Knowledge (XXG)

Hirnantian Isotopic Carbon Excursion

Source 📝

73:, summarized in Table 1. Due to erosion from the associated glaciation, the thickness of these sections are small, often not larger than several meters to tens to meters in thickness. Most preserved rocks are shallow water deposits, but some notable deeper water deposits exist in China. These formations mostly show a regular trend of initial deep sea rocks like shale and mudstones, then deposition of shallow limestone's during the Hirnantian. These then returned to deep shales and muds as water rose again at the end of the Hirnantian due to de-glaciation. Rocks which stayed in deep water environments during the HICE continued to deposit mudstones or shale. Most sections analyzed for carbon 13 isotope ratio’s (δ13C) show a positive shift of +3-6%, although some sections show values as high as +7% or as low as +2%. 293:(SPICE), a positive excursion of up to +5% δ13C which lasted for 2-4 million years and occurred around 295 Ma ago. Both excursions have similar proposed causes, including enhanced burial of carbon and weathering of carbonates. The two excursions are also of a similar time frame, lasting in the single digit millions of years. 277:
biozone. When some or entire sections of these fossils are missing, it can complicate reconstruction and correlation of sections. Some localities are interpreted to show the peak of the HICE at the start of the Hirnantian, while others are interpreted to not reach their peak until later into the age.
268:
Aside from the cause and age, other parts of the HICE are also still debated. For example, some studies have shown that there may have been multiple cycles of sea level rise and fall within this time period. Disagreement also exists over the exact timing of the HICE. Biostratigraphy is often used to
796:
Brenchley, P.J; Carden, G.A; Hints, L; Kalijo, D; Marshall, J.D; Martma, T; Meidla, T; Nõlvak, J (2003). "High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation".
255:
Age created more space and nutrients for marine eukaryotes, which grew larger and thus sank to the ocean floor more readily, burying more organic carbon in the sediments. The other hypothesis states that a cooling trend through the Katian created glacial conditions, and the retreating glaciers
45:
is 445.2 (±1.3) Ma to 443.8 (± 1.5). Another proposed date for the HICE is 443.14 (± 0.24) Ma to 442.67 Ma (± 0.34). Major uncertainty over the age is partly due to the short time frame of both the HICE and Hirnantian age and comparatively large statistical error on these dates.
745: 259:
Many of the deeper water sections show lower increases in δ13C than the shallow water sections. It's been proposed that the deep water rocks represent the true signal of the HICE, while the shallow water rocks show a higher value due to alteration.
367:
Ling, Ming-Xing; Zhan, Ren-Bin; Wang, Guang-Xu; Wang, Yi; Amelin, Yuri; Tang, Peng; Liu, Jian-Bo; Jin, Jisuo; Huang, Bing; Wu, Rong-Chang; Xue, Shuo; Fu, Bin; Bennett, Vickie C.; Wei, Xin; Luan, Xiao-Cong (December 2019).
250:
The exact cause of the HICE is still debated, although there are 2 main hypotheses. One hypothesis states that it was primarily due to enhanced burial of carbon. High water levels and enhanced weathering in the earlier
40:
The HICE is widely recognized as short in terms of geologic time, but just how short is still debated. The current official timing of the Hirnantian, and thus the HICE, in the geologic record according to the
940:
Xu, Chen; Sheets, David H; Melchin, Michael J.; Mitchell, Charles E (2005). "Patterns and Processes of Latest Ordovician Graptolite Extinction and Recovery Based on Data from South China".
696:
Finney, Stanley C.; Berry, William B. N.; Cooper, John D.; Ripperdan, Robert L.; Sweet, Walter C.; Jacobson, Stephen R.; Soufiane, Azzedine; Achab, Aicha; Noble, Paula J. (1999-03-01).
1055:
Saltzman, Matthew R.; Ripperdan, Robert L.; Brasier, M. D.; Lohmann, Kyger C.; Robison, Richard A.; Chang, W. T.; Peng, Shanchi; Ergaliev, E. K.; Runnegar, Bruce (2000-10-01).
1163: 893:"Upper Ordovician (Hirnantian) to Lower Silurian (Telychian, Llandovery) graptolite biostratigraphy of the Tielugou section, Shennongjia anticline, Hubei Province, China" 256:
exposed large numbers of near-shore marine carbonates to weathering. The weathering of these carbonates pumped more carbon back into the ocean, raising the buried δ13C.
