Knowledge (XXG)

Hot start PCR

Source 📝

246:
heating time also means that the procedure is not compatible for certain procedures such as the one tube, single buffer reverse transcription-PCR method which requires lower temperature to undergo the reverse transcription step. In chemically modified hot start PCR, the amplification process of DNA can be negatively affected firstly due to a significant increase in the reactivation time required for the polymerase to activate and secondly if the length of the target DNA template is too long. In antibody based procedures, each enzyme requires a different antibody and therefore the cost to perform the procedure is higher. There is also evidence that many commercial hot start enzymes actually have some level of activity prior to denaturation, and few suppliers provide any information about testing for this residual activity. This means that the benefits attributed to hot start enzymes may not be realized, or at best will vary between batches or manufacturer.
233:
temperature and significantly decreases the formation of primer-dimers by preventing primers from binding to one another before the PCR process has begun as well as limiting non-specific priming. Similarly, hot start PCR inhibits the binding of primers to the template sequences which have a low homology which leads to mispriming. It can also improve specificity and sensitivity, due to the stringent conditions, as well as increase the product yield of the targeted fragment. In antibody based hot start PCR, the polymerase is activated after the initial denaturation step during the cycling process, therefore decreasing the time required. This also leads to a high
191:
protecting group will be removed during the heat activation step. The hot start dNTP, dA, dT, dC and dG replace the natural nucleotides. Using all four of the modified nucleotides is recommended, however, previous research shows that by replacing either one or two of the natural nucleotides with the modified dNTPs would be enough to ensure that non-specific amplification does not occur. Another chemical modification of nucleic acid is through the heat-reversible covalent modification which acts to impede the hybridisation of the primers to the template of interest. The guanosine amino group interact with glyoxal to form dG.
87:
mixture, are the cause behind the synthesis of by-products such as primer dimer and mis-priming. Mis-priming greatly impedes and reduces the efficiency of PCR amplification through actively competing with the target sequences for amplification. Similarly, primer dimers form complexes which decreases the amount of copy number amplifications obtained. This can be controlled by implementing hot start PCR which allows primer extensions to be blocked until the optimal temperatures are met.
54: 135:
Taq DNA polymerase into the reaction and allowing the amplification process to start. Platinum Taq DNA polymerase and AccuStart Taq DNA polymerase ( both developed by Ayoub Rashtchian at Life technologies and Quanta BioSciences, respectively) are examples of commercially available antibody based hot start Taq DNA polymerases. These Taq DNA polymerase are precomplexed with a mixture of monoclonal antibodies specific to Taq DNA polymerase.
1520: 94:) are prevented from reacting in the PCR mixture until the optimal temperatures are met through physical separation or chemical modifications. Hot start PCR can also occur when the Taq polymerase is inhibited/inactivated or its addition is delayed until optimal annealing temperatures, through deoxyribonucleotide triphosphate modifications or by modifying the primers through caging and 974: 203:
form a linear structure instead, which enables the primer to attach to the target segment and begin PCR. Actually, there is a more stable configuration to the hairpin primers termed ‘double-bubble’ primers, that form a head to tail homodimer configuration that can be utilized both for reverse- transcription and for hot- start PCR.
115: 45:
inactive or are inhibited until the optimal annealing temperature is reached. Inhibiting formation of non-specific PCR products, especially in early cycles, results in a substantial increase in sensitivity of amplification by PCR. This is of utmost importance in diagnostic applications of PCR or RT-PCR.
