Knowledge (XXG)

Input impedance

Source 📝

82: 259:, the losses of energy in conductors due to the reactive component of the impedance can be significant. These losses manifest themselves in a phenomenon called phase imbalance, where the current is out of phase (lagging behind or ahead) with the voltage. Therefore, the product of the current and the voltage is less than what it would be if the current and voltage were in phase. With DC sources, reactive circuits have no impact, therefore power factor correction is not necessary. 843:. The losses due to input impedance (loss) in these circuits will be minimized, and the voltage at the input of the amplifier will be close to voltage as if the amplifier circuit was not connected. When a device whose input impedance could cause significant degradation of the signal is used, often a device with a high input impedance and a low output impedance is used to minimize its effects. 880:). Pre-amplifiers designed for high input impedance may have a slightly higher effective noise voltage at the input (while providing a low effective noise current), and so slightly more noisy than an amplifier designed for a specific low-impedance source, but in general a relatively low-impedance source configuration will be more resistant to noise (particularly 576: 262:
For a circuit to be modelled with an ideal source, output impedance, and input impedance; the circuit's input reactance can be sized to be the negative of the output reactance at the source. In this scenario, the reactive component of the input impedance cancels the reactive component of the output
144:
The values of the input and output impedance are often used to evaluate the electrical efficiency of networks by breaking them up into multiple stages and evaluating the efficiency of the interaction between each stage independently. To minimize electrical losses, the output impedance of the signal
112:
If the load network were replaced by a device with an output impedance equal to the input impedance of the load network (equivalent circuit), the characteristics of the source-load network would be the same from the perspective of the connection point. So, the voltage across and the current through
895:
In analog video circuits, impedance mismatch can cause "ghosting", where the time-delayed echo of the principal image appears as a weak and displaced image (typically to the right of the principal image). In high-speed digital systems, such as HD video, reflections result in interference and
759:. Since the characteristic impedance for a homogeneous transmission line is based on geometry alone and is therefore constant, and the load impedance can be measured independently, the matching condition holds regardless of the placement of the load (before or after the transmission line). 377: 360:
transfer states that for a given source maximum power will be transferred when the resistance of the source is equal to the resistance of the load and the power factor is corrected by canceling out the reactance. When this occurs the circuit is said to be
346: 145:
should be insignificant in comparison to the input impedance of the network being connected, as the gain is equivalent to the ratio of the input impedance to the total impedance (input impedance + output impedance). In this case,
131:
If one were to create a circuit with equivalent properties across the input terminals by placing the input impedance across the load of the circuit and the output impedance in series with the signal source,
571:{\displaystyle {\begin{aligned}Z_{in}&=Z_{out}^{*}\\&=\left\vert Z_{out}\right\vert e^{-j\Theta _{out}}\\&=\operatorname {Re} (Z_{out})-j\operatorname {Im} (Z_{out}).\\\end{aligned}}} 382: 274: 368:
