Knowledge (XXG)

Iterative learning control

Source πŸ“

22: 137:
Repetition allows the system to sequentially improve tracking accuracy, in effect learning the required input needed to track the reference as closely as possible. The learning process uses information from previous repetitions to improve the control signal, ultimately enabling a suitable control
339:
becomes large, whilst the rate of this convergence represents the desirable practical need for the learning process to be rapid. There is also the need to ensure good algorithm performance even in the presence of uncertainty about the details of process dynamics. The operation
146:
principle yields conditions under which perfect tracking can be achieved but the design of the control algorithm still leaves many decisions to be made to suit the application. A typical, simple control law is of the form:
437: 360:
is crucial to achieving design objectives (i.e. trading off fast convergence and robust performance) and ranges from simple scalar gains to sophisticated optimization computations.
213: 51: 317: 270: 243: 132: 459: 358: 337: 290: 461:
is a low-pass filtering matrix. This removes high-frequency disturbances which may otherwise be aplified during the learning process.
319:. Achieving perfect tracking through iteration is represented by the mathematical requirement of convergence of the input signals as 646: 616: 517: 73: 749:
Wang Y.; Gao F.; Doyle III, F.J. (2009). "Survey on iterative learning control, repetitive control, and run-to-run control".
143: 34: 44: 38: 30: 363:
In many cases a low-pass filter is added to the input to improve performance. The control law then takes the form
660:(2006). "A Survey of Iterative Learning Control A learning-based method for high-performance tracking control". 572:(2006). "A Survey of Iterative Learning Control A learning-based method for high-performance tracking control". 55: 368: 101:
rigs. In each of these tasks the system is required to perform the same action over and over again with high
782: 98: 93:
for systems that work in a repetitive mode. Examples of systems that operate in a repetitive manner include
153: 102: 686: 550: 638: 105:. This action is represented by the objective of accurately tracking a chosen reference signal 657: 642: 612: 569: 513: 758: 735: 720: 707: 678: 669:
Owens D.H.; Feng K. (20 July 2003). "Parameter optimization in iterative learning control".
630: 595: 542: 533:
Owens D.H.; Feng K. (20 July 2003). "Parameter optimization in iterative learning control".
490: 295: 248: 221: 108: 90: 586:
S.Arimoto, S. Kawamura; F. Miyazaki (1984). "Bettering operation of robots by learning".
481:
S.Arimoto, S. Kawamura; F. Miyazaki (1984). "Bettering operation of robots by learning".
698:
Owens D.H.; HΓ€tΓΆnen J. (2005). "Iterative learning control β€” An optimization paradigm".
444: 343: 322: 275: 776: 690: 631: 554: 711: 762: 682: 626: 546: 740: 139: 599: 494: 94: 728:
International Journal of Applied Mathematics and Computer Science
15: 721:"Iterative Learning Control – Monotonicity and Optimization" 245:
is the input to the system during the pth repetition,
447: 371: 346: 325: 298: 278: 251: 224: 156: 111: 609:
Iterative Learning Control for Deterministic Systems
510:
Iterative Learning Control for Deterministic Systems
272:
is the tracking error during the pth repetition and
453: 431: 352: 331: 311: 284: 264: 237: 207: 126: 292:is a design parameter representing operations on 43:but its sources remain unclear because it lacks 633:Linear and Nonlinear Iterative Learning Control 97:arm manipulators, chemical batch processes and 8: 89:(ILC) is an open-loop control approach of 739: 446: 420: 401: 376: 370: 345: 324: 303: 297: 277: 256: 250: 229: 223: 199: 180: 161: 155: 110: 74:Learn how and when to remove this message 432:{\displaystyle u_{p+1}=Q(u_{p}+K*e_{p})} 473: 208:{\displaystyle u_{p+1}=u_{p}+K*e_{p}} 7: 14: 671:International Journal of Control 664:. Vol. 26. pp. 96–114. 576:. Vol. 26. pp. 96–114. 535:International Journal of Control 20: 712:10.1016/j.arcontrol.2005.01.003 763:10.1016/j.jprocont.2009.09.006 656:Bristow, D. A.; Tharayil, M.; 568:Bristow, D. A.; Tharayil, M.; 426: 394: 121: 115: 1: 719:Daley S.; Owens D.H. (2008). 662:IEEE Control Systems Magazine 574:IEEE Control Systems Magazine 683:10.1080/0020717031000121410 637:. Springer-Verlag. p.  611:. London: Springer-Verlag. 547:10.1080/0020717031000121410 512:. London: Springer-Verlag. 134:on a finite time interval. 