Knowledge

Interfacial polymerization

Source đź“ť

154: 17: 211:. These models provide either analytical or numerical solutions. The wide range of variables involved in interfacial polymerization has led to several different approaches and several different models. One of the more general models of interfacial polymerization, summarized by Berezkin and co-workers, involves treating interfacial polymerization as a heterogenous mass transfer combined with a second-order chemical reaction. In order to take into account different variables, this interfacial polymerization model is divided into three scales, yielding three different models: the kinetic model, the local model, and the macrokinetic model. 219:
Parameters determined using the local model include the mass transfer weight, the degree of polymerization, topology near the interface, and the molecular weight distribution of the polymer. Using local modeling, the dependence of monomer mass transfer characteristics and polymer characteristics as a function of kinetic, diffusion, and concentration factors can be analyzed. One approach to calculating a local model can be represented by the following differential equation:
167:
monomer dissolved in both phases, polymerization occurs on both sides. An interfacial polymerization reaction may proceed either stirred or unstirred. In a stirred reaction, the two phases are combined using vigorous agitation, resulting in a higher interfacial surface area and a higher polymer yield. In the case of capsule synthesis, the size of the capsule is directly determined by the stirring rate of the emulsion.
52: 694: 171:
monomer concentration, reactivity, solubility, the stability of the interface, and the number of functional groups present on the monomers. The identity of the organic solvent is of utmost importance, as it affects several other factors such as monomer diffusion, reaction rate, and polymer solubility and permeability. The number of
170:
Although interfacial polymerization appears to be a relatively straightforward process, there are several experimental variables that can be modified in order to design specific polymers or modify polymer characteristics. Some of the more notable variables include the identity of the organic solvent,
166:
In a liquid-solid interface, polymerization begins at the interface, and results in a polymer attached to the surface of the solid phase. In a liquid-liquid interface with monomer dissolved in one phase, polymerization occurs on only one side of the interface, whereas in liquid-liquid interfaces with
214:
The kinetic model is based on the principles of kinetics, assumes uniform chemical distribution, and describes the system at a molecular level. This model takes into account thermodynamic qualities such as mechanisms, activation energies, rate constants, and equilibrium constants. The kinetic model
1171:
and other applications. One added benefits of using polymers prepared by interfacial polymerization is that several properties, such as pore size and interconnectivity, can be fined-tuned to create a more ideal product for specific applications. For example, synthesizing a polymer with a pore size
218:
The local model is used to determine the characteristics of polymerization at a section around the interface, termed the diffusion boundary layer. This model can be used to describe a system in which the monomer distribution and concentration are inhomogeneous, and is restricted to a small volume.
183:
in order to provide additional mechanical strength, allowing delicate nano films to be used in industrial applications. In this case, a good support would consist of pores ranging from 1 to 100 nm. Free-standing films, by contrast, do not use a support, and are often used to synthesize unique
162:
The most commonly used interfacial polymerization methods fall into 3 broad types of interfaces: liquid-solid interfaces, liquid-liquid interfaces, and liquid-in-liquid emulsion interfaces. In the liquid-liquid and liquid-in-liquid emulsion interfaces, either one or both liquid phases may contain
1137:
OH). PANI nanofibers can be further fined-tuned by doping and modifying the polymer chain conformation, among other methods, to increase selectivity to certain gases. A typical PANI chemical sensor consists of a substrate, an electrode, and a selective polymer layer. PANI nanofibers, like other
377:
In the macrokinetic model, the progression of an entire system is predicted. One important assumption of the macrokinetic model is that each mass transfer process is independent, and can therefore be described by a local model. The macrokinetic model may be the most important, as it can provide
104:, usually synthesized via melt polymerization, was synthesized from diamine and diacid chloride monomers. The diacid chloride monomers were placed in an organic solvent (benzene) and the diamene monomers in a water phase, such that when the monomers reached the interface they would polymerize. 1076:
Interfacial polymerization has found much use in industrial applications, especially as a route to synthesize conducting polymers for electronics. Conductive polymers synthesized by interfacial polymerization such as polyaniline (PANI), Polypyrrole (PPy), poly(3,4-ethylenedioxythiophene), and
381:
More specific approaches to modeling interfacial polymerization are described by Ji and co-workers, and include modeling of thin-film composite (TFC) membranes, tubular fibers, hollow membranes, and capsules. These models take into account both reaction- and diffusion-controlled interfacial
80:
Interfacial polymerization (then termed "interfacial polycondensation") was first discovered by Emerson L. Wittbecker and Paul W. Morgan in 1959 as an alternative to the typically high-temperature and low-pressure melt polymerization technique. As opposed to melt polymerization, interfacial
1917:
Choi, Yeong Suk; Joo, Sang Hoon; Lee, Seol-Ah; You, Dae Jong; Kim, Hansu; Pak, Chanho; Chang, Hyuk; Seung, Doyoung (April 2006). "Surface Selective Polymerization of Polypyrrole on Ordered Mesoporous Carbon: Enhancing Interfacial Conductivity for Direct Methanol Fuel Cell Application".
