089: 4085: 4079: 4078: 4074: 4068: 4067: 4064: 4060: 4057: 4051: 4050: 4046: 4043: 4039: 4036: 4030: 4029: 4025: 4021: 4015: 4014: 4010: 4007: 4001: 4000: 3996: 3993: 3987: 3986: 3983: 3979: 3973: 3972: 3968: 3964: 3961: 3960: 3956: 3953: 3952: 3949: 3942: 3940: 3936: 3934: 3925: 3920: 3918: 3915: 3907: 3905: 3903: 3899: 3893: 3891: 3883: 3881: 3878: 3871: 3869: 3862: 3860: 3857: 3850: 3848: 3846: 3841: 3839: 3831: 3827: 3823: 3818: 3813: 3805: 3803: 3800: 3796: 3790: 3782: 3780: 3777: 3772: 3764: 3762: 3760: 3756: 3752: 3748: 3741:Concentrators 3740: 3734: 3730: 3726: 3718: 3716: 3710: 3708: 3686: 3682: 3659: 3655: 3624: 3620: 3614: 3610: 3602: 3598: 3594: 3591: 3585: 3577: 3571: 3567: 3561: 3557: 3552: 3547: 3539: 3535: 3529: 3525: 3517: 3513: 3509: 3506: 3497: 3491: 3486: 3482: 3478: 3473: 3468: 3464: 3459: 3455: 3449: 3443: 3440: 3430: 3429: 3427: 3409: 3406: 3383: 3375: 3359: 3335: 3329: 3324: 3320: 3316: 3311: 3306: 3302: 3297: 3291: 3285: 3281: 3275: 3271: 3267: 3264: 3259: 3253: 3246: 3243: 3232: 3231: 3230: 3214: 3210: 3206: 3203: 3198: 3194: 3185: 3167: 3161: 3157: 3151: 3147: 3143: 3138: 3132: 3128: 3122: 3118: 3109: 3105: 3087: 3081: 3077: 3068: 3050: 3046: 3025: 3000: 2994: 2990: 2984: 2981: 2977: 2971: 2967: 2963: 2958: 2952: 2948: 2942: 2939: 2935: 2929: 2925: 2921: 2916: 2910: 2903: 2900: 2889: 2888: 2886: 2885: 2883: 2881: 2876: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2842: 2840: 2838: 2817: 2813: 2809: 2806: 2803: 2800: 2797: 2790: 2789: 2788: 2787:as a factor: 2774: 2751: 2745: 2733: 2727: 2720: 2715: 2711: 2707: 2700: 2695: 2691: 2687: 2680: 2677: 2675: 2671: 2657: 2650: 2649: 2645: 2641: 2639: 2635: 2621: 2614: 2613: 2610: 2604: 2597: 2595: 2592: 2577: 2570: 2569: 2565: 2563: 2560: 2545: 2538: 2537: 2533: 2531: 2528: 2505: 2497: 2496: 2492: 2490: 2487: 2472: 2465: 2464: 2460: 2458: 2455: 2440: 2433: 2432: 2428: 2425: 2422: 2421: 2418: 2412: 2394: 2391: 2386: 2377: 2369: 2368: 2367: 2352: 2342: 2334: 2329: 2320: 2318: 2302: 2280: 2276: 2272: 2269: 2264: 2260: 2251: 2235: 2232: 2229: 2224: 2221: 2218: 2214: 2210: 2200: 2196: 2192: 2187: 2183: 2173: 2160: 2155: 2152: 2149: 2145: 2141: 2138: 2133: 2130: 2127: 2123: 2114: 2098: 2095: 2092: 2088: 2074: 2069: 2061: 2059: 2045: 2042: 2039: 2036: 2027: 2024: 2020: 2001: 1998: 1993: 1990: 1979: 1974: 1970: 1967: 1963: 1958: 1953: 1946: 1942: 1935: 1931: 1927: 1924: 1918: 1912: 1909: 1906: 1898: 1895: 1892: 1888: 1879: 1861: 1858: 1855: 1851: 1840: 1832: 1828: 1825: 1823: 1820: 1818: 1815: 1814: 1813: 1809: 1805: 1797: 1795: 1778: 1770: 1766: 1762: 1759: 1753: 1745: 1741: 1732: 1716: 1712: 1702: 1688: 1668: 1665: 1659: 1651: 1647: 1636: 1632: 1628: 1625: 1617: 1612: 1598: 1590: 1574: 1554: 1551: 1548: 1545: 1525: 1517: 1513: 1508: 1500: 1498: 1496: 1491: 1477: 1470: 1463: 1455: 1453: 1440: 1437: 