520: 32:, which wiped out 85% of marine life. The exact cause of the HICE is still debated, however it is a key event for defining the Ordovician-Silurian boundary. 290: 990:
Saltzman, M.R; Thomas, E (2012). "Chapter 11 - Carbon Isotope Stratigraphy". In Gradstein, Felix.M; Ogg, James G.; Schmitz, Mark D.; Ogg, Gabi M. (eds.).
646:"Carbon isotope chemostratigraphy in Arctic Canada: Sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation" 315:
Shen, Jiaheng; Pearson, Ann; Henkes, Gregory A.; Zhang, Yi Ge; Chen, Kefan; Li, Dandan; Wankel, Scott D.; Finney, Stanley C.; Shen, Yanan (July 2018).
42: 1168: 838: 1057:"A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level" 967:
Cooper, R.A; Sadler, P.M (2012). "Chapter 20: The Ordovician Period". In Gradstein, Felix; Ogg, J.G; Schmitz, Mark D.; Ogg, Gabi M. (eds.).
744:
Calner, Mikael; Bockelie, Johan Fredrik; Rasmussen, Christian M. Ø; Calner, Hanna; Lehnert, Oliver; Joachimski, Michael M. (November 2021).
746:"Carbon isotope chemostratigraphy and sea-level history of the Hirnantian Stage (uppermost Ordovician) in the Oslo–Asker district, Norway" 28:
Age from around 445.2 Ma to 443.8 Ma (million years ago). The HICE is connected to a large scale, but short glaciation, as well as the
1005:
Shields, Graham A.; Mills, Benjamin J. W.; Zhu, Maoyan; Raub, Timothy D.; Daines, Stuart J.; Lenton, Timothy M. (October 2019).
592:"High-Resolution carbon isotope stratigraphy of the basal Silurian Stratotype (Dob's Linn, Scotland) and its global correlation" 463:"The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy" 29: 521:"Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada)" 414:
Zhou, Lian; Algeo, Thomas J.; Shen, Jun; Hu, ZhiFang; Gong, Hongmei; Xie, Shucheng; Huang, JunHua; Gao, Shan (2015-02-15).
278:
This, along with the small section thicknesses, can make it difficult to correlate sections worldwide with one another.
1173: 49:
Complete sections of Hirnantian age rocks outcrop primarily across the Northern Hemisphere, with notable sections in
953: 818: 721: 1007:"Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial" 839:"Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates" 269:
aid in identifying the Hirnantian, and thus the HICE, where the Hirnantian is defined as encompassing the
1158: 285:, but is of a comparable to lower magnitude compared to other positive carbon isotope excursions in the 1106: 1056: 645: 462: 416:"Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation" 415: 1118: 1068: 1018: 972: 904: 865: 837:
Jones, David; Brothers, Roger; Ahm, Anne-Sofie; Slater, Nicholas; Higgins, John; Fike, David (2019).
806: 757: 709: 657: 603: 535: 474: 427: 381: 328: 519:
Jones, David; Fike, David; Finnegan, Seth; Fischer, Woodward; Schrag, Daniel; McCay, Dwight (2011).
698:"Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada" 369: 281:
The HICE is far shorter and smaller in magnitude than other isotopic excursions from the earlier
591: 1134: 1084: 1034: 922: 775: 673: 619: 490: 443: 344: 1107:"The upper Cambrian SPICE carbon isotope excursion from the Alborz Ranges, northeastern Iran" 1126: 1076: 1026: 949: 912: 873: 814: 765: 717: 665: 611: 543: 482: 435: 389: 336: 317:"Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation" 1122: 1072: 1022: 976: 908: 869: 810: 761: 713: 697: 661: 607: 539: 478: 431: 385: 370:"An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation" 332: 1080: 1152: 62: 1130: 1006: 486: 316: 669: 590:
Underwood, C. J.; Crowley, S. F.; Marshall, J. D.; Brenchley, P. J. (July 1997).
439: 20:(HICE) is a positive carbon isotope excursion which took place at the end of the 393: 286: 282: 917: 1030: 770: 340: 25: 21: 1138: 1088: 1038: 926: 892: 877: 779: 677: 623: 615: 494: 447: 348: 854:"Changes in marine isotopic composition and the late Ordovician glaciation" 853: 1105:
Navidi-Izad, Navid; Hashemi, Hossein; Saltzman, Matthew R. (2024-02-01).