184:
topologies such as micro- or nanocapsules. In the case of polyurethanes and polyamides especially, the film can be pulled continuously from the interface in an unstirred reaction, forming "ropes" of polymeric film. As the polymer precipitates, it can be withdrawn continuously.
387: 992: 337: 35:
occurs at the interface between two immiscible phases (generally two liquids), resulting in a polymer that is constrained to the interface. There are several variations of interfacial polymerization, which result in several types of polymer topologies, such as
157:
Five common types of interfacial polymerization interfaces (from left to right): liquid-solid, liquid-liquid, and liquid-in-liquid emulsion. There are two examples each for liquid-liquid and liquid-in-liquid emulsion, either using one monomer or
1212:
Compared to previous methods of capsule synthesis, interfacial polymerization is an easily modified synthesis that results in capsules with a wide range of properties and functionalities. Once synthesized, the capsules can enclose drugs,
1158:
applications. The polymerization of PPy onto the OMC reduces interfacial electrical resistances without altering the open mesopore structure, making PPy-coated OMC composites a more ideal material for fuel cells than plain OMCs.
1569:
De Cock, Liesbeth J.; De Koker, Stefaan; De Geest, Bruno G.; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B.; Antipina, Maria N. (2010-09-17). "Polymeric Multilayer Capsules in Drug Delivery".
175:
present on the monomer is also important, as it affects the polymer topology: a di-substituted monomer will form linear chains whereas a tri- or tetra-substituted monomer forms branched polymers.
1217:, and other nanoparticles, to list a few examples. Further fine-tuning of the chemical and topological properties of these polymer capsules could prove an effective route to create drug-delivery systems. 689:{\displaystyle t=-({E_{0} \over B_{0}}+{A_{0}D_{0} \over B_{0}^{2}}+{C_{0}A_{0}^{2} \over B_{0}^{2}})\ln(1-{X \over X_{max}})-{C_{0} \over 2B_{0}}X^{2}-({D_{0} \over B_{0}}+{C_{0}A_{0} \over B_{0}^{2}})X} 752: 1797:
Ji, J.; Dickson, J. M.; Childs, R. F.; McCarry, B. E. (December 1999). "Mathematical Model for the Formation of Thin-Film Composite Membranes by Interfacial Polymerization: Porous and Dense Films".
374:
is the thermodynamic rate of reaction. Although precise, no analytical solution exists for this differential equation, and as such solutions must be found using approximate or numerical techniques.
1068:
There are several assumptions made by these and similar models, including but not limited to uniformity of monomer concentration, temperature, and film density, and second-order reaction kinetics.
224: 20:
A typically experimental setup for interfacial polymerization. One phase is above the interface, and the other phase is below. Polymerization occurs where the two phases meet, at the interface.
382:
polymerization under non-steady-state conditions. One model is for thin film composite (TFC) membranes, and describes the thickness of the composite film as a function of time:
137:. In recent years, polymers synthesized by interfacial polymerization have been used in applications where a particular topological or physical property is desired, such as 1616:
Ji, J (2001-10-15). "Mathematical model for the formation of thin-film composite hollow fiber and tubular membranes by interfacial polymerization".