1434: 1431: 1428: 1420: 1404: 1401: 1398: 1386: 1384: 1382: 1379: 1375: 1371: 1366: 1359: 1357: 1355: 1350: 1346: 1341: 1339: 1335: 1326: 1307: 1304: 1301: 1298: 1295: 1288: 1287: 1286: 1284: 1280: 1264: 1257: 1249: 1247: 1245: 1229: 1221: 1205: 1197: 1180: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1131: 1130: 1129: 1127: 1123: 1119: 1115: 1111: 1106: 1098: 1096: 1082: 1060: 1057: 1052: 1049: 1029: 1021: 1005: 997: 993: 989: 980: 973: 971: 969: 965: 961: 960:heat transfer 953: 951: 949: 945: 940: 938: 934: 926: 919: 916: 915: 911: 908: 907: 903: 900: 899: 895: 892: 891: 887: 884: 883: 879: 876: 875: 871: 868: 867: 863: 860: 859: 850: 846: 841: 837: 834: 819: 808: 799: 798: 794: 792: 790: 786: 782: 778: 770: 768: 754: 746: 741: 736: 734: 729: 721: 718: 715: 714: 713: 707: 705: 701: 700: 691: 689: 687: 679: 674: 672: 670: 665: 661: 659: 655: 651: 647: 643: 639: 634: 630: 621: 616: 608: 606: 604: 600: 596: 592: 588: 584: 580: 575: 572: 568: 564: 560: 556: 552: 548: 544: 538: 531:Aether theory 530: 528: 526: 522: 518: 514: 510: 506: 502: 497: 495: 491: 486: 484: 480: 475: 473: 472: 467: 463: 458: 456: 455:Count Rumford 451: 446: 438: 436: 433: 426:Enlightenment 425: 423: 421: 417: 413: 409: 405: 400: 395: 393: 389: 381: 379: 377: 373: 365: 361: 357: 353: 349: 348: 343: 339: 332: 327: 325: 323: 319: 315: 308: 303: 296: 289: 285: 280: 278: 274: 269: 267: 263: 259: 255: 251: 247: 238: 234: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 195:absolute zero 193:greater than 192: 188: 180: 178: 176: 172: 168: 164: 160: 156: 152: 148: 146: 141: 136: 134: 130: 126: 121: 119: 115: 112:, along with 111: 110:heat transfer 107: 103: 99: 95: 91: 87: 83: 82:absolute zero 80:greater than 79: 75: 71: 67: 63: 56: 55: 50: 46: 41: 37: 33: 19: 5819:Radiobiology 5701:Radiobiology 5661:Laser safety 5558: 5313:E.M. Sparrow 5302:. Retrieved 5288: 5283: 5231: 5228:Nano Letters 5227: 5221: 5188: 5184: 5178: 5161: 5120: 5116: 5110: 5067: 5063: 5053: 5010: 5006: 4975: 4932: 4928: 4922: 4909:. Retrieved 4902:the original 4888: 4880:the original 4870: 4851: 4796: 4755: 4751: 4741: 4716: 4712: 4691: 4675: 4649:. Retrieved 4645:the original 4640: 4631: 4604: 4600: 4590: 4578:. Retrieved 4574: 4542: 4535: 4510: 4499: 4488:, retrieved 4466: 4441: 4437: 4428: 4403: 4399: 4359: 4331: 4313:Planck, M., 4272: 4243: 4164: 4160: 4152: 4145: 4110:firefighting 3969:compartment 3946: 3937: 3929: 3911: 3894: 3887: 3875: 3866: 3854: 3842: 3835: 3792: 3768: 3744: 3728: 3725:Solar energy 3719:Solar energy 3714: 3711:Applications 3705: 3017: 2879: 2877: 2857:view factors 2846: 2836: 2834: 2737: 2725: 2718: 2713: 2709: 2705: 2698: 2693: 2689: 2685: 2678: 2608: 2416: 2344: 2316: 2249: 2174: 2115: 2113:as follows, 2079: 2028: 1878:Planck's law 1842: 1839:Planck's law 1826: 1821: 1816: 1810: 1807: 1733: 1731:as