Knowledge (XXG)

Simplicial presheaf

Source 📝

1064:
as a constant simplicial set; this way, the category of sheaves on the site is included as a subcategory to the homotopy category of simplicial presheaves on the site. The inclusion functor has a left adjoint and that is exactly
59:
from the site to the category of simplicial sets). Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a
218: 589: 735:
The category of such functors is endowed with (at least) three model structures, namely the projective, the Reedy, and the injective model structure. The weak equivalences / fibrations in the first are maps
300: 474: 933: 829: 1025: 771: 1307: 730: 123: 654: 1222: 1099: 619: 345: 381: 253: 1141: 1062: 161: 166: 479: 1437: 1400:
Axiomatic, enriched and motivic homotopy theory. Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 9--20 September 2002
939: 1407: 258: 398: 881: 782: 1402:. NATO Science Series II: Mathematics, Physics and Chemistry. Vol. 131. Dordrecht: Kluwer Academic. pp. 29–68. 952: 742: 1234: 1326: 677: 1470: 1465: 90: 137: 624: 1150: 129:, a simplicial object in the site, represents a simplicial presheaf (in fact, often a simplicial sheaf). 1068: 56: 1347: 1384: 851: 69: 1144: 842:. The injective model structure is similar, but with weak equivalences and cofibrations instead. 40: 594: 320: 1475: 1403: 354: 226: 65: 48: 1398:
Jardine, J.F. (2004). "Generalised sheaf cohomology theories". In Greenlees, J. P. C. (ed.).
1413: 1355:
Introductory Workshop on Algebraic Stacks, Intersection Theory, and Non-Abelian Hodge Theory
1111: 1417: 1038: 44: 28: 143: 1426: 943: 665: 52: 1459: 865: 76: 1312:
where the left denotes a sheaf cohomology and the right the homotopy class of maps.
1321: 17: 1143:
by doing classifying space construction levelwise (the notion comes from the
255:
is a local weak equivalence of simplicial presheaves, then the induced map
36: 671:
Some of them are obtained by viewing simplicial presheaves as functors
213:{\displaystyle B\operatorname {GL} =\varinjlim B\operatorname {GL_{n}} } 1450: 664:
The category of simplicial presheaves on a site admits many different
584:{\displaystyle (\pi _{i}^{\text{pr}}(F,s))(f)=\pi _{i}(F(Y),f^{*}(s))} 1108:
is a sheaf of abelian group (on the same site), then we define
834:
is a weak equivalence / fibration of simplicial sets, for all
807: 788: 758: 748: 295:{\displaystyle \mathbb {Z} f:\mathbb {Z} X\to \mathbb {Z} Y} 469:{\displaystyle (\pi _{0}^{\text{pr}}F)(X)=\pi _{0}(F(X))} 928:{\displaystyle F(X)\to \operatorname {holim} F(H_{n})} 824:{\displaystyle {\mathcal {F}}(U)\to {\mathcal {G}}(U)} 1237: 1153: 1114: 1071: 1041: 955: 884: 785: 745: 680: 627: 597: 482: 401: 357: 323: 261: 229: 169: 146: 93: 1438:
Simplicial presheaves and derived algebraic geometry
1035:
on the site can be considered as a stack by viewing
