Knowledge (XXG)

Affine Grassmannian

Source 📝

626: 562: 217: 467: 255:
by representable functors. As such, although it is not a scheme, it may be thought of as a union of schemes, and this is enough to profitably apply geometric methods to study it.
520: 152: 124: 649: 27:
For the variety of all k-dimensional affine subspaces of a finite-dimensional vector space (a smooth finite-dimensional variety over k), see
86: 28: 577: 537: 341: 177: 675: 297: 252: 427: 470: 240: 480: 58: 129: 104: 645: 171: 639: 407: 345: 43: 78: 669: 17: 523: 159: 62: 35: 54: 416:
is in fact ind-projective, i.e., an inductive limit of projective schemes.
251:-algebras to sets which is not itself representable, but which has a 158:-algebras and the category of sets respectively. Through the 610: 589: 549: 486: 433: 77:))) and which describes the representation theory of the 344:, it is also possible to specify this data by fixing an 580: 540: 483: 430: 180: 132: 107: 621:{\displaystyle G({\mathcal {K}})/G({\mathcal {O}})} 557:{\displaystyle \operatorname {Spec} {\mathcal {O}}} 620: 556: 514: 461: 212:{\displaystyle X:k{\text{-Alg}}\to \mathrm {Set} } 211: 146: 118: 8: 247:. The affine Grassmannian is a functor from 641:Affine Flag Manifolds and Principal Bundles 609: 608: 597: 588: 587: 579: 548: 547: 539: 485: 484: 482: 432: 431: 429: 284:the set of isomorphism classes of pairs ( 198: 190: 179: 133: 131: 111: 106: 93:Definition of Gr via functor of points 462:{\displaystyle {\mathcal {K}}=k((t))} 312:is an isomorphism, defined over Spec 7: 638:Alexander Schmitt (11 August 2010). 276:is the functor that associates to a 574:is identified with the coset space 239:. We then say that this functor is 530:. By choosing a trivialization of 205: 202: 199: 140: 137: 134: 25: 515:{\displaystyle {\mathcal {O}}=k]} 57:—a colimit of finite-dimensional 87:geometric Satake correspondence 615: 605: 594: 584: 509: 506: 500: 497: 456: 453: 447: 444: 195: 147:{\displaystyle \mathrm {Set} } 119:{\displaystyle k{\text{-Alg}}} 61:—which can be thought of as a 29:affine Grassmannian (manifold) 1: 85:through what is known as the 154:the category of commutative 420:Definition as a coset space 298:principal homogeneous space 262:be an algebraic group over 692: 644:. Springer. pp. 3–6. 101:be a field, and denote by 26: 342:Beauville–Laszlo theorem 174:, which is the functor 622: 558: 516: 463: 213: 148: 120: 623: 559: 517: 471:formal Laurent series 464: 388:a trivialization on ( 214: 170:is determined by its 149: 121: 18:Infinite Grassmannian 578: 538: 481: 428: 178: 130: 105: 522:the ring of formal 268:affine Grassmannian 65:for the loop group 40:affine Grassmannian 676:Algebraic geometry 618: 554: 512: 459: 209: 144: 116: 651:978-3-0346-0287-7 424:Let us denote by 324:with the trivial 193: 172:functor of points 114: 16:(Redirected from 683: 662: 660: 658: 627: 625: 624: 619: 614: 613: 601: 593: 592: 563: 561: 560: 555: 553: 552: 521: 519: 518: 513: 490: 489: 468: 466: 465: 460: 437: 436: 218: 216: 215: 210: 208: 194: 191: 153: 151: 150: 145: 143: 125: 123: 122: 117: 115: 112: 21: 691: 690: 686: 685: 684: 682: 681: 680: 666: 665: 656: 654: 652: 637: 634: 576: 575: 573: 536: 535: 479: 478: 