1646:
Morgan, Paul W.; Kwolek, Stephanie L. (November 1959). "Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces".
1097:
PANI nanofibers are the most commonly used for sensing applications. These nanofibers have been shown to detect various gaseous chemicals, such as
1509:
Li, Shichun; Wang, Zhi; Yu, Xingwei; Wang, Jixiao; Wang, Shichang (2012-06-26). "High-Performance Membranes with Multi-permselectivity for CO
187:
It is interesting to note that the molecular weight distribution of polymers synthesized by interfacial polymerization is broader than the
1967: 1457: 987:{\displaystyle t=A_{0}{R_{min}}^{5}E_{0}I_{4}+B_{0}{R_{min}}^{4}E_{0}I_{3}+C_{0}{R_{min}}^{2}E_{0}I_{2}+D_{0}{R_{min}}E_{0}I_{1}} 208: 332:{\displaystyle {\partial c_{i} \over \partial t}={\partial \over \partial y}(D_{i}{\partial c_{i} \over \partial y})+J_{i}} 188: 85: 1869:
Huang, Jiaxing; Virji, Shabnam; Weiller, Bruce H.; Kaner, Richard B. (2004-03-19). "Nanostructured Polyaniline Sensors".
195:
and the rate of reaction is high, this reaction mechanism tends to produce a small number of long polymer chains of high
191:
due to the high concentration of monomers near the interfacial site. Because the two solutions used in this reaction are
1167:
Composite polymer films synthesized via a liquid-solid interface are the most commonly used to synthesize membranes for
107:
Since 1959, interfacial polymerization has been extensively researched and used to prepare not only polyamides but also
153: 163:
monomers. There are also other interface categories, rarely used, including liquid-gas, solid-gas, and solid-solid.
1361: 81:
polymerization reactions can be accomplished using standard laboratory equipment and under atmospheric conditions.
28: 1714:
Berezkin, Anatoly V.; Khokhlov, Alexei R. (2006-09-15). "Mathematical modeling of interfacial polycondensation".
1155: 56: 215:
is typically incorporated into either the local or the macrokinetic model in order to provide greater accuracy.
378:
feedback on the efficiency of the reaction process, important in both laboratory and industrial applications.
1292:
Song, Yongyang; Fan, Jun-Bing; Wang, Shutao (January 2017). "Recent progress in interfacial polymerization".
1927: 1723: 1655: 1522: 1425: 1142:, detect by a change in electrical resistance/conductivity in response to the chemical environment. 16: 1231: 1151: 142: 1546: 138: 747:
Another model for interfacial polymerization of capsules, or encapsulation, is also described:
1972: 1943: 1894: 1886: 1814: 1739: 1587: 1538: 1309: 1098: 1416:
Wittbecker, Emerson L.; Morgan, Paul W. (November 1959). "Interfacial polycondensation. I.".
1935: 1878: 1844: 1806: 1766: 1731: 1663: 1625: 1579: 1530: 1472: 1433: 1373: 1301: 1078: 196: 172: 207:
Interfacial polymerization has proven difficult to model accurately due to its nature as a
1835:
Ji, J (2001-10-15). "Mathematical model for encapsulation by interfacial polymerization".
1168: 64: 1931: 1727: 1659: 1526: 1480: 1429: 1377: 1226: 1086: 32: 1848: 1629: 1961: 1139: 180: 134: 97: 1550: 116: 367:
is the molecular diffusion coefficient of the functional groups of interest, and
1667: 1476: 1437: 1214: 1065:
is the minimum value of the inside diameter of the polymeric capsule wall.
744:
is the maximum value of film thickness, which can be determined experimentally.
124: 108: 60: 41: 51: 1122: 192: 1947: 1890: 1818: 1743: 1313: 1110: 1082: 130: 112: 101: 45: 37: 1898: 1882: 1591: 1583: 1542: 1534: 1770: 1130: 120: 1735: 1305: 1102: 1939: 1810: 1456:
Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. (February 2012).
1757:
MacRitchie, F. (1969). "Mechanism of interfacial polymerization".