54: 891:
Maletz, Jörg; Wang, Chuanshang; Kai, Wei; Wang, Xiaofeng (2021-09-01).
547: 252: 70: 66: 58: 50: 561: 954:
10.1666/0022-3360(2005)079[0842:PAPOLO]2.0.CO;2
819:
10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2
722:
10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2
175:
West to Northern Latvia (Kuldiga and Saldus Formations)
206:
Dob's Linn (Upper Hartfell, Lower Birkhill Formations)
289:. The closest comparable excursion to the HICE is the 134:Wangjiawan (Upper Wufeng, Kuanyinchiao Formations) 644:Melchin, Michael J.; Holmden, Chris (2006-05-18). 1061:Palaeogeography, Palaeoclimatology, Palaeoecology 650:Palaeogeography, Palaeoclimatology, Palaeoecology 420:Palaeogeography, Palaeoclimatology, Palaeoecology 147:Nanbazi (Upper Wufeng, Kuanyinchiao Formations) 191:Upper Husbergøya, and Lower Solvik Formations) 8: 120:Cornwallis Island (Cape Phillips Embayment) 291:Steptoean positive carbon isotope excursion 562:"International Commission on Stratigraphy" 1164:History of climate variability and change 916: 852:Marshall, James; Middleton, Paul (1990). 769: 461:Delabroye, A.; Vecoli, M. (2010-02-01). 75: 43:International Commission on Stratigraphy 302: 233:Monitor Range (Hanson Creek Formation) 107:Anticosti Island (Ellis Bay Formation) 791: 789: 528:Geological Society of America Bulletin 1100: 1098: 1050: 1048: 832: 830: 828: 739: 737: 735: 733: 731: 691: 689: 687: 7: 639: 637: 635: 633: 585: 583: 581: 514: 512: 510: 508: 506: 504: 409: 407: 405: 403: 362: 360: 358: 310: 308: 306: 18:Hirnantian Isotopic Carbon Excursion 841:. 48(2). Geology. p. 194-199. 161:Central Estonia (Ärina Formation) 14: 858:Journal of the Geological Society 596:Journal of the Geological Society 220:Vinini Creek (Vinini Formation) 1131:10.1016/j.marpetgeo.2023.106635 487:10.1016/j.earscirev.2009.10.010 189:Oslofjord (Langøyene, Langara, 1169:Events that forced the climate 971:. Elsevier. pp. 489–507. 30:End Ordovician mass extinction 1: 1081:10.1016/S0031-0182(00)00128-0 994:. Elsevier. pp. 207–232. 1111:Marine and Petroleum Geology 969:The Geologic Time Scale 2012 670:10.1016/j.palaeo.2005.10.009 440:10.1016/j.palaeo.2014.12.012 394:10.1016/j.sesci.2019.11.001 1190: 918:10.1007/s12542-020-00544-5 1031:10.1038/s41561-019-0434-3 956:– via ResearchGate. 771:10.1017/S0016756821000546 341:10.1038/s41561-018-0141-5 217:United States of America 878:10.1144/gsjgs.147.1.0001 616:10.1144/gsjgs.154.4.0709 992:The Geologic Time Scale 942:Journal of Paleontology 264:Debates and comparisons 36:Timing and stratigraphy 88:Location and Formation 467:Earth-Science Reviews 374:Solid Earth Sciences 98:δ13C Range (At Peak) 1123:2024MarPG.16006635N 1073:2000PPP...162..211S 1023:2019NatGe..12..823S 977:2012gts..book.....G 909:2021PalZ...95..453M 870:1990JGSoc.147....1M 811:2003GSAB..115...89B 762:2021GeoM..158.1977C 750:Geological Magazine 714:1999Geo....27..215F 662:2006PPP...234..186M 608:1997JGSoc.154..709U 540:2011GSAB..123.1645J 479:2010ESRv...98..269D 432:2015PPP...420..223Z 386:2019SolES...4..190L 333:2018NatGe..11..510S 78: 24:period, during the 1174:Isotope excursions 534:(7/8): 1645–1664. 