Knowledge (XXG)

Internal tide

Source 📝

53:
to a relatively small neighborhood. Fluid moves upwards as the crest of the surface wave is passing and downwards as the trough passes. Lateral motion only serves to make up for the height difference in the water column between the crest and trough of the wave: as the surface rises at the top of the water column, water moves laterally inward from adjacent downwards-moving water columns to make up for the change in volume of the water column. While this explanation focuses on the motion of the ocean water, the phenomenon being described is in nature an interfacial wave, with mirroring processes happening on either side of the interface between two fluids: ocean water and air. At the simplest level, an internal wave can be thought of as an interfacial wave (Fig. 1, bottom) at the interface of two layers of the oceans differentiated by a change in the water's properties, such as a warm surface layer and cold deep layer separated by a thermocline. As the surface tide propagates between these two fluid layers at the ocean surface, a homologous internal wave mimics it below, forming the internal tide. The interfacial movement between two layers of ocean is large compared to surface movement because although as with surface waves, the restoring force for internal waves and tides is still gravity, its effect is reduced because the densities of the two layers are relatively similar compared to the large density difference at the air-sea interface. Thus larger displacements are possible inside the ocean than are possible at the sea surface.
150:
topography: “A number of lines of evidence, none complete, suggest that the oceanic general circulation, far from being a heat engine, is almost wholly governed by the forcing of the wind field and secondarily by deep water tides... The now inescapable conclusion that over most of the ocean significant ‘vertical’ mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing. Whether ocean circulation models... neither explicitly accounting for the energy input into the system nor providing for spatial variability in the mixing, have any physical relevance under changed climate conditions is at issue.” There is a limited understanding of “the sources controlling the internal wave energy in the ocean and the rate at which it is dissipated” and are only now developing some “parameterizations of the mixing generated by the interaction of internal waves,
87:
near-inertial wave generation, Garrett and Kunze (2007) observed 33 years later that “The fate of the radiated is still uncertain. They may scatter into on further encounter with islands or the rough seafloor , or transfer their energy to smaller-scale internal waves in the ocean interior ” or “break on distant continental slopes ”. It is now known that most of the internal tide energy generated at tall, steep midocean topography radiates away as large-scale internal waves. This radiated internal tide energy is one of the main sources of energy into the deep ocean, roughly half of the wind energy input . Broader interest in internal tides is spurred by their impact on the magnitude and spatial inhomogeneity of mixing, which in turn has first order effect on the meridional overturning circulation .
65:
onshore and dissipate much like surface waves. Or internal tides may propagate away from the topography into the open ocean. For tall, steep, midocean topography, such as the Hawaiian Ridge, it is estimated that about 85% of the energy in the internal tide propagates away into the deep ocean with about 15% of its energy being lost within about 50 km of the generation site. The lost energy contributes to turbulence and mixing near the generation sites. It is not clear where the energy that leaves the generation site is dissipated, but there are 3 possible processes: 1) the internal tides scatter and/or break at distant midocean topography, 2) interactions with other internal waves remove energy from the internal tide, or 3) the internal tides shoal and break on continental shelves.
116:. The energy flux at one point can be summed over depth- this is the depth-integrated energy flux and is measured in Watts/m. The Hawaiian Ridge produces depth-integrated energy fluxes as large as 10 kW/m. The longest wavelength waves are the fastest and thus carry most of the energy flux. Near Hawaii, the typical wavelength of the longest internal tide is about 150 km while the next longest is about 75 km. These waves are called mode 1 and mode 2, respectively. Although Fig. 1 shows there is no sea surface expression of the internal tide, there actually is a displacement of a few centimeters. These sea surface expressions of the internal tide at different wavelengths can be detected with the 1385: 146:) redistributes about 2 PW of heat from the tropics to polar regions, the energy source for this flow is the interior mixing which is comparatively much smaller- about 2 TW. Sandstrom (1908) showed a fluid which is both heated and cooled at its surface cannot develop a deep overturning circulation. Most global models have incorporated uniform mixing throughout the ocean because they do not include or resolve internal tidal flows. 2273: 163: 2294: 1374: 2283: 40: 82:.) The longest internal tide wavelengths are about 150 km near Hawaii and the next longest waves are about 75 km long. The surface displacements due to the internal tide are plotted as wiggly red lines with amplitudes plotted perpendicular to the satellite groundtracks (black lines). Figure is adapted from Johnston et al. (2003). 74: 128:
