Knowledge (XXG)

Hewitt–Savage zero–one law

Source 📝

652:, since its occurrence is unchanged under transpositions (for a finite re-ordering, the convergence or divergence of the series—and, indeed, the numerical value of the sum itself—is independent of the order in which we add up the terms). Thus, the series either converges almost surely or diverges almost surely. If we assume in addition that the common 949: = 0 infinitely often } is invariant under finite permutations. Therefore, the zero–one law is applicable and one infers that the probability of a random walk with real iid increments visiting the origin infinitely often is either one or zero. Visiting the origin infinitely often is a tail event with respect to the sequence ( 836:
i.e. the series diverges almost surely. This is a particularly simple application of the Hewitt–Savage zero–one law. In many situations, it can be easy to apply the Hewitt–Savage zero–one law to show that some event has probability 0 or 1, but surprisingly hard to determine
831: 363: 143:. The Hewitt-Savage zero–one law says that any event whose occurrence or non-occurrence is determined by the values of these random variables and whose occurrence or non-occurrence is unchanged by finite 546: 296: 236: 111: 914: 747: 626: 118: 480: 697: 650: 414: 183: 141: 578: 446: 390: 755: 301: 968: 29: 1053: 498: 248: 188: 63: 369: 855: 702: 583: 33: 1058: 155: 451: 992: 49: 658: 151:
either 0 or 1 (a "finite" permutation is one that leaves all but finitely many of the indices fixed).
631: 395: 164: 124: 551: 25: 1008: 419: 1029: 653: 375: 1013: 996: 416:), it is enough to check if its occurrence is unchanged by an arbitrary transposition 1047: 37: 988: 45: 924: 242: 148: 144: 826:{\displaystyle \mathbb {P} \left(\sum _{n=1}^{\infty }X_{n}=+\infty \right)=1,} 548:
of independent and identically distributed random variables take values in
114: 239: 749:
because of the random variables' non-negativity), we may conclude that
21: 358:{\displaystyle A\in {\mathcal {E}}\implies \mathbb {P} (A)\in \{0,1\}} 40:
happen or almost surely not happen. It is sometimes known as the
185:
to be the set of events (depending on the sequence of variables
1036:(Second ed.). New York: Springer-Verlag. pp. 381–82. 928: 637: 401: 368:
Since any finite permutation can be written as a product of
313: 170: 36:, that specifies that a certain type of event will either 119:
independent and identically-distributed random variables
628:
converges (to a finite value) is a symmetric event in
858: 758: 705: 661: 634: 586: 554: 501: 454: 422: 398: 378: 304: 251: 191: 167: 127: 66: 541:{\displaystyle \left\{X_{n}\right\}_{n=1}^{\infty }} 291:{\displaystyle \left\{X_{n}\right\}_{n=1}^{\infty }} 231:{\displaystyle \left\{X_{n}\right\}_{n=1}^{\infty }} 106:{\displaystyle \left\{X_{n}\right\}_{n=1}^{\infty }} 908: 825: 741: 691: 644: 620: 572: 540: 474: 440: 408: 384: 357: 290: 230: 177: 135: 105: 841:of these two extreme values is the correct one. 372:, if we wish to check whether or not an event 849:Continuing with the previous example, define 8: 352: 340: 909:{\displaystyle S_{N}=\sum _{n=1}^{N}X_{n},} 56:Statement of the Hewitt-Savage zero-one law 997:"Symmetric measures on Cartesian products" 742:{\displaystyle \mathbb {P} (X_{n}=0)<1} 621:{\displaystyle \sum _{n=1}^{\infty }X_{n}} 322: 318: 1012: 897: 887: 876: 863: 857: 794: 784: 773: 760: 759: 757: 718: 707: 706: 704: 674: 663: 662: 660: 636: 635: 633: 612: 602: 591: 585: 553: 532: 521: 511: 500: 468: 467: 453: 421: 400: 399: 397: 377: 324: 323: 312: 311: 303: 282: 271: 261: 250: 222: 211: 201: 190: 169: 168: 166: 129: 128: 126: 97: 86: 76: 65: 980: 967:are not independent and therefore the 42:Savage-Hewitt law for symmetric events 154:Somewhat more abstractly, define the 7: 475:{\displaystyle i,j\in \mathbb {N} } 806: 785: 603: 564: 533: 283: 223: 98: 14: 1014:10.1090/s0002-9947-1955-0076206-8 971:is not directly applicable here. 692:{\displaystyle \mathbb {E} >0} 580:. Then the event that the series 160:sigma algebra of symmetric events 245:of the indices in the sequence 919:which is the position at step 730: 711: 699:(which essentially means that 680: 667: 645:{\displaystyle {\mathcal {E}}} 567: 555: 435: 423: 409:{\displaystyle {\mathcal {E}}} 334: 328: 319: 178:{\displaystyle {\mathcal {E}}} 1: 238:) which are invariant under 136:{\displaystyle \mathbb {X} } 573:{\displaystyle [0,\infty )} 1075: 156:exchangeable sigma algebra 18:Hewitt–Savage zero–one law 969:Kolmogorov's zero–one law 30:Kolmogorov's zero–one law 121:taking values in a set 1001:Trans. Amer. Math. Soc 910: 892: 827: 789: 743: 693: 646: 622: 607: 574: 542: 476: 442: 410: 392:is symmetric (lies in 386: 359: 292: 232: 179: 137: 107: 1027:This example is from 911: 872: 828: 769: 744: 694: 647: 623: 587: 575: 543: 477: 443: 441:{\displaystyle (i,j)} 411: 387: 360: 293: 233: 180: 138: 108: 50:Leonard Jimmie Savage 1054:Probability theorems 856: 756: 703: 659: 632: 584: 552: 499: 452: 420: 396: 376: 302: 249: 189: 165: 147:of the indices, has 125: 64: 44:. It is named after 34:Borel–Cantelli lemma 940:. The event {  537: 287: 227: 102: 1034:Probability Theory 906: 823: 739: 689: 642: 618: 570: 538: 502: 472: 438: 406: 382: 355: 288: 252: 228: 192: 175: 133: 103: 67: 26:probability theory 495:Let the sequence 385:{\displaystyle A} 1066: 1038: 1037: 1025: 1019: 1018: 1016: 985: 915: 913: 912: 907: 902: 901: 891: 886: 868: 867: 832: 830: 829: 824: 813: 809: 799: 798: 788: 783: 763: 748: 746: 745: 740: 723: 722: 710: 698: 696: 695: 690: 679: 678: 666: 651: 649: 648: 643: 641: 640: 627: 625: 624: 619: 617: 616: 606: 601: 579: 577: 576: 571: 547: 545: 544: 539: 536: 531: 520: 516: 515: 481: 479: 478: 473: 471: 447: 445: 444: 439: 415: 413: 412: 407: 405: 404: 391: 389: 388: 383: 364: 362: 361: 356: 327: 317: 316: 297: 295: 294: 289: 286: 281: 270: 266: 265: 237: 235: 234: 229: 226: 221: 210: 206: 205: 184: 182: 181: 176: 174: 173: 142: 140: 139: 134: 132: 112: 110: 109: 104: 101: 96: 85: 81: 80: 1074: 1073: 1069: 1068: 1067: 1065: 1064: 1063: 1059:Covering lemmas 1044: 1043: 1042: 1041: 1028: 1026: 1022: 987: 986: 982: 977: 966: 957: 948: 939: 893: 859: 854: 853: 847: 790: 768: 764: 754: 753: 714: 701: 700: 670: 657: 656: 630: 629: 608: 582: 581: 550: 549: 507: 503: 497: 496: 493: 488: 450: 449: 418: 417: 394: 393: 374: 373: 300: 299: 257: 253: 247: 246: 197: 193: 187: 186: 163: 162: 123: 122: 72: 68: 62: 61: 58: 12: 11: 5: 1072: 1070: 1062: 1061: 1056: 1046: 1045: 1040: 1039: 1020: 979: 978: 976: 973: 962: 953: 944: 935: 917: 916: 905: 900: 896: 890: 885: 882: 879: 875: 871: 866: 862: 846: 843: 834: 833: 822: 819: 816: 812: 