271:N. extraordinarius 76: 1011:Nature Geoscience 756:(11): 1977–2008. 321:Nature Geoscience 243: 242: 1181: 1143: 1142: 1102: 1093: 1092: 1052: 1043: 1042: 1002: 996: 995: 987: 981: 980: 964: 958: 957: 937: 931: 930: 920: 888: 882: 881: 849: 843: 842: 834: 823: 822: 793: 784: 783: 773: 741: 726: 725: 693: 682: 681: 641: 628: 627: 587: 576: 575: 573: 572: 566:stratigraphy.org 558: 552: 551: 548:10.1130/B30323.1 525: 516: 499: 498: 458: 452: 451: 411: 398: 397: 364: 353: 352: 312: 273:biozone and the 79: 1189: 1188: 1184: 1183: 1182: 1180: 1179: 1178: 1149: 1148: 1147: 1146: 1104: 1103: 1096: 1054: 1053: 1046: 1017:(10): 823–827. 1004: 1003: 999: 989: 988: 984: 966: 965: 961: 939: 938: 934: 890: 889: 885: 851: 850: 846: 836: 835: 826: 795: 794: 787: 743: 742: 729: 695: 694: 685: 643: 642: 631: 589: 588: 579: 570: 568: 560: 559: 555: 523: 518: 517: 502: 460: 459: 455: 413: 412: 401: 366: 365: 356: 314: 313: 304: 299: 266: 248: 38: 12: 11: 5: 1187: 1185: 1177: 1176: 1171: 1166: 1161: 1151: 1150: 1145: 1144: 1094: 1067:(3): 211–223. 1044: 997: 982: 959: 948:(5): 842–861. 932: 903:(3): 453–481. 883: 844: 824: 785: 727: 683: 656:(2): 186–200. 629: 602:(4): 709–718. 577: 553: 500: 473:(3): 269–282. 453: 399: 380:(4): 190–198. 354: 327:(7): 510–514. 301: 300: 298: 295: 275:N. presculptus 265: 262: 247: 244: 241: 240: 237: 234: 231: 228: 227: 224: 221: 218: 214: 213: 210: 207: 204: 200: 199: 196: 193: 187: 183: 182: 179: 176: 173: 169: 168: 165: 162: 159: 155: 154: 151: 148: 145: 142: 141: 138: 135: 132: 128: 127: 124: 121: 118: 115: 114: 111: 108: 105: 101: 100: 95: 93:HICE Thickness 90: 85: 37: 34: 13: 10: 9: 6: 4: 3: 2: 1186: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1156: 1154: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1101: 1099: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1051: 1049: 1045: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1001: 998: 993: 986: 983: 978: 974: 970: 963: 960: 955: 951: 947: 943: 936: 933: 928: 924: 919: 914: 910: 906: 902: 898: 894: 887: 884: 879: 875: 871: 867: 863: 859: 855: 848: 845: 840: 833: 831: 829: 825: 820: 816: 812: 808: 805:(1): 89–105. 804: 800: 792: 790: 786: 781: 777: 772: 767: 763: 759: 755: 751: 747: 740: 738: 736: 734: 732: 728: 723: 719: 715: 711: 707: 703: 699: 692: 690: 688: 684: 679: 675: 671: 667: 663: 659: 655: 651: 647: 640: 638: 636: 634: 630: 625: 621: 617: 613: 609: 605: 601: 597: 593: 586: 584: 582: 578: 567: 563: 557: 554: 549: 545: 541: 537: 533: 529: 522: 515: 513: 511: 509: 507: 505: 501: 496: 492: 488: 484: 480: 476: 472: 468: 464: 457: 454: 449: 445: 441: 437: 433: 429: 425: 421: 417: 410: 408: 406: 404: 400: 395: 391: 387: 383: 379: 375: 371: 363: 361: 359: 355: 350: 346: 342: 338: 334: 330: 326: 322: 318: 311: 309: 307: 303: 296: 294: 292: 288: 284: 279: 276: 272: 263: 261: 257: 254: 245: 238: 235: 232: 230: 229: 225: 222: 219: 216: 215: 211: 208: 205: 202: 201: 197: 194: 192: 188: 185: 184: 180: 177: 174: 171: 170: 166: 163: 160: 157: 156: 152: 149: 146: 144: 143: 139: 136: 133: 130: 129: 