93: 89: 50: 84:
This first interfacial polymerization was accomplished using the
1458:"A recent progress in thin film composite membrane: A review" 1360:
Raaijmakers, Michiel J.T.; Benes, Nieck E. (December 2016).
1362:"Current trends in interfacial polymerization chemistry" 348:
is the molar concentration of functional groups in the
1172:
somewhere between the molecular size of hydrogen gas (
179:
Most interfacial polymerizations are synthesized on a
755: 390: 227: 1716:Journal of Polymer Science Part B: Polymer Physics 986: 688: 331: 1188:) results in a membrane selectively-permeable to 360:is a coordinate normal to the surface/interface, 1077:polythiophene (PTh) have found applications as 8: 1061:are constants determined by the system and R 133:, polysulfonamides, polyphenyl esters and 67:under Schotten-Baumann conditions to form 978: 968: 951: 946: 940: 927: 917: 907: 894: 889: 882: 869: 859: 849: 836: 831: 824: 811: 801: 791: 778: 773: 766: 754: 672: 667: 656: 646: 639: 628: 618: 612: 600: 587: 573: 567: 547: 538: 512: 507: 496: 491: 481: 474: 463: 458: 447: 437: 430: 419: 409: 403: 389: 323: 296: 286: 280: 258: 238: 228: 226: 1204:, effectively separating the compounds. 733:are constants determined by the system, 152: 15: 1572:Angewandte Chemie International Edition 1243: 1154:carbon (OMC) composites can be used in 1912: 1910: 1908: 1792: 1790: 1788: 1786: 1784: 1782: 1780: 1709: 1707: 1705: 1703: 1701: 1699: 1697: 352:th component of a monomer or polymer, 1864: 1862: 1860: 1858: 1830: 1828: 1695: 1693: 1691: 1689: 1687: 1685: 1683: 1681: 1679: 1677: 1411: 1409: 1407: 1355: 1353: 1351: 1349: 1347: 1345: 1343: 1287: 1285: 1283: 1281: 1279: 1277: 1275: 1273: 1271: 1269: 1267: 1208:Cargo-loading Micro- and Nanocapsules 7: 1641: 1639: 1611: 1609: 1607: 1605: 1603: 1601: 1564: 1562: 1560: 1504: 1502: 1500: 1451: 1449: 1447: 1405: 1403: 1401: 1399: 1397: 1395: 1393: 1391: 1389: 1387: 1341: 1339: 1337: 1335: 1333: 1331: 1329: 1327: 1325: 1323: 1265: 1263: 1261: 1259: 1257: 1255: 1253: 1251: 1249: 1247: 141:for electronics, water purification 1759:Transactions of the Faraday Society 145:, and cargo-loading microcapsules. 1378:10.1016/j.progpolymsci.2016.06.004 304: 289: 264: 260: 246: 231: 14: 1163:Separation/Purification Membranes 1871:Chemistry - A European Journal 680: 609: 561: 529: 520: 400: 313: 273: 1: 1849:10.1016/S0376-7388(01)00495-1 1630:10.1016/S0376-7388(01)00496-3 1294:Materials Chemistry Frontiers 1232:Interfacial polycondensation 1837:Journal of Membrane Science 1668:10.1002/pol.1959.1204013702 1618:Journal of Membrane Science 1477:10.1016/j.desal.2011.04.004 1438:10.1002/pol.1959.1204013701 1366:Progress in Polymer Science 737:is the film thickness, and 1989: 1648:Journal of Polymer Science 1418:Journal of Polymer Science 29:step-growth polymerization 25:Interfacial polymerization 1156:direct methanol fuel