808: 805: 802: 797: 793: 787: 782: 779: 776: 772: 767: 762: 738: 735: 732: 729: 726: 721: 717: 713: 709: 688: 685: 682: 677: 673: 669: 665: 654:expected value 639: 615: 611: 605: 600: 597: 594: 590: 569: 566: 563: 560: 557: 535: 530: 527: 524: 519: 514: 510: 506: 492: 489: 487: 484: 470: 466: 463: 460: 457: 437: 434: 431: 428: 425: 403: 381: 370:transpositions 354: 351: 348: 345: 342: 339: 336: 333: 330: 326: 321: 315: 310: 307: 285: 280: 277: 274: 269: 264: 260: 256: 225: 220: 217: 214: 209: 204: 200: 196: 172: 131: 100: 95: 92: 89: 84: 79: 75: 71: 57: 54: 13: 10: 9: 6: 4: 3: 2: 1071: 1060: 1057: 1055: 1052: 1051: 1049: 1035: 1031: 1024: 1021: 1015: 1010: 1006: 1002: 998: 994: 993:Savage, L. J. 990: 984: 981: 974: 972: 970: 965: 961: 956: 952: 947: 943: 938: 934: 930: 926: 922: 903: 898: 894: 888: 883: 880: 877: 873: 869: 864: 860: 852: 851: 850: 844: 842: 840: 820: 817: 814: 810: 803: 800: 795: 791: 780: 777: 774: 770: 765: 752: 751: 750: 736: 733: 727: 724: 719: 715: 686: 683: 675: 671: 655: 613: 609: 598: 595: 592: 588: 561: 558: 528: 525: 522: 517: 512: 508: 504: 490: 485: 483: 464: 461: 458: 455: 432: 429: 426: 379: 371: 366: 349: 346: 343: 337: 331: 308: 305: 278: 275: 272: 267: 262: 258: 254: 244: 241: 218: 215: 212: 207: 202: 198: 194: 161: 157: 152: 150: 146: 120: 116: 93: 90: 87: 82: 77: 73: 69: 55: 53: 51: 47: 43: 39: 38:almost surely 35: 31: 28:, similar to 27: 23: 19: 1033: 1030:Shiryaev, A. 1023: 1004: 1000: 983: 963: 959: 954: 950: 945: 941: 936: 932: 920: 918: 848: 838: 835: 494: 367: 243:permutations 159: 153: 145:permutations 59: 46:Edwin Hewitt 41: 17: 15: 1007:: 470–501. 931:increments 925:random walk 149:probability 1048:Categories 989:Hewitt, E. 975:References 927:with the 874:∑ 845:Example 2 807:∞ 786:∞ 771:∑ 604:∞ 589:∑ 565:∞ 534:∞ 491:Example 1 465:∈ 338:∈ 320:⟹ 309:∈ 284:∞ 224:∞ 99:∞ 1032:(1996). 995:(1955). 486:Examples 115:sequence 32:and the 958:), but 298:. Then 22:theorem 240:finite 923:of a 839:which 113:be a 20:is a 734:< 684:> 60:Let 48:and 16:The 1009:doi 929:iid 158:or 117:of 24:in 1050:: 1005:80 1003:. 999:. 991:; 482:. 448:, 365:. 52:. 1017:. 1011:: 964:N 960:S 955:N 951:S 946:N 942:S 937:n 933:X 921:N 904:, 899:n 895:X 889:N 884:1 881:= 878:n 870:= 865:N 861:S 821:, 818:1 815:= 811:) 804:+ 801:= 796:n 792:X 781:1 778:= 775:n 766:( 761:P 737:1 731:) 728:0 725:= 720:n 716:X 712:( 708:P 687:0 681:] 676:n 672:X 668:[ 664:E 638:E 614:n 610:X 599:1 596:= 593:n 568:) 562:, 559:0 556:[ 529:1 526:= 523:n 518:} 513:n 509:X 505:{ 469:N 462:j 459:, 456:i 436:) 433:j 430:, 427:i 424:( 402:E 380:A 353:} 350:1 347:, 344:0 341:{ 335:) 332:A 329:( 325:P 314:E 306:A 279:1 276:= 273:n 268:} 263:n 259:X 255:{ 219:1 216:= 213:n 208:} 203:n 199:X 195:{ 171:E 130:X 94:1 91:= 88:n 83:} 78:n 74:X 70:{

Index

theorem
probability theory
Kolmogorov's zero–one law
Borel–Cantelli lemma
almost surely
Edwin Hewitt
Leonard Jimmie Savage
sequence
independent and identically-distributed random variables
permutations
probability
exchangeable sigma algebra
finite
permutations
transpositions
expected value
random walk
iid
Kolmogorov's zero–one law
Hewitt, E.
Savage, L. J.
"Symmetric measures on Cartesian products"
doi
10.1090/s0002-9947-1955-0076206-8
Shiryaev, A.
Categories
Probability theorems
Covering lemmas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.