245:
Along with its advantages, hot start PCR also has limitations which must be considered before implementing the method. Hot start PCR requires the addition of heat for longer periods of time as opposed to conventional PCR, therefore, the template DNA is more susceptible to being damaged. The increased
171:
Freezing acts as a form of physical separation much like the wax beads. The reaction mixture containing primers, the template strand, water and deoxyribonucleotide triphosphate (dNTP) is frozen before Taq polymerase and the remaining PCR components are added on top of the frozen mixture. This acts to
141:
A physical barrier is created between Taq DNA polymerase and the remainder of the PCR components by the wax beads which are temperature dependent. Once the temperature rises over 70 °C, during the denaturation step in the first cycle, the wax bead melts, allowing the Taq DNA polymerase to escape
134:
The enzyme linked antibodies inactivate the Taq DNA polymerase. The antibodies link and bind to the polymerase, preventing early DNA amplification which could occur at lower temperatures. Once the optimal annealing temperature is met, the antibodies will begin to degrade and dissociate, releasing the
164:
The PCR machine is heated in advance whilst the components are mixed over ice and then immediately placed into the PCR machine once it reaches optimum temperature. This would eliminate the warm-up process required, reduce non-specific annealing of the primers and ensures that any miss paired primers
122:
Hot start PCR is a method which prevents DNA polymerase extension at lower temperature to prevent non-specific binding to minimise yield loss. Hot start PCR reduces the amount of non-specific binding through limiting reagents until the heating steps of PCR – limit the reaction early by limiting Taq
68:
technique used to amplify specific DNA segments by several orders of magnitude. The specific segments of DNA is amplified over three processes, denaturation, annealing and extension – where the DNA strands are separated by raising the temperature to the optimal from room temperature before primers
27:
due to non-specific DNA amplification at room (or colder) temperatures. Many variations and modifications of the PCR procedure have been developed in order to achieve higher yields; hot start PCR is one of them. Hot start PCR follows the same principles as the conventional PCR - in that it uses DNA
232:
Hot start PCR is advantageous in that it requires less handling and reduces the risk of contamination. Hot start PCR can either be chemically modified or antibody based which provide different advantages to the procedure. In chemically modified hot start PCR, the procedure can be taken under room
202:
Certain secondary structure may impede the functions of the primers. For example, oligonucleotides with a hairpin structure cannot act efficiently as a primer. However, after heating the reaction mix to the annealing temperature the primer will undergo a conformation change allowing the primer to
148:
Oligonucleotides are short polymers of nucleic acid which easily bind. Highly specific oligonucleotides, such as aptamers, bind to Taq DNA polymerase at lower temperatures making it inactive in the mixture. Only at higher temperatures will the oligonucleotides separate from the Taq allowing it to
190:
Hot start dNTP can be chemically modified to include a heat sensitive protecting group at the 3 prime terminus. This modification will prevent the nucleotides from interacting with the Taq polymerase to bind to the template strand until after the optimal temperatures are reached therefore, the
44:
Through these additional methods, hot start PCR is able to decrease the amount of non-specific amplifications which naturally occur during lower temperatures – which remains a problem for conventional PCR. These modifications work overall to ensure that specific enzymes in solution will remain
86:
In conventional PCR, lower temperatures below the optimal annealing temperature (50-65 °C) results in off target modifications such as non-specific amplifications where primers will bind non-specifically to the nucleic acid. These non-specific primer complexes, which are in excess in the
210:
A caging group which is a protecting group that is photochemically removable, such as caged thymidine phosphoramidites, is incorporated into a oligonucleotide primer.  This allows the function of the primer to be activated and deactivated through the use of UV irradiation (365 nm).
224:, providing a hot start for the reaction as there is no magnesium for the DNA polymerase until during the thermal cycling stage. During thermal cycling, the magnesium will dissolve back into solution and become available for the polymerase to use allowing it to function normally. 152:
These are the most effective methods for hot start PCR, the enzyme linked antibodies and highly specific oligonucleotides methods in particular are most suited during procedures which require a shorter inactivation time. However, other methods are known to be implemented such as:
178:
The components of PCR in the reaction mix are prepared and heated without the addition of Taq. Taq is only later introduced into the mixture once the optimal temperature is reached. However, this method is the least reliable and may lead to a contamination of the components.
82:
are kept separate until the mixture is heated to the specific annealing temperature. This reduces annealing time, which in turn reduces the likelihood of non-specific DNA extension and the influence of non-specific primer binding prior to denaturation.
801: 530: 988:
Ailenberg, M and Silverman, M, 2000-11-1, Controlled hot start and improved specificity in carrying out PCR utilizing touch-up and loop incorporated primers (TULIPS),Biotechniques, 29(5):1018- 1022,doi: 10.2144/00295st03,PMID: 11084864
77:
or anneal to DNA non-specifically. During the PCR procedure, DNA polymerase will extend any piece of DNA with bound primers, generating target products but also nonspecific products which lower the yield. In hot start PCR, some of the
32:
and late addition of Taq polymerase, to increase product yield as well as provide a higher specificity and sensitivity. Non-specific binding and priming or formation of primer dimers are minimized by completing the reaction mix after
101:
Hot start PCR is often a better approach opposed to traditional PCR in circumstances where there is a low concentration of DNA in the reaction mix, the DNA template is highly complex, or if there are several pairs of
142:
past the barrier and be released into the reaction – starting the amplification process. The wax layer then moves to the top of the reaction mixture during the amplification stage to later act as a vapour barrier.