1301: 1216: 1135: 1093: 1056: 1019: 927: 823: 765: 724: 648: 613: 583: 468: 375: 339: 294: 247: 212: 155: 117: 1020:{\displaystyle =\{0,1,\dots ,n\}\mapsto F(H_{n})} 766:{\displaystyle {\mathcal {F}}\to {\mathcal {G}}} 140:section-wise, one obtains a simplicial presheaf 621:to be the sheaf associated with the pre-sheaf 220:. These types of examples appear in K-theory. 8: 1302:{\displaystyle \operatorname {H} ^{i}(X;A)=} 992: 968: 942:as simplicial sets, where the right is the 725:{\displaystyle S^{op}\to \Delta ^{op}Sets} 1385:Model structures on simplicial presheaves 1242: 1236: 1152: 1113: 1082: 1070: 1040: 1008: 954: 916: 883: 806: 805: 787: 786: 784: 757: 756: 747: 746: 744: 701: 685: 679: 637: 632: 626: 602: 596: 563: 535: 495: 490: 481: 442: 414: 409: 400: 356: 328: 322: 306:Homotopy sheaves of a simplicial presheaf 285: 284: 274: 273: 263: 262: 260: 228: 203: 195: 179: 168: 145: 118:{\displaystyle \operatorname {Hom} (-,U)} 92: 860:on a site is called a stack if, for any 314:be a simplicial presheaf on a site. The 136:be a presheaf of groupoids. Then taking 1367: 1338: 1224:. One can show (by induction): for any 649:{\displaystyle \pi _{i}^{\text{pr}}F} 27:In mathematics, more specifically in 7: 1217:{\displaystyle K(A,i)=K(K(A,i-1),1)} 87:in the site represents the presheaf 1348:"Stacks and Non-abelian cohomology" 1239: 1094:{\displaystyle F\mapsto \pi _{0}F} 698: 302:is also a local weak equivalence. 204: 200: 196: 25: 351:is defined as follows. For any 1296: 1293: 1281: 1269: 1263: 1251: 1211: 1202: 1184: 1178: 1169: 1157: 1130: 1118: 1075: 1051: 1045: 1014: 1001: 995: 962: 956: 922: 909: 897: 894: 888: 818: 812: 802: 799: 793: 753: 694: 578: 575: 569: 553: 547: 541: 525: 519: 516: 513: 501: 483: 463: 460: 454: 448: 432: 426: 423: 402: 367: 281: 239: 112: 100: 1: 163:. For example, one might set 383:in the site and a 0-simplex 1492: 849: 1327:N-group (category theory) 614:{\displaystyle \pi _{i}F} 340:{\displaystyle \pi _{*}F} 376:{\displaystyle f:X\to Y} 248:{\displaystyle f:X\to Y} 1451:J.F. Jardine's homepage 1427:"Simplicial presheaves" 1346:Toën, Bertrand (2002), 1425:Jardine, J.F. (2007). 1303: 1218: 1137: 1136:{\displaystyle K(A,1)} 1095: 1058: 1021: 929: 856:A simplicial presheaf 825: 767: 726: 650: 615: 585: 470: 377: 341: 296: 249: 214: 157: 119: 75:Example: Consider the 1304: 1219: 1138: 1096: 1059: 1022: 930: 826: 768: 727: 651: 616: 586: 471: 378: 342: 297: 250: 215: 158: 120: 57:contravariant functor 1235: 1151: 1112: 1069: 1057:{\displaystyle F(X)} 1039: 953: 882: 875:, the canonical map 783: 743: 678: 625: 595: 480: 399: 355: 321: 259: 227: 167: 144: 91: 852:Stack (mathematics) 642: 500: 419: 68:in the category of 51:) taking values in 33:simplicial presheaf 1299: 1214: 1145:obstruction theory 1133: 1091: 1054: 1017: 925: 821: 763: 722: 646: 628: 611: 581: 486: 466: 405: 373: 337: 292: 245: 210: 187: 156:{\displaystyle BG} 153: 115: 49:topological spaces 640: 498: 417: 180: 127:simplicial scheme 66:simplicial object 16:(Redirected from 1483: 1433: 1431: 1421: 1383:Konrad Voelkel, 1371: 1365: 1359: 1358: 1352: 1343: 1308: 1306: 1305: 1300: 1247: 1246: 1223: 1221: 1220: 1215: 1142: 1140: 1139: 1134: 1100: 1098: 1097: 1092: 1087: 1086: 1063: 1061: 1060: 1055: 1026: 1024: 1023: 1018: 1013: 1012: 940:weak equivalence 934: 932: 931: 926: 921: 920: 830: 828: 827: 822: 811: 810: 792: 791: 772: 770: 769: 764: 762: 761: 752: 751: 731: 729: 728: 723: 709: 708: 693: 692: 666:model structures 660:Model structures 655: 653: 652: 647: 641: 638: 636: 620: 618: 617: 612: 607: 606: 590: 