Knowledge (XXG)

Hill–Robertson effect

Source 📝

139:
A is already fixed, or nearly fixed. Hence one should expect the time between the A mutation arising and the population becoming fixed for AB to be much longer in the absence of recombination. Hence recombination allows evolution to progress faster. There tends to be a correlation between the rate of recombination and the likelihood of the preferred haplotype (in the above example labeled as
161:(1932), although the verbal arguments were substantially different. Although the Hill-Robertson effect is usually thought of as describing a disproportionate buildup of fitness-reducing (relative to fitness increasing) LD over time, these effects also have immediate consequences for mean population fitness. 138:
will hence go to fixation. However, if there is no recombination, AB individuals can only occur if the latter mutation (B) happens to occur in an Ab individual. The chance of this happening depends on the frequency of new mutations, and on the size of the population, but is in general unlikely unless
94:
arises in a given individual, that individual's genes will through natural selection become more frequent in the population over time. However, if a separate advantageous mutant (
118:
will be in competition. If recombination is present, then individuals carrying both A and B (of genotype AB) will eventually arise. Provided there are no negative
370: 499: 451:
Crouch DJ (October 2017). "Statistical aspects of evolution under natural selection, with implications for the advantage of sexual reproduction".
247: 150: 74:
This is most easily seen by considering the case of disequilibria caused by mutation: Consider a population of individuals whose
509: 504: 36: 56: 40: 460: 276: 175: 170: 20: 433: 476: 425: 376: 351: 302: 243: 217: 52: 468: 415: 407: 341: 333: 292: 284: 207: 146: 32: 464: 280: 39:
in 1966. It provides an explanation as to why there may be an evolutionary advantage to
420: 395: 346: 321: 297: 264: 493: 60: 437: 158: 154: 337: 472: 106:
has gone to fixation, and happens to arise in an individual who does not carry
380: 212: 195: 119: 68: 480: 429: 306: 355: 221: 64: 288: 75: 242:(4th ed.). Sunderland, Massachusetts, USA: Sinauer Associates. 411: 396:"Primo vascular system in the subarachnoid space of a mouse brain" 51:
In a population of finite but effective size which is subject to
149:(1974) showed this effect to be mathematically identical to the 265:"Graph-structured populations and the Hill-Robertson effect" 196:"The effect of linkage on limits to artificial selection" 400:
Evidence-Based Complementary and Alternative Medicine
394:
Moon SH, Cha R, Lee GL, Lim JK, Soh KS (March 1932).
122:effects of carrying both, individuals of genotype 67:, and they will tend to slow down the process of 16:Evolutionary advantage for genetic recombination 322:"The evolutionary advantage of recombination" 126:will have a greater selective advantage than 8: 419: 372:The Genetical Theory of Natural Selection 345: 296: 211: 59:(LD) will occur. These can be caused by 186: 194:Hill WG, Robertson A (December 1966). 143:) goes into fixation in a population. 31:, is a phenomenon first identified by 263:Whigham PA, Spencer HG (March 2021). 7: 233: 231: 14: 240:Principles of Population genetics 500:Genetics in the United Kingdom 453:Journal of Theoretical Biology 320:Felsenstein J (October 1974). 1: 86:. If an advantageous mutant ( 110:, then individuals carrying 375:. Oxford: Clarendon Press. 238:Hartl DL, Clark AG (2007). 