219:
Magnesium is required in PCR and acts as a co-factor because Taq polymerase is magnesium dependent. Increasing the concentration of magnesium and phosphate to the standard buffer reagents creates a magnesium
972:, Bonner, Alex, "Reversible chemical modification of nucleic acids and improved method for nucleic acid hybridization", published 2003-08-28, assigned to BioLink Partners Inc. 1055:
Ailenberg, M, Kapus, A and Rotstein, OD, 2021-09-14, Improved SARS-CoV-2 PCR detection and genotyping with double-bubble primers, Biotechniques,71 (6):587-597, DOI: 10.2144/btn-2021-0063
28:
polymerase to synthesise DNA from a single stranded template. However, it utilizes additional heating and separation methods, such as inactivating or inhibiting the binding of
1269: 123:
DNA polymerase in a reaction. Non-specific binding often leads to primer dimers and mis-primed/false primed targets. These can be rectified through modified methods such as:
73:, which is slightly active at low temperatures. In conventional PCR, the reaction mix is completed at room temperature, and due to DNA polymerase activity, primers may form 268:
Sharkey DJ, Scalice ER, Christy KG, Atwood SM, Daiss JL (May 1994). "Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction".
613:
Lebedev, Alexandre V.; Paul, Natasha; Yee, Joyclyn; Timoshchuk, Victor A.; Shum, Jonathan; Miyagi, Kei; Kellum, Jack; Hogrefe, Richard I.; Zon, Gerald (November 2008).
41:
activity in low temperatures, use of modified deoxyribonucleotide triphosphates (dNTPs), and the physical addition of one of the essential reagents after denaturation.
1448: 1408: 1436: 408: 1466: 1262: 182:
Another method is through deoxyribonucleotide triphosphate mediated hot start PCR which modifies the nucleotide bases through a protecting group.
1389: 1477: 1442: 1426: 1540: 1255: 1460: 1414: 584: 514: 337: 1420: 1510: 862:"3′-Protected 2′-Deoxynucleoside 5′-Triphosphates as a Tool for Heat-Triggered Activation of Polymerase Chain Reaction" 1299: 34: 118:
PCR vs. hot start PCR: contrasting PCR to hot start PCR, by showing their methods and resulting PCR product on a gel.
234: 1278: 497:
van Pelt-Verkuil E, van Belkum A, Hays JP, eds. (2008). "Variants and Adaptations of the Standard PCR Protocol".
221: 61: 20: 1309: 91: 1065:
Young, Douglas D.; Edwards, Wesleigh F.; Lusic, Hrvoje; Lively, Mark O.; Deiters, Alexander (2008-01-10).
969: 1379: 920:
Koukhareva, I.; Haoqiang, H.; Yee, J.; Shum, J.; Paul, N.; Hogrefe, R. I.; Lebedev, A. V. (2008-09-01).
1340: 452: 1175:
Barnes, Wayne M; Rowlyk, Katherine R (June 2002). "Magnesium precipitate hot start method for PCR".
1364: 1304: 95: 1497: 1369: 1359: 1354: 476: 293: 131:
Enzyme linked antibodies/Taq DNA polymerase complexed with Anti Taq DNA polymerase antibodies:
53: 1344: 1233: 1192: 1157: 1139: 1100: 1082: 1038: 1020: 1001:"PCR hot start using primers with the structure of molecular beacons (hairpin-like structure)" 951: 943: 899: 881: 769: 751: 709: 691: 652: 634: 590: 580: 510: 468: 389: 381: 343: 333: 285: 65: 364:
Green, Michael R.; Sambrook, Joseph (May 2018). "Hot Start Polymerase Chain Reaction (PCR)".
37:. Some ways to complete reaction mixes at high temperatures involve modifications that block 1402: 1223: 1184: 1147: 1131: 1090: 1074: 1028: 1012: 933: 889: 873: 759: 743: 699: 683: 642: 626: 615:"Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance" 502: 460: 373: 325: 277: 1394: 1335: 832: 409:"Polymerase Chain Reaction (PCR)- Principle, Procedure, Types, Applications and Animation" 103: 1212:"Many commercial hot-start polymerases demonstrate activity prior to thermal activation" 456: 1524: 1374: 1349: 1247: 1152: 1119: 1095: 1066: 894: 861: 764: 731: 730:
Schoenbrunner, Nancy J; Gupta, Amar P; Young, Karen K Y; Will, Stephen G (2017-01-01).