cell 189:Flory–Schulz distribution 88:, a method to synthesize 86:Schotten–Baumann reaction 57:Schotten-Baumann reaction 1968:Polymerization reactions 1184:) and carbon dioxide (CO 1883:10.1002/chem.200305211 1584:10.1002/anie.200906266 1535:10.1002/adma.201200638 988: 690: 333: 209:nonequilibrium process 159: 72: 48:, to name just a few. 21: 989: 691: 356:is the elapsed time, 334: 156: 54: 19: 1771:10.1039/TF9696502503 1089:, and nanoswitches. 753: 388: 225: 1932:2006MaMol..39.3275C 1728:2006JPoSB..44.2698B 1660:1959JPoSc..40..299M 1527:2012AdM....24.3196L 1430:1959JPoSc..40..289W 1150:PPy-coated ordered 677: 517: 501: 468: 203:Mathematical Models 139:conducting polymers 1736:10.1002/polb.20907 1515:Advanced Materials 1306:10.1039/C6QM00325G 984: 686: 663: 503: 487: 454: 329: 160: 100:. In this case, a 73: 22: 1940:10.1021/ma052363v 1811:10.1021/ma991377w 1722:(18): 2698–2724. 1578:(39): 6954–6973. 1521:(24): 3196–3200. 1099:hydrogen chloride 678: 634: 594: 559: 518: 469: 425: 311: 271: 253: 173:functional groups 71:-benzylacetamide. 1980: 1952: 1951: 1926:(9): 3275–3282. 1914: 1903: 1902: 1877:(6): 1314–1319. 1866: 1853: 1852: 1832: 1823: 1822: 1794: 1775: 1774: 1754: 1748: 1747: 1711: 1672: 1671: 1654:(137): 299–327. 1643: 1634: 1633: 1613: 1596: 1595: 1566: 1555: 1554: 1506: 1495: 1494: 1492: 1491: 1485: 1479:. Archived from 1462: 1453: 1442: 1441: 1424:(137): 289–297. 1413: 1382: 1381: 1357: 1318: 1317: 1300:(6): 1028–1040. 1289: 1199: 1198: 1197: 1183: 1182: 1181: 1079:chemical sensors 993: 991: 990: 985: 983: 982: 973: 972: 963: 962: 961: 945: 944: 932: 931: 922: 921: 912: 911: 906: 905: 904: 887: 886: 874: 873: 864: 863: 854: 853: 848: 847: 846: 829: 828: 816: 815: 806: 805: 796: 795: 790: 789: 788: 771: 770: 695: 693: 692: 687: 679: 676: 671: 662: 661: 660: 651: 650: 640: 635: 633: 632: 623: 622: 613: 605: 604: 595: 593: 592: 591: 578: 577: 568: 560: 558: 557: 539: 519: 516: 511: 502: 500: 495: 486: 485: 475: 470: 467: 462: 453: 452: 451: 442: 441: 431: 426: 424: 423: 414: 413: 404: 338: 336: 335: 330: 328: 327: 312: 310: 302: 301: 300: 287: 285: 284: 272: 270: 259: 254: 252: 244: 243: 242: 229: 197:molecular weight 55:An example of a 1988: 1987: 1983: 1982: 1981: 1979: 1978: 1977: 1958: 1957: 1956: 1955: 1916: 1915: 1906: 1868: 1867: 1856: 1834: 1833: 1826: 1796: 1795: 1778: 1756: 1755: 1751: 1713: 1712: 1675: 1645: 1644: 1637: 1615: 1614: 1599: 1568: 1567: 1558: 1512: 1508: 1507: 1498: 1489: 1487: 1483: 1460: 1455: 1454: 1445: 1415: 1414: 1385: 1359: 1358: 1321: 1291: 1290: 1245: 1240: 1223: 1210: 1203: 1200:, but not to CO 1196: 1193: 1192: 1191: 1189: 1187: 1180: 1177: 1176: 1175: 1173: 1169:reverse osmosis 1165: 1148: 1136: 1128: 1120: 1116: 1108: 1095: 1087:supercapacitors 1074: 1064: 1059: 1052: 1045: 1038: 1033: 1029: 1022: 1015: 1008: 1001: 974: 964: 947: 936: 923: 913: 890: 888: 878: 865: 855: 832: 830: 820: 807: 797: 774: 772: 762: 751: 750: 742: 731: 724: 717: 710: 703: 652: 642: 641: 624: 614: 596: 583: 579: 569: 543: 477: 476: 443: 433: 432: 415: 405: 386: 385: 372: 365: 346: 319: 303: 292: 288: 276: 263: 245: 234: 230: 223: 222: 205: 151: 78: 65:acetyl chloride 12: 11: 5: 1986: 1984: 1976: 1975: 1970: 1960: 1959: 1954: 1953: 1920:Macromolecules 1904: 1854: 1843:(1–2): 55–70. 