426: 425: 422: 415: 408:reductive group 401: 383: 346:algebraic curve 275: 176: 175: 128: 127: 103: 102: 95: 44:algebraic group 32: 23: 22: 15: 12: 11: 5: 689: 687: 679: 678: 668: 667: 664: 663: 650: 633: 630: 617: 612: 607: 604: 600: 596: 591: 586: 583: 569: 551: 546: 543: 511: 508: 505: 502: 499: 496: 493: 488: 458: 455: 452: 449: 446: 443: 440: 435: 421: 418: 411: 397: 379: 271: 243:by the scheme 207: 204: 201: 197: 189: 186: 183: 142: 139: 136: 110: 94: 91: 79:Langlands dual 24: 14: 13: 10: 9: 6: 4: 3: 2: 688: 677: 674: 673: 671: 653: 647: 643: 642: 636: 635: 631: 629: 602: 598: 581: 572: 568:-points of Gr 567: 564:, the set of 544: 541: 533: 529: 525: 503: 494: 491: 476: 472: 469:the field of 450: 441: 438: 419: 417: 414: 409: 405: 400: 395: 392: −  391: 387: 382: 378: 374: 370: 367:, and taking 366: 362: 358: 354: 350: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 274: 269: 265: 261: 256: 254: 250: 246: 242: 241:representable 238: 234: 230: 226: 222: 187: 184: 181: 173: 169: 166:over a field 165: 161: 157: 108: 100: 92: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 49:over a field 48: 45: 41: 37: 30: 19: 655:. Retrieved 640: 570: 565: 534:over all of 531: 527: 524:power series 474: 423: 412: 403: 398: 393: 389: 385: 380: 376: 372: 368: 364: 360: 356: 352: 348: 340:)). By the 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 293: 289: 285: 281: 277: 272: 267: 263: 259: 257: 248: 244: 236: 232: 228: 224: 220: 219:which takes 167: 163: 160:Yoneda lemma 155: 98: 96: 82: 74: 70: 66: 63:flag variety 50: 46: 39: 33: 375:-bundle on 235:-points of 223:to the set 162:, a scheme 36:mathematics 657:1 November 632:References 304:over Spec 253:filtration 55:ind-scheme 545:⁡ 477:, and by 292:), where 280:-algebra 196:→ 670:Category 371:to be a 328:-bundle 402:. When 359:-point 332:× Spec 320:)), of 59:schemes 648:  308:] and 266:. The 81:group 53:is an 42:of an 38:, the 526:over 473:over 406:is a 351:over 296:is a 231:) of 659:2012 646:ISBN 542:Spec 410:, Gr 384:and 355:, a 300:for 258:Let 192:-Alg 126:and 113:-Alg 97:Let 363:on 34:In 672:: 628:. 336:(( 316:(( 288:, 270:Gr 89:. 73:(( 661:. 616:) 611:O 606:( 603:G 599:/ 595:) 590:K 585:( 582:G 571:G 566:k 550:O 532:E 528:k 510:] 507:] 504:t 501:[ 498:[ 495:k 492:= 487:O 475:k 457:) 454:) 451:t 448:( 445:( 442:k 439:= 434:K 413:G 404:G 399:A 396:) 394:x 390:X 386:φ 381:A 377:X 373:G 369:E 365:X 361:x 357:k 353:k 349:X 338:t 334:A 330:G 326:G 322:E 318:t 314:A 310:φ 306:A 302:G 294:E 290:φ 286:E 282:A 278:k 273:G 264:k 260:G 249:k 245:X 237:X 233:A 229:A 227:( 225:X 221:A 206:t 203:e 200:S 188:k 185:: 182:X 168:k 164:X 156:k 141:t 138:e 135:S 109:k 99:k 83:G 75:t 71:k 69:( 67:G 51:k 47:G 31:. 20:)

Index

Infinite Grassmannian
affine Grassmannian (manifold)
mathematics
algebraic group
ind-scheme
schemes
flag variety
Langlands dual
geometric Satake correspondence
Yoneda lemma
functor of points
representable
filtration
principal homogeneous space
Beauville–Laszlo theorem
algebraic curve
reductive group
formal Laurent series
power series
Affine Flag Manifolds and Principal Bundles
ISBN
978-3-0346-0287-7
Category
Algebraic geometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.