647: 614: 70: 38: 29: 1033: 1000: 704: 671: 1534: 1492: 732:"Covalent modification of primers improves PCR amplification specificity and yield" 480: 297: 74: 24: 999:
Kaboev, O. K.; Luchkina, L. A.; Tret’iakov, A. N.; Bahrmand, A. R. (2000-11-01).
922:"Heat Activatable 3'-modified dNTPs: Synthesis and Application for Hot Start PCR" 506: 329: 1487: 747: 551: 211:
Therefore, primers can be activated after the annealing temperature is reached.
1519: 1327: 324:. Methods in Molecular Biology. Vol. 630. Humana Press. pp. 301–18. 1143: 1086: 1024: 947: 885: 755: 695: 638: 594: 385: 1016: 1237: 1196: 1188: 1161: 1104: 1042: 955: 903: 773: 713: 656: 393: 377: 347: 90:
In hot start PCR, important reagents (such as DNA polymerase and magnesium
938: 921: 672:"Cold‐sensitive mutants of Taq DNA polymerase provide a hot start for PCR" 472: 289: 1454: 687: 630: 281: 670:
Kermekchiev, Milko B.; Tzekov, Anatoly; Barnes, Wayne M. (2003-11-01).
79: 69:
bind and polymerase aligns nucleotides to the template strand. It uses
1228: 1211: 1135: 877: 1078: 464: 113: 114: 1251: 1120:"Multiplex polymerase chain reaction: A practical approach" 802:"How is Hot-Start Technology Beneficial For Your PCR - AU" 23:(PCR) that reduces the presence of undesired products and 57:
Procedure of traditional polymerase chain reaction (PCR)
1455:
Co-amplification at lower denaturation temperature PCR
1508: 531:"How is Hot-Start Technology Beneficial For Your PCR" 499:
Principles and Technical Aspects of PCR Amplification
186:
Deoxyribonucleotide triphosphate (dNTP) modifications
1476: 1388: 1326: 1286: 1118:Markoulatos, P.; Siafakas, N.; Moncany, M. (2002). 860:Koukhareva, Inna; Lebedev, Alexandre (2009-06-15). 443:Birch DE (May 1996). "Simplified hot start PCR". 1449:Multiplex ligation-dependent probe amplification 1409:Reverse transcription polymerase chain reaction 552:"DNTP - The School of Biomedical Sciences Wiki" 320:Paul N, Shum J, Le T (2010). "Hot start PCR". 1263: 127:Inactivation/inhibition of Taq DNA polymerase 8: 786:Westfall et.al. (1997), Focus 19.3, page 46. 1437:Overlap extension polymerase chain reaction 1067:"Light-triggered polymerase chain reaction" 1270: 1256: 1248: 501:. Springer Netherlands. pp. 231–276. 1227: 1151: 1094: 1032: 937: 893: 763: 703: 646: 52: 1515: 1467:Random amplification of polymorphic DNA 1124:Journal of Clinical Laboratory Analysis 255: 1403:Quantitative polymerase chain reaction 915: 913: 855: 853: 827: 825: 823: 821: 796: 794: 792: 725: 723: 608: 606: 604: 263: 261: 259: 7: 1210:Stevens AJ, et al. (Aug 2016). 492: 490: 438: 436: 434: 432: 430: 428: 359: 357: 315: 313: 311: 309: 307: 1443:Multiplex polymerase chain reaction 1427:Touchdown polymerase chain reaction 157:Late addition of Taq DNA polymerase 19:is a modified form of conventional 145:Highly specific oligonucleotides: 14: 1461:Digital polymerase chain reaction 1415:Inverse polymerase chain reaction 207:Photochemically removable cages: 1518: 1421:Nested polymerase chain reaction 215:Controlled addition of magnesium 970:US application 20030162199 926:Nucleic Acids Symposium Series 577:Diagnostic molecular pathology 172:prevent non-specific binding. 