799: 751:Journal of Process Control 588:Journal of Robotic Systems 483:Journal of Robotic Systems 87:Iterative Learning Control 741:10.2478/v10006-008-0026-7 700:Annual Reviews in Control 29:This article includes a 58:more precise citations. 600:10.1002/rob.4620010203 495:10.1002/rob.4620010203 455: 433: 354: 333: 313: 286: 266: 239: 209: 128: 456: 434: 355: 334: 314: 312:{\displaystyle e_{p}} 287: 267: 265:{\displaystyle e_{p}} 240: 238:{\displaystyle u_{p}} 210: 129: 629:; Ying Tan. (2003). 607:Moore, K.L. (1993). 508:Moore, K.L. (1993). 445: 369: 344: 323: 296: 276: 249: 222: 154: 127:{\displaystyle r(t)} 109: 138:action to be found 99:reliability testing 451: 429: 350: 329: 309: 282: 262: 235: 205: 124: 31:list of references 757:(10): 1589–1600. 677:(11): 1059–1069. 541:(11): 1059–1069. 454:{\displaystyle Q} 353:{\displaystyle K} 332:{\displaystyle p} 285:{\displaystyle K} 84: 83: 76: 790: 766: 745: 743: 725: 715: 694: 665: 652: 636: 622: 603: 578: 577: 565: 559: 558: 530: 524: 523: 505: 499: 498: 478: 460: 458: 457: 452: 438: 436: 435: 430: 425: 424: 406: 405: 387: 386: 359: 357: 356: 351: 338: 336: 335: 330: 318: 316: 315: 310: 308: 307: 291: 289: 288: 283: 271: 269: 268: 263: 261: 260: 244: 242: 241: 236: 234: 233: 214: 212: 211: 206: 204: 203: 185: 184: 172: 171: 133: 131: 130: 125: 91:tracking control 79: 72: 68: 65: 59: 54:this article by 45:inline citations 24: 23: 16: 798: 797: 793: 792: 791: 789: 788: 787: 773: 772: 770: 748: 723: 718: 697: 668: 655: 649: 625: 619: 606: 585: 582: 581: 567: 566: 562: 532: 531: 527: 520: 507: 506: 502: 480: 479: 475: 470: 464: 443: 442: 416: 397: 372: 367: 366: 342: 341: 321: 320: 299: 294: 293: 274: 273: 252: 247: 246: 225: 220: 219: 195: 176: 157: 152: 151: 107: 106: 80: 69: 63: 60: 49: 35:related reading 25: 21: 12: 11: 5: 796: 794: 786: 785: 783:Control theory 775: 774: 768: 767: 746: 734:(3): 179–293. 716: 695: 666: 658:Alleyne, A. G. 653: 647: 623: 617: 604: 594:(2): 123–140. 580: 579: 570:Alleyne, A. G. 560: 525: 518: 500: 489:(2): 123–140. 472: 471: 469: 466: 450: 428: 423: 419: 415: 412: 409: 404: 400: 396: 393: 390: 385: 382: 379: 375: 349: 328: 306: 302: 281: 259: 255: 232: 228: 216: 215: 202: 198: 194: 191: 188: 183: 179: 175: 170: 167: 164: 160: 144:internal model 123: 120: 117: 114: 82: 81: 39:external links 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 795: 784: 781: 780: 778: 771: 764: 760: 756: 752: 747: 742: 737: 733: 729: 722: 717: 713: 709: 705: 701: 696: 692: 688: 684: 680: 676: 672: 667: 663: 659: 654: 650: 648:3-540-40173-3 644: 640: 635: 634: 628: 624: 620: 618:0-387-19707-9 614: 610: 605: 601: 597: 593: 589: 584: 583: 575: 571: 564: 561: 556: 552: 548: 544: 540: 536: 529: 526: 521: 519:0-387-19707-9 515: 511: 504: 501: 496: 492: 488: 484: 477: 474: 467: 465: 462: 448: 439: 421: 417: 413: 410: 407: 402: 398: 391: 388: 383: 380: 377: 373: 364: 361: 347: 326: 304: 300: 279: 257: 253: 230: 226: 200: 196: 192: 189: 186: 181: 177: 173: 168: 165: 162: 158: 150: 149: 148: 145: 141: 135: 118: 112: 104: 100: 96: 92: 88: 78: 75: 67: 57: 53: 47: 46: 40: 36: 32: 27: 18: 17: 769: 754: 750: 731: 727: 706:(1): 57–70. 703: 699: 674: 670: 661: 632: 608: 591: 587: 573: 563: 538: 534: 528: 509: 503: 486: 482: 476: 463: 440: 365: 362: 217: 136: 86: 85: 70: 61: 50:Please help 42: 627:Jian Xin Xu 140:iteratively 64:August 2011 56:introducing 468:References 691:120288506 555:120288506 414:∗ 193:∗ 103:precision 777:Category 52:improve 689:  645:  615:  553:  516:  441:where 218:where 142:. The 724:(PDF) 687:S2CID 551:S2CID 95:robot 37:, or 643:ISBN 613:ISBN 514:ISBN 759:doi 736:doi 708:doi 679:doi 639:177 596:doi 543:doi 491:doi 779:: 755:19 753:. 732:18 730:. 726:. 704:29 702:. 685:. 675:76 673:. 641:. 590:. 549:. 539:76 537:. 485:. 41:, 33:, 765:. 761:: 744:. 738:: 714:. 710:: 693:. 681:: 651:. 621:. 602:. 598:: 592:1 557:. 545:: 522:. 497:. 493:: 487:1 449:Q 427:) 422:p 418:e 411:K 408:+ 403:p 399:u 395:( 392:Q 389:= 384:1 381:+ 378:p 374:u 348:K 327:p 305:p 301:e 280:K 258:p 254:e 231:p 227:u 201:p 197:e 190:K 187:+ 182:p 178:u 174:= 169:1 166:+ 163:p 159:u 122:) 119:t 116:( 113:r 77:) 71:( 66:) 62:( 48:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
tracking control
robot
reliability testing
precision
iteratively
internal model
doi
10.1002/rob.4620010203
ISBN
0-387-19707-9
doi
10.1080/0020717031000121410
S2CID
120288506
Alleyne, A. G.
doi
10.1002/rob.4620010203
ISBN
0-387-19707-9
Jian Xin Xu
Linear and Nonlinear Iterative Learning Control
177
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