Knowledge (XXG)

Hopf maximum principle

Source đź“ť

267: 99: 48:
in the domain then the function is constant. The simple idea behind Hopf's proof, the comparison technique he introduced for this purpose, has led to an enormous range of important applications and generalizations.
619: 515: 553: 645: 765: 466: 442: 262:{\displaystyle Lu=\sum _{ij}a_{ij}(x){\frac {\partial ^{2}u}{\partial x_{i}\partial x_{j}}}+\sum _{i}b_{i}(x){\frac {\partial u}{\partial x_{i}}}\geq 0} 25: 400:. In the later sections of his original paper, however, Hopf considered a more general situation which permits certain nonlinear operators 396: 565: 699: 675: 770: 40:
proved in 1927 that if a function satisfies a second order partial differential inequality of a certain kind in a domain of
368:
are just functions. If they are known to be continuous then it is sufficient to demand pointwise positive definiteness of
413: 381: 471: 28:
and has been described as the "classic and bedrock result" of that theory. Generalizing the maximum principle for
306: 445: 535: 726: 33: 624: 695: 671: 405: 29: 21: 451: 427: 734: 468:
has a smooth boundary), slightly more can be said. If in addition to the assumptions above,
281: 748: 709: 744: 705: 388: 730: 690:
Hopf, Eberhard (2002), Morawetz, Cathleen S.; Serrin, James B.; Sinai, Yakov G. (eds.),
409: 759: 392: 37: 717:
Pucci, Patrizia; Serrin, James (2004), "The strong maximum principle revisited",
665: 328: 739: 273: 45: 380:
It is usually thought that the Hopf maximum principle applies only to
614:{\displaystyle {\frac {\partial u}{\partial \nu }}(x_{0})>0} 404:
and, in some cases, leads to uniqueness statements in the
627: 568: 538: 474: 454: 430: 102: 93:
function which satisfies the differential inequality
387:. In particular, this is the point of view taken by 639: 613: 547: 509: 460: 436: 261: 694:, Providence, RI: American Mathematical Society, 692:Selected works of Eberhard Hopf with commentaries 510:{\displaystyle u\in C^{1}({\overline {\Omega }})} 8: 738: 670:. American Mathematical Soc. p. 28. 626: 596: 569: 567: 537: 494: 485: 473: 453: 429: 244: 226: 211: 201: 185: 172: 154: 147: 129: 116: 101: 766:Elliptic partial differential equations 667:Elliptic Partial Differential Equations 656: 26:elliptic partial differential equations 555:, then for any outward direction ν at 7: 580: 572: 542: 539: 496: 455: 431: 397:Methoden der mathematischen Physik 237: 229: 178: 165: 151: 14: 719:Journal of Differential Equations 664:Han, Qing; Lin, Fanghua (2011). 548:{\displaystyle \partial \Omega } 309:in Ω and the coefficients 602: 589: 504: 491: 223: 217: 144: 138: 24:in the theory of second order 1: 382:linear differential operators 499: 32:which was already known to 787: 276:(connected open subset of 740:10.1016/j.jde.2003.05.001 640:{\displaystyle u\equiv M} 446:interior sphere property 53:Mathematical formulation 771:Mathematical principles 461:{\displaystyle \Omega } 437:{\displaystyle \Omega } 305:) is locally uniformly 641: 615: 549: 521:takes a maximum value 511: 462: 438: 335:takes a maximum value 263: 18:Hopf maximum principle 642: 616: 550: 512: 463: 439: 414:Monge–Ampère equation 264: 625: 566: 536: 472: 452: 428: 280:) Ω, where the 100: 731:2004JDE...196....1P 637: 611: 545: 507: 458: 434: 420:Boundary behaviour 259: 206: 124: 30:harmonic functions 587: 502: 448:(for example, if 412:operator and the 406:Dirichlet problem 350:The coefficients 307:positive definite 251: 197: 192: 112: 22:maximum principle 778: 751: 742: 712: 682: 681: 661: 646: 644: 643: 638: 620: 618: 617: 612: 601: 600: 588: 586: 578: 570: 554: 552: 551: 546: 516: 514: 513: 508: 503: 495: 490: 489: 467: 465: 464: 459: 443: 441: 440: 435: 282:symmetric matrix 268: 266: 265: 260: 252: 250: 249: 248: 235: 227: 216: 215: 205: 193: 191: 190: 189: 177: 176: 163: 159: 158: 148: 137: 136: 123: 786: 785: 781: 780: 779: 777: 776: 775: 756: 755: 716: 702: 689: 686: 685: 678: 663: 662: 658: 653: 623: 622: 592: 579: 571: 564: 563: 561: 534: 533: 531: 481: 470: 469: 450: 449: 426: 425: 422: 377:on the domain. 