165:in the mixture are separated. 1: 1177:Molecular and Cellular Probes 736:Biology Methods and Protocols 579:. : Elsevier Academic Press. 507:10.1007/978-1-4020-6241-4_12 366:Cold Spring Harbor Protocols 330:10.1007/978-1-60761-629-0_19 407:Aryal, Sagar (2015-04-23). 1557: 833:"What is a hot start PCR?" 1541:Polymerase chain reaction 1279:Polymerase chain reaction 748:10.1093/biomethods/bpx011 62:Polymerase chain reaction 21:polymerase chain reaction 1071:Chemical Communications 175:Later addition of Taq: 1189:10.1006/mcpr.2002.0407 1005:Nucleic Acids Research 676:Nucleic Acids Research 619:Nucleic Acids Research 378:10.1101/pdb.prot095125 119: 58: 1017:10.1093/nar/28.21.e94 413:Microbiology Info.com 372:(5): pdb.prot095125. 199:Secondary structure: 117: 56: 866:Analytical Chemistry 806:www.thermofisher.com 106:primers in the PCR. 939:10.1093/nass/nrn131 575:Coleman WB (2016). 457:1996Natur.381..445B 282:10.1038/nbt0594-506 96:secondary structure 979:, since abandoned. 688:10.1093/nar/gkg813 631:10.1093/nar/gkn575 556:teaching.ncl.ac.uk 120: 59: 1506: 1505: 1229:10.2144/000114481 1136:10.1002/jcla.2058 878:10.1021/ac8026977 872:(12): 4955–4962. 837:Genetic Education 682:(21): 6139–6147. 66:molecular biology 1548: 1523: 1522: 1514: 1316:Final elongation 1272: 1265: 1258: 1249: 1242: 1241: 1231: 1207: 1201: 1200: 1172: 1166: 1165: 1155: 1115: 1109: 1108: 1098: 1079:10.1039/B715152G 1062: 1056: 1053: 1047: 1046: 1036: 996: 990: 986: 980: 978: 977: 973: 966: 960: 959: 941: 917: 908: 907: 897: 857: 848: 847: 845: 844: 829: 816: 815: 813: 812: 798: 787: 784: 778: 777: 767: 727: 718: 717: 707: 667: 661: 660: 650: 610: 599: 598: 572: 566: 565: 563: 562: 548: 542: 541: 539: 538: 527: 521: 520: 494: 485: 484: 465:10.1038/381445a0 440: 423: 422: 420: 419: 404: 398: 397: 361: 352: 351: 322:RT-PCR Protocols 317: 302: 301: 265: 195:Modified primers 1556: 1555: 1551: 1550: 1549: 1547: 1546: 1545: 1531: 1530: 1529: 1517: 1509: 1507: 1502: 1480: 1472: 1445:(multiplex PCR) 1392: 1384: 1322: 1282: 1276: 1246: 1245: 1209: 1208: 1204: 1174: 1173: 1169: 1117: 1116: 1112: 1064: 1063: 1059: 1054: 1050: 998: 997: 993: 987: 983: 975: 968: 967: 963: 919: 918: 911: 859: 858: 851: 842: 840: 831: 830: 819: 810: 808: 800: 799: 790: 785: 781: 729: 728: 721: 669: 668: 664: 612: 611: 602: 587: 574: 573: 569: 560: 558: 550: 549: 545: 536: 534: 529: 528: 524: 517: 496: 495: 488: 451:(6581): 445–6. 442: 441: 426: 417: 415: 406: 405: 401: 363: 362: 355: 340: 319: 318: 305: 267: 266: 257: 252: 243: 230: 217: 206: 197: 188: 159: 129: 112: 104:oligonucleotide 51: 12: 11: 5: 1554: 1552: 1544: 1543: 1533: 1532: 1528: 1527: 1504: 1503: 1501: 1500: 1495: 1490: 1484: 1482: 1474: 1473: 1471: 1470: 1464: 1458: 1452: 1446: 1440: 1434: 1429: 1424: 1418: 1412: 1406: 1399: 1397: 1386: 1385: 1383: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1338: 1332: 1330: 1324: 1323: 1321: 1320: 1317: 1314: 1313: 1312: 1307: 1302: 1294: 1293:Initialization 1290: 1288: 1284: 1283: 1277: 1275: 1274: 1267: 1260: 1252: 1244: 1243: 1222:(6): 293–296. 1202: 1183:(3): 167–171. 