1824: 1805:(2): 624–633. 1799:Macromolecules 1776: 1749: 1673: 1635: 1624:(1–2): 41–54. 1597: 1556: 1510: 1496: 1443: 1383: 1319: 1242: 1241: 1239: 1236: 1235: 1234: 1229: 1227:Polymerization 1222: 1219: 1209: 1206: 1201: 1194: 1185: 1178: 1164: 1161: 1147: 1144: 1140:chemiresistors 1134: 1126: 1118: 1114: 1106: 1094: 1091: 1073: 1070: 1062: 1057: 1050: 1043: 1036: 1031: 1027: 1020: 1013: 1006: 999: 981: 977: 971: 967: 960: 957: 954: 950: 943: 939: 935: 930: 926: 920: 916: 910: 903: 900: 897: 893: 885: 881: 877: 872: 868: 862: 858: 852: 845: 842: 839: 835: 827: 823: 819: 814: 810: 804: 800: 794: 787: 784: 781: 777: 769: 765: 761: 758: 740: 729: 722: 715: 708: 701: 685: 682: 675: 670: 666: 659: 655: 649: 645: 638: 631: 627: 621: 617: 611: 608: 603: 599: 590: 586: 582: 576: 572: 566: 563: 556: 553: 550: 546: 542: 537: 534: 531: 528: 525: 522: 515: 510: 506: 499: 494: 490: 484: 480: 473: 466: 461: 457: 450: 446: 440: 436: 429: 422: 418: 412: 408: 402: 399: 396: 393: 370: 363: 344: 326: 322: 318: 315: 309: 306: 299: 295: 291: 283: 279: 275: 269: 266: 262: 257: 251: 248: 241: 237: 233: 204: 201: 181:porous support 150: 147: 135:polycarbonates 98:acid chlorides 77: 74: 33:polymerization 13: 10: 9: 6: 4: 3: 2: 1985: 1974: 1971: 1969: 1966: 1965: 1963: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1913: 1911: 1909: 1905: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1865: 1863: 1861: 1859: 1855: 1850: 1846: 1842: 1838: 1831: 1829: 1825: 1820: 1816: 1812: 1808: 1804: 1800: 1793: 1791: 1789: 1787: 1785: 1783: 1781: 1777: 1772: 1768: 1764: 1760: 1753: 1750: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1708: 1706: 1704: 1702: 1700: 1698: 1696: 1694: 1692: 1690: 1688: 1686: 1684: 1682: 1680: 1678: 1674: 1669: 1665: 1661: 1657: 1653: 1649: 1642: 1640: 1636: 1631: 1627: 1623: 1619: 1612: 1610: 1608: 1606: 1604: 1602: 1598: 1593: 1589: 1585: 1581: 1577: 1573: 1565: 1563: 1561: 1557: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1513:Separation". 1505: 1503: 1501: 1497: 1486:on 2018-09-20 1482: 1478: 1474: 1470: 1466: 1459: 1452: 1450: 1448: 1444: 1439: 1435: 1431: 1427: 1423: 1419: 1412: 1410: 1408: 1406: 1404: 1402: 1400: 1398: 1396: 1394: 1392: 1390: 1388: 1384: 1379: 1375: 1371: 1367: 1363: 1356: 1354: 1352: 1350: 1348: 1346: 1344: 1342: 1340: 1338: 1336: 1334: 1332: 1330: 1328: 1326: 1324: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1286: 1284: 1282: 1280: 1278: 1276: 1274: 1272: 1270: 1268: 1266: 1264: 1262: 1260: 1258: 