376: 367: 358: 339:in Ω then 326: 317: 300: 291: 240: 236: 228: 207: 181: 168: 164: 150: 149: 125: 98: 97: 88: 79: 55: 12: 11: 5: 784: 782: 774: 773: 768: 758: 757: 754: 753: 714: 700: 684: 683: 676: 655: 654: 652: 649: 636: 633: 630: 610: 607: 604: 599: 595: 591: 585: 582: 577: 574: 562:, there holds 559: 544: 541: 529: 506: 501: 498: 493: 488: 484: 480: 477: 457: 433: 424:If the domain 421: 418: 410:mean curvature 372: 363: 354: 322: 313: 296: 287: 270: 269: 258: 255: 247: 243: 239: 234: 231: 225: 222: 219: 214: 210: 204: 200: 196: 188: 184: 180: 175: 171: 167: 162: 157: 153: 146: 143: 140: 135: 132: 128: 122: 119: 115: 111: 108: 105: 84: 77: 54: 51: 44:and attains a 13: 10: 9: 6: 4: 3: 2: 783: 772: 769: 767: 764: 763: 761: 750: 746: 741: 736: 732: 728: 724: 720: 715: 711: 707: 703: 701:0-8218-2077-X 697: 693: 688: 687: 679: 677:9780821853139 673: 669: 668: 660: 657: 650: 648: 634: 631: 628: 608: 605: 597: 593: 583: 575: 558: 528: 524: 520: 486: 482: 478: 475: 447: 419: 417: 415: 411: 407: 403: 399: 398: 394: 390: 386: 383: 378: 375: 371: 366: 362: 357: 353: 348: 346: 342: 338: 334: 330: 325: 321: 316: 312: 308: 304: 299: 295: 290: 286: 283: 279: 275: 256: 253: 245: 241: 232: 220: 212: 208: 202: 198: 194: 186: 182: 173: 169: 160: 155: 141: 133: 130: 126: 120: 117: 113: 109: 106: 103: 96: 95: 94: 92: 87: 83: 76: 72: 68: 64: 60: 52: 50: 47: 43: 39: 38:Eberhard Hopf 35: 31: 27: 23: 19: 722: 718: 691: 666: 659: 556: 526: 522: 518: 423: 401: 395: 384: 379: 373: 369: 364: 360: 355: 351: 349: 344: 340: 336: 332: 327:are locally 323: 319: 314: 310: 302: 297: 293: 288: 284: 277: 271: 90: 85: 81: 74: 70: 66: 62: 58: 56: 41: 17: 15: 725:(1): 1–66, 525:at a point 274:open domain 760:Categories 651:References 632:≡ 584:ν 581:∂ 573:∂ 543:Ω 540:∂ 500:¯ 497:Ω 479:∈ 456:Ω 432:Ω 393:Hilbert's 254:≥ 238:∂ 230:∂ 199:∑ 179:∂ 166:∂ 152:∂ 114:∑ 36:in 1839, 444:has the 408:for the 343:≡ 749:2025185 727:Bibcode 710:1985954 621:unless 389:Courant 329:bounded 89:) be a 80:, ..., 46:maximum 747:  708:  698:  674:  272:in an 331:. If 34:Gauss 20:is a 696:ISBN 672:ISBN 606:> 517:and 391:and 57:Let 16:The 735:doi 723:196 532:in 73:= ( 69:), 762:: 745:MR 743:, 733:, 721:, 706:MR 704:, 647:. 416:. 374:ij 359:, 356:ij 347:. 318:, 315:ij 298:ji 292:= 289:ij 61:= 752:. 737:: 729:: 713:. 680:. 635:M 629:u 609:0 603:) 598:0 594:x 590:( 576:u 560:0 557:x 530:0 527:x 523:M 519:u 505:) 492:( 487:1 483:C 476:u 402:L 385:L 370:a 365:i 361:b 352:a 345:M 341:u 337:M 333:u 324:i 320:b 311:a 303:x 301:( 294:a 285:a 278:R 257:0 246:i 242:x 233:u 224:) 221:x 218:( 213:i 209:b 203:i 195:+ 187:j 183:x 174:i 170:x 161:u 156:2 145:) 142:x 139:( 134:j 131:i 127:a 121:j 118:i 110:= 107:u 104:L 91:C 86:n 82:x 78:1 75:x 71:x 67:x 65:( 63:u 59:u 42:R

Index

maximum principle
elliptic partial differential equations
harmonic functions
Gauss
Eberhard Hopf
maximum
open domain
symmetric matrix
positive definite
bounded
linear differential operators
Courant
Hilbert's
Methoden der mathematischen Physik
Dirichlet problem
mean curvature
Monge–Ampère equation
interior sphere property
Elliptic Partial Differential Equations
ISBN
9780821853139
ISBN
0-8218-2077-X
MR
1985954
Bibcode
2004JDE...196....1P
doi
10.1016/j.jde.2003.05.001
MR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