follows, 1703: 1615: 1613: 1511: 1510: 1492: 1468: 1465: 1418: 1390: 1365:Reflectivity 1363: 1360:Reflectivity 1348: 1344: 1342: 1331: 1253: 1220:reflectivity 1196:absorptivity 1172: 1125: 1121: 1117: 1109: 1108: 985: 957: 941: 930: 844: 839: 785:polarization 774: 744: 739: 737: 732: 727: 725: 711: 702: 698: 695: 685: 683: 666: 662: 657: 649: 645: 641: 637: 626: 595:John Tyndall 591:Josef Stefan 576: 547:radiant heat 540: 498: 487: 476: 469: 466:Isaac Newton 459: 448: 429: 396: 392:thermoscopes 385: 371: 345: 342:Aristophanes 336: 306: 301: 294: 287: 284:Planck's law 281: 273:reflectivity 270: 243: 184: 163:Planck's law 149: 137: 122: 61: 60: 54:Thermography 52: 36: 5858:Temperature 5443:Ultraviolet 5438:Radio waves 4935:: 233–246. 4607:: 284–292. 4580:29 February 4216:View factor 3902:YORP effect 3799:3000 K 3104:view factor 3067:energy flux 2871:design and 2638:temperature 1343:Only truly 1126:transmitted 1105:Irradiation 1099:Irradiation 927:Temperature 787:, and even 777:reciprocity 771:Reciprocity 692:Propagation 571:wavelengths 563:wavelengths 525:thermometer 382:Renaissance 362:during the 360:Roman ships 344:'s comedy, 277:reciprocity 191:temperature 78:temperature 5837:Categories 5624:and health 5622:Radiation 5491:Cosmic ray 5171:0849320828 4942:1902.03943 4911:24 January 4651:8 November 4490:3 December 4222:References 4038:Human skin 3995:Fiberboard 3884:Spacecraft 3765:Collectors 3229:, yields: 3182:, and the 2851:using the 1589:steradians 1338:convectors 1283:black body 1256:emissivity 1020:wavelength 988:efficiency 968:conduction 964:convection 781:wavelength 740:absorption 733:volumetric 699:scattered. 633:Max Planck 613:See also: 555:television 535:See also: 481:'s famous 372:Catoptrics 356:Archimedes 354:anecdote, 347:The Clouds 266:emissivity 258:black body 246:emissivity 155:black body 133:atmosphere 118:convection 114:conduction 5778:Half-life 5651:Dosimetry 5486:Gamma ray 5433:Microwave 5423:Starlight 5384:Radiation 5317:R.D. Cess 5213:121228286 5094:0036-8075 5037:1094-4087 4967:118927116 4816:463634284 4733:1941-5982 4292:903167592 4155:far-field 4063:pyrolysis 4024:flashover 3967:flashover 3683:ϵ 3656:ϵ 3621:ϵ 3599:ϵ 3595:− 3575:→ 3536:ϵ 3514:ϵ 3510:− 3479:− 3456:σ 3444:˙ 3410:˙ 3360:σ 3317:− 3289:→ 3268:σ 3257:→ 3247:˙ 3207:σ 3165:→ 3136:→ 3085:→ 2998:→ 2964:− 2956:→ 2914:→ 2904:˙ 2853:radiosity 2837:grey body 2807:σ 2804:ϵ 2775:ϵ 2752:ν 2746:ϵ 2636:Absolute 2605:Variables 2546:σ 2413:Constants 2378:λ 2353:λ 2303:σ 2273:σ 2233:λ 2219:λ 2211:π 2206:∞ 2197:∫ 2150:λ 2142:π 2128:λ 2093:λ 2046:ν 2019:quantized 1999:− 1994:λ 1954:⋅ 1943:λ 1907:λ 1893:λ 1856:λ 1779:λ 1771:λ 1763:π 1754:λ 1746:λ 1717:λ 1689:λ 1669:λ 1660:λ 1652:λ 1642:∞ 1633:∫ 1575:π 1552:π 1516:heat flux 1435:α 1429:ρ 1399:τ 1378:radiation 1302:ϵ 1296:α 1265:ϵ 1230:τ 1206:ρ 1181:α 1151:τ 1145:ρ 1139:α 1118:reflected 1061:ν 1050:λ 1030:λ 1006:ν 880:dark red 845:white hot 795:Frequency 789:coherence 755:α 738:The term 669:heat flow 577:In 1860, 488:In 1791, 430:In 1761, 219:electrons 211:molecules 5428:Sunlight 5413:Infrared 5264:27762117 5256:23461597 5153:30004363 5145:13969373 5102:28183998 5045:30114851 4983:Archived 4507:(1960). 