588: 587: 582: 568: 567: 540: 539: 499: 496: 494: 475: 473: 472: 467: 447: 446: 418: 415: 413: 382: 380: 379: 374: 346: 344: 343: 338: 333: 332: 316:homotopy sheaves 301: 299: 298: 293: 288: 277: 266: 254: 252: 251: 246: 219: 217: 216: 211: 209: 208: 207: 188: 162: 160: 159: 154: 124: 122: 121: 116: 62:simplicial sheaf 21: 1491: 1490: 1486: 1485: 1484: 1482: 1481: 1480: 1471:Simplicial sets 1466:Homotopy theory 1456: 1455: 1447: 1442: 1429: 1424: 1410: 1397: 1393: 1380: 1378:Further reading 1375: 1374: 1366: 1362: 1350: 1345: 1344: 1340: 1335: 1318: 1238: 1233: 1232: 1149: 1148: 1110: 1109: 1078: 1067: 1066: 1037: 1036: 1004: 951: 950: 912: 880: 879: 854: 848: 781: 780: 741: 740: 697: 681: 676: 675: 662: 623: 622: 598: 593: 592: 559: 531: 478: 477: 438: 397: 396: 353: 352: 324: 319: 318: 308: 257: 256: 225: 224: 199: 165: 164: 142: 141: 89: 88: 64:on a site is a 53:simplicial sets 29:homotopy theory 23: 22: 15: 12: 11: 5: 1489: 1487: 1479: 1478: 1473: 1468: 1458: 1457: 1454: 1453: 1446: 1445:External links 1443: 1441: 1440: 1434: 1422: 1408: 1394: 1392: 1389: 1388: 1387: 1379: 1376: 1373: 1372: 1360: 1337: 1336: 1334: 1331: 1330: 1329: 1324: 1317: 1314: 1310: 1309: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1245: 1241: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1132: 1129: 1126: 1123: 1120: 1117: 1090: 1085: 1081: 1077: 1074: 1053: 1050: 1047: 1044: 1029: 1028: 1016: 1011: 1007: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 944:homotopy limit 936: 935: 924: 919: 915: 911: 908: 905: 902: 899: 896: 893: 890: 887: 850:Main article: 847: 844: 832: 831: 820: 817: 814: 809: 804: 801: 798: 795: 790: 774: 773: 760: 755: 750: 733: 732: 721: 718: 715: 712: 707: 704: 700: 696: 691: 688: 684: 661: 658: 645: 635: 631: 610: 605: 601: 591:. We then set 580: 577: 574: 571: 566: 562: 558: 555: 552: 549: 546: 543: 538: 534: 530: 527: 524: 521: 518: 515: 512: 509: 506: 503: 493: 489: 485: 465: 462: 459: 456: 453: 450: 445: 441: 437: 434: 431: 428: 425: 422: 412: 408: 404: 372: 369: 366: 363: 360: 336: 331: 327: 307: 304: 291: 287: 283: 280: 276: 272: 269: 265: 244: 241: 238: 235: 232: 206: 202: 198: 194: 191: 186: 183: 178: 175: 172: 152: 149: 114: 111: 108: 105: 102: 99: 96: 24: 18:Homotopy sheaf 14: 13: 10: 9: 6: 4: 3: 2: 1488: 1477: 1474: 1472: 1469: 1467: 1464: 1463: 1461: 1452: 1449: 1448: 1444: 1439: 1435: 1428: 1423: 1419: 1415: 1411: 1409:1-4020-1833-9 1405: 1401: 1396: 1395: 1390: 1386: 1382: 1381: 1377: 1369: 1364: 1361: 1356: 1349: 1342: 1339: 1332: 1328: 1325: 1323: 1320: 1319: 1315: 1313: 1290: 1287: 1284: 1278: 1275: 1272: 1266: 1260: 1257: 1254: 1248: 1243: 1231: 1230: 1229: 1228:in the site, 1227: 1208: 1205: 1199: 1196: 1193: 1190: 1187: 1181: 1175: 1172: 1166: 1163: 1160: 1154: 1146: 1127: 1124: 1121: 1115: 1107: 1102: 1088: 1083: 1079: 1072: 1048: 1042: 1034: 1009: 1005: 998: 989: 986: 983: 980: 977: 974: 971: 965: 959: 949: 948: 947: 945: 941: 917: 913: 906: 903: 900: 891: 885: 878: 877: 876: 874: 870: 867: 866:hypercovering 863: 859: 853: 845: 843: 841: 837: 815: 796: 779: 778: 777: 739: 738: 737: 719: 716: 713: 710: 705: 702: 689: 686: 682: 674: 673: 672: 669: 667: 659: 657: 643: 633: 629: 608: 603: 599: 572: 