1167: 1110: 1073:(4): 462–464. 1057: 1048: 991: 981: 961: 932:(1): 259–260. 909: 849: 817: 788: 779: 719: 662: 600: 585: 567: 543: 533:. Thermofisher 522: 515: 486: 424: 399: 353: 338: 303: 270:Bio/Technology 254: 253: 251: 248: 242: 239: 229: 226: 216: 213: 196: 193: 187: 184: 158: 155: 128: 125: 111: 108: 98:manipulation. 71:DNA polymerase 50: 47: 39:DNA polymerase 30:Taq polymerase 13: 10: 9: 6: 4: 3: 2: 1553: 1542: 1539: 1538: 1536: 1526: 1521: 1516: 1512: 1499: 1496: 1494: 1491: 1489: 1486: 1485: 1483: 1479: 1475: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1433: 1432:Hot start PCR 1430: 1428: 1425: 1422: 1419: 1417:(inverse PCR) 1416: 1413: 1410: 1407: 1404: 1401: 1400: 1398: 1396: 1391: 1387: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1342: 1339: 1337: 1334: 1333: 1331: 1329: 1325: 1318: 1315: 1311: 1308: 1306: 1303: 1301: 1298: 1297: 1295: 1292: 1291: 1289: 1285: 1280: 1273: 1268: 1266: 1261: 1259: 1254: 1253: 1250: 1239: 1235: 1230: 1225: 1221: 1217: 1216:BioTechniques 1213: 1206: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1171: 1168: 1163: 1159: 1154: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1114: 1111: 1106: 1102: 1097: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1058: 1052: 1049: 1044: 1040: 1035: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 995: 992: 985: 982: 971: 965: 962: 957: 953: 949: 945: 940: 935: 931: 927: 923: 916: 914: 910: 905: 901: 896: 891: 887: 883: 879: 875: 871: 867: 863: 856: 854: 850: 838: 834: 828: 826: 824: 822: 818: 807: 803: 797: 795: 793: 789: 783: 780: 775: 771: 766: 761: 757: 753: 749: 745: 742:(1): bpx011. 741: 737: 733: 726: 724: 720: 715: 711: 706: 701: 697: 693: 689: 685: 681: 677: 673: 666: 663: 658: 654: 649: 644: 640: 636: 632: 628: 624: 620: 616: 609: 607: 605: 601: 596: 592: 588: 586:9780128011577 582: 578: 571: 568: 557: 553: 547: 544: 532: 526: 523: 518: 516:9781402062414 512: 508: 504: 500: 493: 491: 487: 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 439: 437: 435: 433: 431: 429: 425: 414: 410: 403: 400: 395: 391: 387: 383: 379: 375: 371: 367: 360: 358: 354: 349: 345: 341: 339:9781607616283 335: 331: 327: 323: 316: 314: 312: 310: 308: 304: 299: 295: 291: 287: 283: 279: 275: 271: 264: 262: 260: 256: 249: 247: 240: 238: 236: 227: 225: 223: 214: 212: 208: 204: 200: 194: 192: 185: 183: 180: 176: 173: 169: 166: 162: 156: 154: 150: 146: 143: 139: 136: 132: 126: 124: 116: 109: 107: 105: 99: 97: 93: 88: 84: 81: 76: 75:primer dimers 72: 67: 63: 55: 48: 46: 42: 40: 36: 31: 26: 25:primer dimers 22: 18: 17:Hot start PCR 1493:Kjell Kleppe 1431: 1423:(nested PCR) 1390:Optimization 1300:Denaturation 1219: 1215: 1205: 1180: 1176: 1170: 1130:(1): 47–51. 1127: 1123: 1113: 1070: 1060: 1051: 1008: 1004: 994: 984: 964: 929: 925: 869: 865: 841:. Retrieved 839:. 2019-03-03 836: 809:. Retrieved 805: 782: 739: 735: 679: 675: 665: 625:(20): e131. 622: 618: 576: 570: 559:. Retrieved 555: 546: 535:. Retrieved 525: 498: 448: 444: 416:. Retrieved 412: 402: 369: 365: 321: 276:(5): 506–9. 