to the signals impedance. Note this only maximizes the power transfer, not the efficiency of the circuit. When the power transfer is optimized the circuit only runs at 50% efficiency.
195: 812: 628: 235: 709: 661: 739: 263:
impedance at the source. The resulting equivalent circuit is purely resistive in nature, and there are no losses due to phase imbalance in the source or the load.
269: 892:
Signal reflections caused by an impedance mismatch at the end of a transmission line can result in distortion and potential damage to the driving circuitry.
85:
The circuit to the left of the central set of open circles models the source circuit, while the circuit to the right models the connected circuit.
1058: 74:
of impedance) is a measure of the load network's propensity to draw current. The source network is the portion of the network that transmits
51: 116:
Therefore, the input impedance of the load and the output impedance of the source determine how the source current and voltage change.
1011: 991: 749:
and the impedance of the load circuit have to be equal (or "matched"). If the impedance matches, the connection is known as a
1053: 996:"Aortic input impedance in normal man: relationship to pressure wave forms", JP Murgo, N Westerhof, JP Giolma, SA Altobelli 123:
circuit of the electrical network uses the concept of input impedance to determine the impedance of the equivalent circuit.
907:
will occur. This in turn can cause a reactive pulse of high voltage that can destroy the transmitter's final output stage.
899:
The standing waves created by the mismatch are periodic regions of higher than normal voltage. If this voltage exceeds the
241:
The input impedance of the driven stage (load) is much larger than the output impedance of the drive stage (source).
120: 855: 859: 71: 31: 357: 151: 900: 765: 55: 47: 584: 200: 1038: 929: 840: 755: 252: 39: 1002:
An excellent introduction to the importance of impedance and impedance matching can be found in
81: 1028: 1007: 987: 937: 923: 828: 746: 678: 672: 363: 633: 956: 844: 836: 714: 43: 341:{\displaystyle {\begin{aligned}Z_{in}&=X-j\operatorname {Im} (Z_{out})\\\end{aligned}}} 966: 941: 256: 59: 921:
To maximise power transmission for radio frequency power systems the circuits should be
1023: 997: 961: 745:
on the transmission line. To minimize reflections, the characteristic impedance of the
742: 75: 835:, are designed to have an input impedance several orders of magnitude higher than the 1047: 904: 851: 133: 933: 741:, the load network will reflect back some of the source signal. This can create 17: 947:, which consists of an impedance matching device and the radiating element(s). 971: 832: 67: 881: 877: 78:, and the load network is the portion of the network that consumes power. 1029:
Interconnection of two audio units - Input impedance and output impedance
1033: 27:
Measure of the opposition to current flow by an external electrical load
1024:
Calculation of the damping factor and the damping of impedance bridging
915: 911: 910:
In RF systems, typical values for line and termination impedance are
870: 847:
or impedance-matching transformers are often used for these effects.
113:
the input terminals would be identical to the chosen load network.
753:, and the process of correcting an impedance mismatch is called 581:
When there is no reactive component this equation simplifies to
839:
of the source device connected to that input. This is called
986:, Winfield Hill, Paul Horowitz, Cambridge University Press, 940:(a balanced pair, a coaxial cable, or a waveguide), to the 850:
The input impedance for high-impedance amplifiers (such as