The inescapable conclusion is that energy is lost from the surface tide to the internal tide at midocean topography and continental shelves, but the energy in the internal tide is not necessarily lost in the same place. Internal tides may propagate thousands of kilometers or more before breaking and
141:
The importance of internal tides and internal waves in general relates to their breaking, energy dissipation, and mixing of the deep ocean. If there were no mixing in the ocean, the deep ocean would be a cold stagnant pool with a thin warm surface layer. While the meridional overturning circulation
52:
in which water parcels in the whole water column oscillate in the same direction at a given phase (i.e., in the trough or at the crest, Fig. 1, top). This means that while the form of the surface wave itself may propagate across the surface of the water, the fluid particles themselves are restricted
177:
Internal tides may also dissipate on continental slopes and shelves or even reach within 100 m of the beach (Fig. 3). Internal tides bring pulses of cold water shoreward and produce large vertical temperature differences. When surface waves break, the cold water is mixed upwards, making the water
86:
Briscoe (1975)noted that “We cannot yet answer satisfactorily the questions: ‘where does the internal wave energy come from, where does it go, and what happens to it along the way?’” Although technological advances in instrumentation and modeling have produced greater knowledge of internal tide and
64:
The largest internal tides are generated at steep, midocean topography such as the Hawaiian Ridge, Tahiti, the Macquarie Ridge, and submarine ridges in the Luzon Strait. Continental slopes such as the Australian North West Shelf also generate large internal tides. These internal tide may propagate
43:
Figure 1: Water parcels in the whole water column move together with the surface tide (top), while shallow and deep waters move in opposite directions in an internal tide (bottom). The surface displacement and interface displacement are the same for a surface wave (top), while for an internal wave
30:
at a tidal frequency. The other major source of internal waves is the wind which produces internal waves near the inertial frequency. When a small water parcel is displaced from its equilibrium position, it will return either downwards due to gravity or upwards due to buoyancy. The water parcel
77:
Figure 2: The internal tide sea surface elevation that is in phase with the surface tide (i.e., crests occur in a certain spot at a certain time that are both the same relative to the surface tide) can be detected by satellite (top). (The satellite track is repeated about every 10 days and so M2
149:
However, models are now beginning to include spatially variable mixing related to internal tides and the rough topography where they are generated and distant topography where they may break. Wunsch and Ferrari (2004) describe the global impact of spatially inhomogeneous mixing near midocean
31:
will overshoot its original equilibrium position and this disturbance will set off an internal gravity wave. Munk (1981) notes, "Gravity waves in the ocean's interior are as common as waves at the sea surface-perhaps even more so, for no one has ever reported an interior calm."
124:
satellites (Fig. 2). Near 15 N, 175 W on the Line Islands Ridge, the mode-1 internal tides scatter off the topography, possibly creating turbulence and mixing, and producing smaller wavelength mode 2 internal tides.
56:
Tides occur mainly at diurnal and semidiurnal periods. The principal lunar semidiurnal constituent is known as M2 and generally has the largest amplitudes. (See external links for more information.)
910:
Variabilidad temporal de la producciĂłn primaria fitoplanctonica en la estaciĂłn CaTS (Caribbean Time-Series Station): Con Ă©nfasis en el impacto de la marea interna semidiurna sobre la producciĂłn
170:. The black line shows the surface tide elevation relative to mean lower low water (MLLW). Figure provided by Eric Terrill, Scripps Institution of Oceanography with funding from the U.S. 2013: 966:
Sharples, J.; V. Krivtsov; J. F. Tweddle; J. A. M. Green; M. R. Palmer; Y. Kim; A. E. Hickman; P. M. Holligan; C. M. Moore; T. P. Rippeth & J. H. Simpson (2007).
90:
The internal tidal energy in one tidal period going through an area perpendicular to the direction of propagation is called the energy flux and is measured in Watts/m
2003: 1062: 44:
the surface displacements are very small, while the interface displacements are large (bottom). This figure is a modified version of one appearing in Gill (1982).
114: 210:
locally. Another mechanism for higher nitrate flux at spring tides results from pulses of strong turbulent dissipation associated with high frequency internal
1027: 1919: 920:. Ph. D. Dissertation. Department of Marine Sciences, University of Puerto Rico, MayagĂŒez, Puerto Rico. UMI publication AAT 3042382. p. 407 1334: 1102: 286: 391:
Carter, G. S.; Y. L. Firing; M. A. Merrifield; J. M. Becker; K. Katsumata; M. C. Gregg; D. S. Luther; M. D. Levine & T. J. Boyd (2008).
1566: 1456: 1055: 1022: 167: 2161: 1588: 1476: 2008: 1279: 1426: 178:
cold for surfers, swimmers, and other beachgoers. Surface waters in the surf zone can change by about 10 Â°C in about an hour.