1256: 1254: 1252: 1250: 1248: 1244: 1237: 1233: 1230: 1228: 1225: 1224: 1220: 1218: 1216: 1207: 1205: 1170: 1162: 1160: 1157: 1153: 1145: 1143: 1141: 1132: 1124: 1112: 1104: 1100: 1092: 1090: 1088: 1084: 1080: 1071: 1069: 1066: 1060: 1053: 1046: 1039: 1030: 1023: 1016: 1009: 1002: 994: 979: 975: 969: 965: 958: 955: 952: 948: 941: 937: 933: 928: 924: 918: 914: 908: 901: 898: 895: 891: 883: 879: 875: 870: 866: 860: 856: 850: 843: 840: 837: 833: 825: 821: 817: 812: 808: 802: 798: 792: 785: 782: 779: 775: 767: 763: 759: 756: 748: 745: 743: 736: 732: 725: 718: 711: 704: 696: 683: 673: 668: 664: 657: 653: 647: 643: 636: 629: 625: 619: 615: 606: 601: 597: 588: 584: 580: 574: 570: 564: 554: 551: 548: 544: 540: 535: 532: 526: 523: 513: 508: 504: 497: 492: 488: 482: 478: 471: 464: 459: 455: 448: 444: 438: 434: 427: 420: 416: 410: 406: 397: 394: 391: 383: 379: 375: 373: 366: 359: 355: 351: 347: 339: 324: 320: 316: 307: 297: 293: 281: 277: 267: 255: 249: 239: 235: 220: 216: 212: 210: 202: 200: 198: 194: 190: 185: 182: 177: 174: 168: 164: 155: 148: 146: 144: 140: 136: 132: 129: 126: 122: 118: 117:polyurethanes 114: 110: 105: 103: 99: 95: 91: 87: 82: 75: 70: 66: 62: 58: 53: 49: 47: 43: 39: 34: 30: 27:is a type of 26: 18: 1923: 1919: 1874: 1870: 1840: 1836: 1802: 1798: 1762: 1758: 1752: 1719: 1715: 1651: 1647: 1621: 1617: 1575: 1571: 1518: 1514: 1488:. Retrieved 1481:the original 1468: 1465:Desalination 1464: 1421: 1417: 1369: 1365: 1297: 1293: 1215:quantum dots 1211: 1166: 1149: 1096: 1075: 1072:Applications 1067: 1055: 1048: 1041: 1034: 1025: 1018: 1011: 1004: 997: 995: 749: 746: 738: 734: 727: 720: 713: 706: 699: 697: 384: 380: 376: 368: 361: 357: 353: 349: 342: 340: 221: 217: 213: 206: 186: 178: 169: 165: 161: 127: 125:polypyrroles 109:polyanilines 106: 83: 79: 68: 63:reacts with 42:nanocapsules 24: 23: 1471:: 190–199. 61:Benzylamine 1962:Categories 1490:2019-12-11 1372:: 86–142. 1238:References 1152:mesoporous 1146:Fuel Cells 1123:chloroform 1083:fuel cells 193:immiscible 131:polyesters 113:polyimides 46:nanofibers 38:thin films 1948:0024-9297 1891:0947-6539 1819:0024-9297 1744:0887-6266 1314:2052-1537 1111:Hydrazine 607:− 565:− 536:− 527:⁡ 398:− 341:in which 305:∂ 290:∂ 265:∂ 261:∂ 247:∂ 232:∂ 149:Mechanism 143:membranes 121:polyureas 102:polyamide 31:in which 1973:Polymers 1899:15034876 1765:: 2503. 1592:20645362 1551:28802190 1543:22605654 1221:See also 1131:methanol 1928:Bibcode 1724:Bibcode 1656:Bibcode 1523:Bibcode 1426:Bibcode 1129:), and 1103:ammonia 1101:(HCl), 1093:Sensors 76:History 1946:  1897:  1889:  1817:  1742:  1590:  1549:  1541:  1312:  1054:, and 996:Where 726:, and 698:Where 94:amines 90:amides 44:, and 36:ultra- 1547:S2CID 1484:(PDF) 1461:(PDF) 1125:(CHCl 92:from 1944:ISSN 1895:PMID 1887:ISSN 1815:ISSN 1740:ISSN 1588:PMID 1539:PMID 1310:ISSN 158:two. 96:and 1936:doi 1879:doi 1845:doi 1841:192 1807:doi 1767:doi 1732:doi 1664:doi 1626:doi 1622:192 1580:doi 1531:doi 1473:doi 1469:287 1434:doi 1374:doi 1302:doi 1133:(CH 1121:), 1109:), 1105:(NH 1063:min 741:max 1964:: 1942:. 