29:Hill–Robertson interference 526: 473:10.1016/j.jtbi.2017.07.021 269:Royal Society Open Science 338:10.1093/genetics/78.2.737 213:10.1017/S0016672300010156 114:and individuals carrying 71:by natural selection. 57:linkage disequilibria 55:, varying extents of 41:genetic recombination 25:Hill–Robertson effect 510:Evolutionary biology 78:has only two genes, 505:Population genetics 465:2017JThBi.431...79C 289:10.1098/rsos.201831 281:2021RSOS....801831W 176:Genetic hitchhiking 171:Clonal interference 151:Fisher–Muller model 21:population genetics 369:Fisher RA (1930). 200:Genetical Research 249:978-1-4292-1145-1 134:individuals, and 53:natural selection 517: 485: 484: 448: 442: 441: 423: 391: 385: 384: 366: 360: 359: 349: 317: 311: 310: 300: 260: 254: 253: 235: 226: 225: 215: 191: 525: 524: 520: 519: 518: 516: 515: 514: 490: 489: 488: 450: 449: 445: 406:(703): 280418. 393: 392: 388: 368: 367: 363: 319: 318: 314: 262: 261: 257: 250: 237: 236: 229: 193: 192: 188: 184: 167: 147:Joe Felsenstein 49: 17: 12: 11: 5: 523: 521: 513: 512: 507: 502: 492: 491: 487: 486: 443: 412:10.1086/280418 386: 361: 332:(2): 737–756. 312: 255: 248: 227: 206:(3): 269–294. 185: 183: 180: 179: 178: 173: 166: 163: 102:arises before 48: 45: 37:Alan Robertson 15: 13: 10: 9: 6: 4: 3: 2: 522: 511: 508: 506: 503: 501: 498: 497: 495: 482: 478: 474: 470: 466: 462: 458: 454: 447: 444: 439: 435: 431: 427: 422: 417: 413: 409: 405: 401: 397: 390: 387: 382: 378: 374: 373: 365: 362: 357: 353: 348: 343: 339: 335: 331: 327: 323: 316: 313: 308: 304: 299: 294: 290: 286: 282: 278: 275:(3): 201831. 274: 270: 266: 259: 256: 251: 245: 241: 234: 232: 228: 223: 219: 214: 209: 205: 201: 197: 190: 187: 181: 177: 174: 172: 169: 168: 164: 162: 160: 156: 152: 148: 144: 142: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 72: 70: 66: 62: 61:genetic drift 58: 54: 46: 44: 42: 38: 34: 30: 26: 22: 456: 452: 446: 403: 399: 389: 371: 364: 329: 325: 315: 272: 268: 258: 239: 203: 199: 189: 159:H. J. Muller 155:R. A. Fisher 153:proposed by 145: 140: 135: 131: 127: 123: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 73: 50: 28: 24: 18: 157:(1930) and 47:Explanation 494:Categories 381:1327609915 182:References 98:) of gene 90:) of gene 459:: 79–86. 120:epistatic 69:evolution 33:Bill Hill 481:28779948 438:84301227 430:23781258 326:Genetics 307:33959343 165:See also 65:mutation 461:Bibcode 421:3679859 356:4448362 347:1213231 298:8074956 277:Bibcode 222:5980116 479:  436:  428:  418:  379:  354:  344:  305:  295:  246:  220:  76:genome 63:or by 23:, the 434:S2CID 27:, or 477:PMID 426:PMID 404:2013 377:OCLC 352:PMID 303:PMID 244:ISBN 218:PMID 82:and 35:and 469:doi 457:431 416:PMC 408:doi 342:PMC 334:doi 293:PMC 285:doi 208:doi 130:or 19:In 496:: 475:. 467:. 455:. 432:. 424:. 414:. 402:. 398:. 350:. 340:. 330:78 328:. 324:. 301:. 291:. 283:. 271:. 267:. 230:^ 216:. 202:. 198:. 141:AB 136:AB 132:Ab 128:aB 124:AB 43:. 483:. 471:: 463:: 440:. 410:: 383:. 358:. 336:: 309:. 287:: 279:: 273:8 252:. 224:. 210:: 204:8 116:A 112:B 108:A 104:A 100:b 96:B 92:a 88:A 84:b 80:a

Index

population genetics
Bill Hill
Alan Robertson
genetic recombination
natural selection
linkage disequilibria
genetic drift
mutation
evolution
genome
epistatic
Joe Felsenstein
Fisher–Muller model
R. A. Fisher
H. J. Muller
Clonal interference
Genetic hitchhiking
"The effect of linkage on limits to artificial selection"
doi
10.1017/S0016672300010156
PMID
5980116


ISBN
978-1-4292-1145-1
"Graph-structured populations and the Hill-Robertson effect"
Bibcode
2021RSOS....801831W
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.