125: 122: 119: 117: 116: 112: 109: 106: 103: 102: 99: 96: 94: 91: 89: 86: 84: 81: 80: 74: 72: 68: 64: 63:United States 60: 56: 52: 47: 44: 35: 33: 31: 27: 23: 19: 1159:Stratigraphy 1114: 1110: 1064: 1060: 1014: 1010: 1000: 991: 985: 968: 962: 945: 941: 935: 900: 896: 886: 861: 857: 847: 802: 799:GSA Bulletin 798: 753: 749: 705: 701: 653: 649: 599: 595: 569:. Retrieved 565: 556: 531: 527: 470: 466: 456: 423: 419: 377: 373: 324: 320: 280: 274: 270: 267: 258: 249: 190: 97: 92: 87: 82: 48: 39: 17: 15: 426:: 223–234. 287:Phanerozoic 283:Precambrian 1153:Categories 1117:: 106635. 864:(1): 1–4. 708:(3): 215. 571:2024-02-26 297:References 26:Hirnantian 22:Ordovician 1139:0264-8172 1089:0031-0182 1039:1752-0908 927:1867-6812 780:0016-7568 678:0031-0182 624:0016-7649 495:0012-8252 448:0031-0182 349:1752-0908 203:Scotland 77:Table 1: 158:Estonia 55:Scotland 1119:Bibcode 1069:Bibcode 1019:Bibcode 973:Bibcode 905:Bibcode 866:Bibcode 807:Bibcode 758:Bibcode 710:Bibcode 702:Geology 658:Bibcode 604:Bibcode 536:Bibcode 475:Bibcode 428:Bibcode 382:Bibcode 329:Bibcode 195:13-51m 186:Norway 178:14-21m 172:Latvia 123:10-15m 104:Canada 83:Country 1137:  1087:  1037:  925:  778:  676:  622:  493:  446:  347:  253:Katian 246:Causes 209:~3.5m 131:China 110:~7.5m 71:Latvia 69:, and 67:Norway 61:, the 59:Canada 524:(PDF) 239:4-6% 236:~40m 226:2-3% 198:3-6% 181:3-6% 167:2-6% 164:3-6m 153:3-4% 140:2-3% 137:1.2m 126:3-6% 113:3-4% 51:China 1135:ISSN 1085:ISSN 1035:ISSN 923:ISSN 897:PalZ 776:ISSN 674:ISSN 620:ISSN 491:ISSN 444:ISSN 345:ISSN 223:10m 150:~7m 16:The 1127:doi 1115:160 1077:doi 1065:162 1027:doi 950:doi 913:doi 874:doi 862:147 815:doi 803:115 766:doi 754:158 718:doi 666:doi 654:234 612:doi 600:154 544:doi 532:123 483:doi 436:doi 424:420 390:doi 337:doi 212:3% 1155:: 1133:. 1125:. 1113:. 1109:. 1097:^ 1083:. 1075:. 1063:. 1059:. 1047:^ 1033:. 1025:. 1015:12 1013:. 1009:. 946:79 944:. 921:. 911:. 901:95 899:. 895:. 872:. 860:. 856:. 827:^ 813:. 801:. 788:^ 774:. 764:. 752:. 748:. 730:^ 716:. 706:27 704:. 700:. 686:^ 672:. 664:. 652:. 648:. 632:^ 618:. 610:. 598:. 594:. 580:^ 564:. 542:. 530:. 526:. 503:^ 489:. 481:. 471:98 469:. 465:. 442:. 434:. 422:. 418:. 402:^ 388:. 376:. 372:. 357:^ 343:. 335:. 325:11 323:. 319:. 305:^ 65:, 57:, 53:, 1141:. 1129:: 1121:: 1091:. 1079:: 1071:: 1041:. 1029:: 1021:: 979:. 975:: 952:: 929:. 915:: 907:: 880:. 876:: 868:: 821:. 817:: 809:: 782:. 768:: 760:: 724:. 720:: 712:: 680:. 668:: 660:: 626:. 614:: 606:: 574:. 550:. 546:: 538:: 497:. 485:: 477:: 450:. 438:: 430:: 396:. 392:: 384:: 378:4 351:. 339:: 331::

Index

Ordovician
Hirnantian
End Ordovician mass extinction
International Commission on Stratigraphy
China
Scotland
Canada
United States
Norway
Latvia
Katian
Precambrian
Phanerozoic
Steptoean positive carbon isotope excursion



"Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation"
Bibcode
2018NatGe..11..510S
doi
10.1038/s41561-018-0141-5
ISSN
1752-0908



"An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation"
Bibcode
2019SolES...4..190L

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.