1934:. 1924:39 1922:. 1907:^ 1893:. 1885:. 1875:10 1873:. 1857:^ 1839:. 1827:^ 1813:. 1803:33 1801:. 1779:^ 1763:65 1761:. 1738:. 1730:. 1720:44 1718:. 1676:^ 1662:. 1652:40 1650:. 1638:^ 1620:. 1600:^ 1586:. 1576:49 1574:. 1559:^ 1545:. 1537:. 1529:. 1519:24 1517:. 1499:^ 1467:. 1463:. 1446:^ 1432:. 1422:40 1420:. 1386:^ 1370:63 1368:. 1364:. 1322:^ 1308:. 1296:. 1246:^ 1113:(N 1085:, 1081:, 1047:, 1040:, 1024:, 1017:, 1010:, 1003:, 719:, 712:, 705:, 524:ln 199:. 123:, 119:, 115:, 111:, 59:. 40:, 1950:. 1938:: 1930:: 1901:. 1881:: 1851:. 1847:: 1821:. 1809:: 1773:. 1769:: 1746:. 1734:: 1726:: 1670:. 1666:: 1658:: 1632:. 1628:: 1594:. 1582:: 1553:. 1533:: 1525:: 1511:2 1493:. 1475:: 1440:. 1436:: 1428:: 1380:. 1376:: 1316:. 1304:: 1298:1 1202:2 1195:2 1190:H 1186:2 1179:2 1174:H 1135:3 1127:3 1119:4 1117:H 1115:2 1107:3 1058:4 1056:I 1051:3 1049:I 1044:2 1042:I 1037:1 1035:I 1032:, 1028:0 1026:E 1021:0 1019:D 1014:0 1012:C 1007:0 1005:B 1000:0 998:A 980:1 976:I 970:0 966:E 959:n 956:i 953:m 949:R 942:0 938:D 934:+ 929:2 925:I 919:0 915:E 909:2 902:n 899:i 896:m 892:R 884:0 880:C 876:+ 871:3 867:I 861:0 857:E 851:4 844:n 841:i 838:m 834:R 826:0 822:B 818:+ 813:4 809:I 803:0 799:E 793:5 786:n 783:i 780:m 776:R 768:0 764:A 760:= 757:t 739:X 735:X 730:0 728:E 723:0 721:D 716:0 714:C 709:0 707:B 702:0 700:A 684:X 681:) 674:2 669:0 665:B 658:0 654:A 648:0 644:C 637:+ 630:0 626:B 620:0 616:D 610:( 602:2 598:X 589:0 585:B 581:2 575:0 571:C 562:) 555:x 552:a 549:m 545:X 541:X 533:1 530:( 521:) 514:2 509:0 505:B 498:2 493:0 489:A 483:0 479:C 472:+ 465:2 460:0 456:B 449:0 445:D 439:0 435:A 428:+ 421:0 417:B 411:0 407:E 401:( 395:= 392:t 371:i 369:J 364:i 362:D 358:y 354:t 350:i 345:i 343:c 325:i 321:J 317:+ 314:) 308:y 298:i 294:c 282:i 278:D 274:( 268:y 256:= 250:t 240:i 236:c 128:, 69:N

Index

A typically experimental setup for interfacial polymerization. One phase is above the interface, and the other phase is below. Polymerization occurs where the two phases meet, at the interface.
step-growth polymerization
polymerization
thin films
nanocapsules
nanofibers

Schotten-Baumann reaction
Benzylamine
acetyl chloride
Schotten–Baumann reaction
amides
amines
acid chlorides
polyamide
polyanilines
polyimides
polyurethanes
polyureas
polypyrroles
polyesters
polycarbonates
conducting polymers
membranes
Five common types of interfacial polymerization interfaces (from left to right): liquid-solid, liquid-liquid, and liquid-in-liquid emulsion. There are two examples each for liquid-liquid and liquid-in-liquid emulsion, using one monomer or two.
functional groups
porous support
Flory–Schulz distribution
immiscible
molecular weight

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