273: 269: 244: 231: 218: 209: 205: 201: 198: 189: 181: 177: 174: 170: 167: 163: 161:Preheating: 160: 151: 147: 144: 140: 137: 133: 130: 121: 100: 89: 85: 60: 43: 35:denaturation 16: 15: 1498:Alice Chien 1488:Kary Mullis 1011:(21): e94. 241:Limitations 235:specificity 222:precipitate 138:Wax beads: 64:(PCR) is a 1481:and people 1457:(COLD-PCR) 1328:Polymerase 1319:Final hold 1310:Elongation 1281:techniques 843:2020-05-29 811:2020-05-29 561:2019-10-09 537:2019-10-03 418:2020-05-29 250:References 228:Advantages 168:Freezing: 49:Background 1305:Annealing 1287:Procedure 1144:0887-8013 1087:1364-548X 1025:0305-1048 948:0261-3166 886:0003-2700 756:2396-8923 696:0305-1048 639:1362-4962 595:960448665 386:1940-3402 92:cofactors 1535:Category 1439:(OE-PCR) 1411:(RT-PCR) 1395:variants 1238:25967906 1197:12219733 1162:11835531 1105:18188468 1043:11058144 956:18776352 904:19438248 774:32161793 714:14576300 657:18796527 394:29717052 348:20301005 80:reagents 1525:Biology 1478:History 1463:(dePCR) 1153:6808141 1096:3760149 895:2712722 765:6994073 648:2582603 481:4267296 473:8632804 453:Bibcode 298:2885453 290:7764710 149:react. 110:Methods 1511:Portal 1469:(RAPD) 1451:(MLPA) 1405:(qPCR) 1336:Klenow 1296:Cycle 1236:  1195:  1160:  1150:  1142:  1103:  1093:  1085:  1041:  1034:113163 1031:  1023:  976:  954:  946:  902:  892:  884:  772:  762:  754:  712:  705:275455 702:  694:  655:  645:  637:  593:  583:  513:  479:  471:  445:Nature 392:  384:  346:  336:  296:  288:  477:S2CID 294:S2CID 1393:and 1365:Vent 1343:and 1234:PMID 1193:PMID 1158:PMID 1140:ISSN 1101:PMID 1083:ISSN 1039:PMID 1021:ISSN 952:PMID 944:ISSN 900:PMID 882:ISSN 770:PMID 752:ISSN 710:PMID 692:ISSN 653:PMID 635:ISSN 591:OCLC 581:ISBN 511:ISBN 469:PMID 390:PMID 382:ISSN 370:2018 344:PMID 334:ISBN 286:PMID 1380:Tfu 1375:Tli 1370:Pwo 1360:Pfu 1355:Tth 1350:Taq 1224:doi 1185:doi 1148:PMC 1132:doi 1091:PMC 1075:doi 1029:PMC 1013:doi 934:doi 890:PMC 874:doi 760:PMC 744:doi 700:PMC 684:doi 643:PMC 627:doi 503:doi 461:doi 449:381 374:doi 326:doi 278:doi 1537:: 1345:T7 1341:T4 1232:. 1220:61 1218:. 1214:. 1191:. 1181:16 1179:. 1156:. 1146:. 1138:. 1128:16 1126:. 1122:. 1099:. 1089:. 1081:. 1069:. 1037:. 1027:. 1019:. 1009:28 1007:. 1003:. 950:. 942:. 930:52 928:. 924:. 912:^ 898:. 888:. 880:. 870:81 868:. 864:. 852:^ 835:. 820:^ 804:. 791:^ 768:. 758:. 750:. 738:. 734:. 722:^ 708:. 698:. 690:. 680:31 678:. 674:. 651:. 641:. 633:. 623:36 621:. 617:. 603:^ 589:. 554:. 509:. 489:^ 475:. 467:. 459:. 447:. 427:^ 411:. 388:. 380:. 368:. 356:^ 342:. 332:. 306:^ 292:. 284:. 274:12 272:. 258:^ 237:. 1513:: 1271:e 1264:t 1257:v 1240:. 1226:: 1199:. 1187:: 1164:. 1134:: 1107:. 1077:: 1045:. 1015:: 958:. 936:: 906:. 876:: 846:. 814:. 776:. 746:: 740:2 716:. 686:: 659:. 629:: 597:. 564:. 540:. 519:. 505:: 483:. 463:: 455:: 421:. 396:. 376:: 350:. 328:: 300:. 280::

Index

polymerase chain reaction
primer dimers
Taq polymerase
denaturation
DNA polymerase

Polymerase chain reaction
molecular biology
DNA polymerase
primer dimers
reagents
cofactors
secondary structure
oligonucleotide

precipitate
specificity



doi
10.1038/nbt0594-506
PMID
7764710
S2CID
2885453



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.