4170:See also 4127:sunburns 4123:Sunlight 4045:blisters 3832:, Canada 2702:cylinder 2672:Surface 1381:analysis 1122:absorbed 861:°C (°F) 686:emission 680:Emission 648:, where 181:Overview 106:infrared 45:infrared 5639:chronic 5304:23 July 5236:Bibcode 5193:Bibcode 5125:Bibcode 5117:Science 5072:Bibcode 5064:Science 5015:Bibcode 4947:Bibcode 4760:Bibcode 4408:Bibcode 4070:  4053:  4032:  4017:  4003:  3989:  3975:  3957:Effect 3872:Windows 3830:Ontario 3824:, near 3372:is the 3102:is the 2869:furnace 2644:kelvins 2423:Symbol 2315:is the 1419:opaque, 1173:where, 942:As for 840:red hot 728:surface 652:is the 513:refract 328:History 227:photons 215:protons 177:(QED). 92:due to 5821:, and 5295:  5262:  5254:  5211:  5169:  5151:  5143:  5100:  5092:  5043:  5035:  4965:  4858:  4814:  4804:  4731:  4623:107057 4621:  4550:  4523:  4481:  4366:  4338:  4290:  4280:  4250:  3826:Ottawa 3647:where 3352:where 3018:where 2865:boiler 2722:sphere 2682:cuboid 2295:where 1681:where 1567:where 1075:where 992:vacuum 593:using 585:(i.e. 565:. All 543:aether 471:Optics 376:Euclid 231:vacuum 223:dipole 98:dipole 74:matter 5634:acute 5531:X-ray 5418:Light 5260:S2CID 5209:S2CID 5149:S2CID 4963:S2CID 4937:arXiv 4905:(PDF) 4898:(PDF) 4619:JSTOR 4517:408–9 3943:Burns 1417:) is 1124:, or 1114:watts 990:in a 559:radio 509:prism 207:atoms 201:into 129:Earth 5315:and 5306:2009 5293:ISBN 5252:PMID 5167:ISBN 5141:PMID 5098:PMID 5090:ISSN 5041:PMID 5033:ISSN 4913:2010 4856:ISBN 4812:OCLC 4802:ISBN 4729:ISSN 4653:2011 4582:2024 4548:ISBN 4521:ISBN 4492:2021 4479:ISBN 4438:Isis 4364:ISBN 4336:ISBN 4288:OCLC 4278:ISBN 4248:ISBN 4072:10.4 4059:Wood 4055:12.5 4042:burn 4009:Wood 3954:kW/m 3843:The 3793:The 3674:and 3376:and 2878:The 2867:and 2674:area 1591:and 1345:gray 1222:and 1018:and 966:and 656:and 557:and 406:and 320:and 217:and 209:and 116:and 5291:). 5244:doi 5201:doi 5133:doi 5121:140 5080:doi 5068:355 5023:doi 4955:doi 4933:146 4768:doi 4756:258 4721:doi 4609:doi 4471:doi 4416:doi 4119:1.4 4105:2.5 4094:4.5 4083:6.4 3962:170 3904:). 3065:is 2880:net 2726:π·r 2724:= 4 2706:π·r 2704:= 2 2692:+ 2 2688:+ 2 2684:= 2 2382:max 1349:all 521:red 517:sun 511:to 477:In 468:'s 310:max 298:max 291:max 157:in 125:Sun 96:or 64:is 5839:: 5817:, 5813:, 5258:. 5250:. 5242:. 5232:13 5230:. 5207:. 5199:. 5189:48 5187:. 5147:. 5139:. 5131:. 5119:. 5096:. 5088:. 5078:. 5066:. 5062:. 5039:. 5031:. 5021:. 5011:26 5009:. 5005:. 4993:^ 4961:. 4953:. 4945:. 4931:. 