564: 560: 556: 550: 544: 536: 532: 528: 522: 510: 507: 504: 491: 487: 457: 451: 443: 439: 435: 429: 420: 410: 406: 394: 390: 386: 370: 364: 361: 358: 350: 334: 329: 325: 317: 313: 305: 303: 289: 278: 270: 267: 242: 236: 233: 230: 221: 192: 189: 184: 181: 176: 173: 170: 150: 147: 139: 135: 132:Example: Let 130: 128: 109: 106: 103: 97: 94: 86: 82: 78: 73: 72:on the site. 71: 67: 63: 58: 54: 50: 46: 42: 38: 34: 30: 19: 1399: 1368:Jardine 2007 1363: 1354: 1341: 1311: 1225: 1105: 1103: 1032: 1030: 937: 872: 868: 861: 857: 855: 839: 838:in the site 835: 833: 775: 734: 670: 663: 392: 388: 384: 348: 315: 311: 309: 222: 133: 131: 126: 84: 80: 79:of a scheme 74: 61: 32: 26: 1322:cubical set 1147:) and set 776:such that 43:(e.g., the 1460:Categories 1418:1063.55004 1391:References 1031:Any sheaf 125:. Thus, a 77:étale site 1436:B. Toën, 1249:⁡ 1197:− 1080:π 1076:↦ 996:↦ 984:… 904:⁡ 898:→ 803:→ 754:→ 699:Δ 695:→ 630:π 600:π 565:∗ 533:π 488:π 440:π 407:π 368:→ 330:∗ 326:π 282:→ 240:→ 190:⁡ 185:→ 104:− 98:⁡ 55:(i.e., a 1476:Functors 1316:See also 864:and any 45:category 37:presheaf 395:), set 83:. Each 70:sheaves 1416:  1406:  1357:, MSRI 138:nerves 1430:(PDF) 1351:(PDF) 1333:Notes 938:is a 901:holim 846:Stack 39:on a 35:is a 1404:ISBN 1370:, §1 476:and 310:Let 41:site 31:, a 1414:Zbl 1104:If 946:of 387:in 347:of 223:If 182:lim 95:Hom 47:of 1462:: 1412:. 1353:, 1101:. 668:. 656:. 639:pr 497:pr 416:pr 174:GL 1432:. 1420:. 1297:] 1294:) 1291:i 1288:, 1285:A 1282:( 1279:K 1276:, 1273:X 1270:[ 1267:= 1264:) 1261:A 1258:; 1255:X 1252:( 1244:i 1240:H 1226:X 1212:) 1209:1 1206:, 1203:) 1200:1 1194:i 1191:, 1188:A 1185:( 1182:K 1179:( 1176:K 1173:= 1170:) 1167:i 1164:, 1161:A 1158:( 1155:K 1131:) 1128:1 1125:, 1122:A 1119:( 1116:K 1106:A 1089:F 1084:0 1073:F 1052:) 1049:X 1046:( 1043:F 1033:F 1027:. 1015:) 1010:n 1006:H 1002:( 999:F 993:} 990:n 987:, 981:, 978:1 975:, 972:0 969:{ 966:= 963:] 960:n 957:[ 923:) 918:n 914:H 910:( 907:F 895:) 892:X 889:( 886:F 873:X 871:→ 869:H 862:X 858:F 840:S 836:U 819:) 816:U 813:( 808:G 800:) 797:U 794:( 789:F 759:G 749:F 720:s 717:t 714:e 711:S 706:p 703:o 690:p 687:o 683:S 644:F 634:i 609:F 604:i 579:) 576:) 573:s 570:( 561:f 557:, 554:) 551:Y 548:( 545:F 542:( 537:i 529:= 526:) 523:f 520:( 517:) 514:) 511:s 508:, 505:F 502:( 492:i 484:( 464:) 461:) 458:X 455:( 452:F 449:( 444:0 436:= 433:) 430:X 427:( 424:) 421:F 411:0 403:( 393:X 391:( 389:F 385:s 371:Y 365:X 362:: 359:f 349:F 335:F 312:F 290:Y 286:Z 279:X 275:Z 271:: 268:f 264:Z 243:Y 237:X 234:: 231:f 205:n 201:L 197:G 193:B 177:= 171:B 151:G 148:B 134:G 113:) 110:U 107:, 101:( 85:U 81:S 20:)

Index

Homotopy sheaf
homotopy theory
presheaf
site
category
topological spaces
simplicial sets
contravariant functor
simplicial object
sheaves
étale site
nerves
model structures
Stack (mathematics)
hypercovering
weak equivalence
homotopy limit
obstruction theory
cubical set
N-group (category theory)
"Stacks and Non-abelian cohomology"
Jardine 2007
Model structures on simplicial presheaves
ISBN
1-4020-1833-9
Zbl
1063.55004
"Simplicial presheaves"
Simplicial presheaves and derived algebraic geometry
J.F. Jardine's homepage

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.