903:
strength of the insulating material of the line then an
768: 717: 681: 636: 587: 380: 272: 203: 154: 711:, does not match the impedance of the load network, 136:could be used to calculate the transfer function. 806: 733: 703: 655: 622: 570: 340: 229: 189: 1004:A practical introduction to electronic circuits 371:The formula for complex conjugate matched is 94:is the output impedance seen by the load, and 8: 66:to the electrical source network. The input 103:is the input impedance seen by the source. 1006:, M H Jones, Cambridge University Press, 789: 773: 767: 722: 716: 686: 680: 641: 635: 608: 592: 586: 546: 512: 475: 464: 444: 420: 409: 389: 381: 379: 319: 281: 273: 271: 221: 208: 202: 175: 159: 153: 80: 671:When the characteristic impedance of a 862:) is often specified as a resistance 7: 42:is the measure of the opposition to 472: 25: 190:{\displaystyle Z_{in}\gg Z_{out}} 807:{\displaystyle Z_{in}=Z_{line}} 1059:Audio amplifier specifications 623:{\displaystyle Z_{in}=Z_{out}} 558: 539: 524: 505: 331: 312: 230:{\displaystyle Z_{L}\gg Z_{S}} 1: 896:potentially corrupt signal. 888:Radio frequency power systems 1039:Input Impedance Measurement 1075: 630:as the imaginary part of 866:a capacitance (e.g., 2.2 704:{\displaystyle Z_{line}} 1034:Impedance and Reactance 856:field effect transistor 656:{\displaystyle Z_{out}} 984:The Art of Electronics 833:operational amplifiers 808: 735: 734:{\displaystyle Z_{in}} 705: 657: 624: 572: 342: 231: 191: 104: 32:electrical engineering 1054:Electrical parameters 809: 736: 706: 658: 625: 573: 343: 232: 192: 140:Electrical efficiency 121:Thévenin's equivalent 84: 936:output, through the 901:dielectric breakdown 766: 715: 679: 634: 585: 378: 270: 201: 152: 831:, devices, such as 425: 841:impedance bridging 804: 756:impedance matching 751:matched connection 731: 701: 667:Impedance matching 653: 620: 568: 566: 405: 338: 336: 227: 187: 105: 40:electrical network 938:transmission line 924:complex conjugate 829:signal processing 823:Signal processing 747:transmission line 673:transmission line 364:complex conjugate 356:The condition of 16:(Redirected from 1066: 957:Output impedance 876: 869: 864:in parallel with 845:Voltage follower 837:output impedance 813: 811: 810: 805: 803: 802: 781: 780: 740: 738: 737: 732: 730: 729: 710: 708: 707: 702: 700: 699: 662: 660: 659: 654: 652: 651: 629: 627: 626: 621: 619: 618: 600: 599: 577: 575: 574: 569: 567: 557: 556: 523: 522: 492: 488: 487: 486: 485: 459: 455: 454: 429: 424: 419: 397: 396: 347: 345: 344: 339: 337: 330: 329: 289: 288: 236: 234: 233: 228: 226: 225: 213: 212: 196: 194: 193: 188: 186: 185: 167: 166: 102: 93: 62:network that is 50:), both static ( 21: 18:Input resistance 1074: 1073: 1069: 1068: 1067: 1065: 1064: 1063: 1044: 1043: 1020: 980: 967:Voltage divider 953: 928:throughout the 890: 874: 867: 858:amplifiers and 825: 820: 785: 769: 764: 763: 718: 713: 712: 682: 677: 676: 669: 637: 632: 631: 604: 588: 583: 582: 565: 564: 542: 508: 490: 489: 471: 460: 440: 436: 427: 426: 398: 385: 376: 375: 354: 335: 334: 315: 290: 277: 268: 267: 249: 217: 204: 199: 198: 171: 155: 150: 149: 142: 129: 110: 108:Input impedance 101: 95: 92: 86: 54:) and dynamic ( 36:input impedance 28: 23: 22: 15: 12: 11: 5: 1072: 1070: 1062: 1061: 1056: 1046: 1045: 1042: 1041: 1036: 1031: 1026: 1019: 1018:External links 1016: 1015: 1014: 1000: 994: 979: 976: 975: 974: 969: 964: 962:Damping factor 959: 952: 949: 889: 886: 824: 821: 819: 816: 815: 814: 801: 798: 795: 792: 788: 784: 779: 776: 772: 743:standing waves 728: 725: 721: 698: 695: 692: 689: 685: 668: 665: 650: 647: 644: 640: 617: 614: 611: 607: 603: 598: 595: 591: 579: 578: 563: 560: 555: 