4824:^ 4810:. 4782:^ 4766:. 4727:. 4717:20 4715:. 4711:. 4699:^ 4683:^ 4661:^ 4639:. 4617:. 4605:90 4603:. 4599:. 4573:. 4562:^ 4519:. 4477:, 4465:, 4449:^ 4442:34 4440:, 4436:. 4414:. 4404:22 4402:. 4398:. 4378:^ 4350:^ 4322:^ 4300:^ 4286:. 4262:^ 4230:^ 4125:, 4034:16 4019:20 4005:29 3991:52 3977:80 3828:, 3769:A 3186:, 2875:. 2863:, 2716:); 2712:+ 2694:ac 2690:bc 2686:ab 2319:. 1497:. 1441:1. 1308:1. 1198:, 1120:, 1022:, 970:. 950:. 747:, 646:hf 644:= 605:. 422:. 368:c. 233:. 161:. 120:. 57:). 5376:e 5369:t 5362:v 5308:. 5266:. 5246:: 5238:: 5215:. 5203:: 5195:: 5155:. 5135:: 5127:: 5104:. 5082:: 5074:: 5047:. 5025:: 5017:: 4969:. 4957:: 4949:: 4939:: 4915:. 4864:. 4818:. 4776:. 4770:: 4762:: 4735:. 4723:: 4655:. 4625:. 4611:: 4584:. 4556:. 4529:. 4473:: 4422:. 4418:: 4410:: 4372:. 4344:. 4294:. 4256:. 3933:K 3687:2 3660:1 3625:2 3615:2 3611:A 3603:2 3592:1 3586:+ 3578:2 3572:1 3568:F 3562:1 3558:A 3553:1 3548:+ 3540:1 3530:1 3526:A 3518:1 3507:1 3498:) 3492:4 3487:2 3483:T 3474:4 3469:1 3465:T 3460:( 3450:= 3441:Q 3407:Q 3384:T 3336:) 3330:4 3325:2 3321:T 3312:4 3307:1 3303:T 3298:( 3292:2 3286:1 3282:F 3276:1 3272:A 3265:= 3260:2 3254:1 3244:Q 3215:4 3211:T 3204:= 3199:b 3195:E 3168:1 3162:2 3158:F 3152:2 3148:A 3144:= 3139:2 3133:1 3129:F 3123:1 3119:A 3088:2 3082:1 3078:F 3051:b 3047:E 3026:A 3001:1 2995:2 2991:F 2985:2 2982:b 2978:E 2972:2 2968:A 2959:2 2953:1 2949:F 2943:1 2940:b 2936:E 2930:1 2926:A 2922:= 2917:2 2911:1 2901:Q 2818:4 2814:T 2810:A 2801:= 2798:P 2755:) 2749:( 2719:A 2714:r 2710:h 2708:( 2699:A 2696:; 2679:A 2658:A 2622:T 2578:c 2511:B 2506:k 2473:b 2441:h 2395:T 2392:b 2387:= 2281:4 2277:T 2270:= 2265:b 2261:E 2236:. 2230:d 2225:b 2222:, 2215:I 2201:0 2193:= 2188:b 2184:E 2161:. 2156:b 2153:, 2146:I 2139:= 2134:b 2131:, 2124:E 2099:b 2096:, 2089:E 2043:h 2040:= 2037:E 2002:1 1991:T 1985:B 1980:k 1975:/ 1971:c 1968:h 1964:e 1959:1 1947:5 1936:2 1932:c 1928:h 1925:2 1919:= 1916:) 1913:T 1910:, 1904:( 1899:b 1896:, 1889:I 1862:b 1859:, 1852:I 1782:) 1776:( 1767:I 1760:= 1757:) 1751:( 1742:E 1713:I 1666:d 1663:) 1657:( 1648:E 1637:0 1629:= 1626:E 1599:I 1555:I 1549:= 1546:E 1526:E 1478:I 1438:= 1432:+ 1405:0 1402:= 1305:= 1299:= 1157:1 1154:= 1148:+ 1142:+ 1083:c 1058:c 1053:= 658:f 650:h 642:E 638:E 366:( 307:f 302:T 295:f 288:f 34:. 20:)

Index

Heat transfer by radiation
Heat-Ray (disambiguation)

infrared
Infrared cameras
Thermography
electromagnetic radiation
thermal motion
matter
temperature
absolute zero
Kinetic energy
electromagnetism
charge-acceleration
dipole
room temperature
infrared
heat transfer
conduction
convection
Sun
Earth
atmosphere
Thermographic cameras
Cosmic microwave background radiation
Blackbody radiation
black body
thermodynamic equilibrium
Planck's law
Wien's displacement law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