552: 549: 545: 541: 538: 535: 532: 529: 526: 521: 518: 515: 511: 507: 504: 501: 498: 495: 493: 491: 484: 481: 478: 474: 470: 467: 463: 458: 453: 450: 447: 443: 439: 435: 432: 430: 428: 423: 418: 415: 412: 408: 404: 401: 399: 395: 392: 388: 384: 383: 353: 352:Power transfer 350: 349: 348: 333: 328: 325: 322: 318: 314: 311: 308: 305: 302: 299: 296: 293: 291: 287: 284: 280: 276: 275: 248: 245: 244: 243: 238: 224: 220: 216: 211: 207: 184: 181: 178: 174: 170: 165: 162: 158: 141: 138: 128: 125: 109: 106: 99: 90: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1071: 1060: 1057: 1055: 1052: 1051: 1049: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1021: 1017: 1013: 1012:0-521-31312-0 1009: 1005: 1001: 999: 995: 993: 992:0-521-37095-7 989: 985: 982: 981: 977: 973: 970: 968: 965: 963: 960: 958: 955: 954: 950: 948: 946: 943: 939: 935: 931: 927: 925: 919: 917: 913: 908: 906: 902: 897: 893: 887: 885: 883: 879: 872: 865: 861: 857: 853: 848: 846: 842: 838: 834: 830: 822: 817: 799: 796: 793: 790: 786: 782: 777: 774: 770: 762: 761: 760: 758: 757: 752: 748: 744: 726: 723: 719: 696: 693: 690: 687: 683: 674: 666: 664: 648: 645: 642: 638: 615: 612: 609: 605: 601: 596: 593: 589: 561: 553: 550: 547: 543: 536: 533: 530: 527: 519: 516: 513: 509: 502: 499: 496: 494: 482: 479: 476: 468: 465: 461: 456: 451: 448: 445: 441: 437: 433: 431: 421: 416: 413: 410: 406: 402: 400: 393: 390: 386: 374: 373: 372: 369: 367: 365: 359: 358:maximum power 351: 326: 323: 320: 316: 309: 306: 303: 300: 297: 294: 292: 285: 282: 278: 266: 265: 264: 260: 258: 254: 246: 242: 239: 222: 218: 214: 209: 205: 182: 179: 176: 172: 168: 163: 160: 156: 148: 147: 146: 139: 137: 135: 126: 124: 122: 117: 114: 107: 98: 89: 83: 79: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1003: 983: 944: 922: 920: 909: 898: 894: 891: 863: 852:vacuum tubes 849: 826: 818:Applications 754: 750: 670: 580: 370: 362: 355: 261: 250: 247:Power factor 240: 143: 130: 118: 115: 111: 96: 87: 63: 35: 29: 934:transmitter 932:, from the 930:power chain 127:Calculation 1048:Categories 978:References 972:Dummy load 827:In modern 72:reciprocal 68:admittance 58:), into a 52:resistance 882:mains hum 663:is zero. 537:⁡ 528:− 503:⁡ 473:Θ 466:− 422:∗ 310:⁡ 301:− 255:carrying 215:≫ 169:≫ 134:Ohm's law 56:reactance 48:impedance 951:See also 253:circuits 64:external 942:antenna 926:matched 860:op-amps 366:matched 44:current 1010:  990:  945:system 875:  868:  251:In AC 38:of an 34:, the 257:power 76:power 70:(the 1008:ISBN 988:ISBN 916:75 Ω 914:and 912:50 Ω 197:(or 119:The 60:load 998:pdf 905:arc 884:). 873:∥ 1 30:In 1050:: 918:. 878:pF 871:MΩ 854:, 675:, 534:Im 500:Re 307:Im 800:e 797:n 794:i 791:l 787:Z 783:= 778:n 775:i 771:Z 727:n 724:i 720:Z 697:e 694:n 691:i 688:l 684:Z 649:t 646:u 643:o 639:Z 616:t 613:u 610:o 606:Z 602:= 597:n 594:i 590:Z 562:. 559:) 554:t 551:u 548:o 544:Z 540:( 531:j 525:) 520:t 517:u 514:o 510:Z 506:( 497:= 483:t 480:u 477:o 469:j 462:e 457:| 452:t 449:u 446:o 442:Z 438:| 434:= 417:t 414:u 411:o 407:Z 403:= 394:n 391:i 387:Z 332:) 327:t 324:u 321:o 317:Z 313:( 304:j 298:X 295:= 286:n 283:i 279:Z 237:) 223:S 219:Z 210:L 206:Z 183:t 180:u 177:o 173:Z 164:n 161:i 157:Z 100:L 97:Z 91:S 88:Z 46:( 20:)

Index

Input resistance
electrical engineering
electrical network
current
impedance
resistance
reactance
load
admittance
reciprocal
power

Thévenin's equivalent
Ohm's law
circuits
power
maximum power
complex conjugate
transmission line
standing waves
transmission line
impedance matching
signal processing
operational amplifiers
output impedance
impedance bridging
Voltage follower
vacuum tubes
field effect transistor
op-amps

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.