1466: 432:
Klymak, J. M.; M. C. Gregg; J. N. Moum; J. D. Nash; E. Kunze; J. B. Girton; G. S. Carter; C. M. Lee & T. B. Sanford (2006).
194:
during the breaking of the internal tide can explain the formation of high diffusivity patches that generate a vertical flux of
2286: 2196: 1182: 1869: 2324: 2276: 1048: 1019: 190:, or near the shelf edge, can enhance turbulent dissipation and internal mixing near the generation site. The development of 26:
move stratified water up and down sloping topography, which produces a wave in the ocean interior. So internal tides are
1324: 191: 305:
Simmons, H. L.; B. K. Arbic & R. W. Hallberg (2004). "Internal wave generation in a global baroclinic tide model".
1384: 1521: 186:
Internal tides generated by tidal semidiurnal currents impinging on steep submarine ridges in island passages, ex:
1421: 940:"Internal Tide-induced Variations in Primary Productivity and Optical Properties in the Mona Passage, Puerto Rico" 2056: 1461: 714: 689: 613: 588: 2186: 1561: 1551: 1491: 1127: 1097: 944: 915: 171: 143: 2223: 2206: 2043: 1536: 1401: 1339: 1329: 1222: 1030: 166:
Figure 3: The internal tide produces large vertical differences in temperature at the research pier at the
2218: 2156: 1583: 1269: 794: 322: 2051: 2033: 1541: 1436: 1071: 233: 214:
packets. Some internal soliton packets are the result of the nonlinear evolution of the internal tide.
968:"Spring–neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer" 2238: 2071: 1774: 1631: 1496: 1207: 979: 866: 831: 786: 746: 701: 683: 681: 649: 600: 559: 517: 482: 445: 404: 363: 314: 799: 777:
Wunsch, C.; R. Ferrari (2004). "Vertical mixing, energy, and the general circulation of the ocean".
327: 2233: 2118: 2113: 1839: 1511: 1471: 1187: 2176: 1889: 1879: 1844: 1744: 1729: 1626: 667: 300: 298: 278: 272: 545: 543: 541: 2258: 2248: 2191: 2171: 1854: 1819: 1754: 1734: 1724: 1606: 1294: 1152: 719: 618: 473:
Briscoe, M. (1975). "Introduction to a collection of papers on oceanographic internal waves".
282: 252:
Munk, W. (1981). B. A. Warren; C. Wunsch (eds.). "Internal Waves and Small-Scale Processes".
2213: 2181: 2151: 1960: 1945: 1814: 1749: 1641: 1556: 1486: 1411: 1192: 1162: 1092: 1087: 987: 874: 839: 804: 754: 709: 657: 608: 567: 525: 490: 453: 412: 371: 332: 151: 808: 758: 2018: 1914: 1864: 1829: 1789: 1681: 1651: 1501: 1451: 1361: 1319: 1252: 1177: 1137: 93: 1373: 983: 870: 835: 822:
Munk, W.; Wunsch, C. (1998). "Abyssal recipes II: Energetics of tidal and wind mixing".
790: 750: 705: 653: 604: 563: 521: 486: 449: 408: 367: 318: 162: 2319: 2128: 2123: 2028: 2023: 1859: 1799: 1794: 1526: 1416: 1237: 1172: 1147: 207: 154:, high-frequency barotropic fluctuations, and other motions over sloping topography.” 117: 27: 843: 2313: 2298: 2146: 2066: 1955: 1874: 1849: 1784: 1714: 1516: 1393: 1314: 1274: 1247: 1157: 1107: 878: 228: 671: 638:"Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9 degrees" 393:"Energetics of M2 Barotropic-to-Baroclinic Tidal Conversion at the Hawaiian Islands" 2293: 2253: 2201: 2141: 2092: 1970: 1965: 1940: 1924: 1899: 1616: 1506: 1446: 1232: 1142: 1117: 187: 130: 49: 2243: 1975: 1904: 1769: 1709: 1676: 1666: 1661: 1546: 1481: 1441: 1431: 1406: 1289: 1262: 1242: 1202: 1167: 938:
Alfonso-Sosa, E.; J. Morell; J. M. Lopez; J. E. Capella & A. Dieppa (2002).
203: 1029:
Principal tidal constituents in Physical oceanography textbook, Bob Stewart of
336: 2061: 1909: 1884: 1779: 1759: 1686: 1671: 1656: 1646: 1611: 1531: 1351: 1346: 1309: 1304: 1299: 1197: 992: 967: 723: 622: 352:"A regional model of the semidiurnal tide on the Australian North West Shelf" 2133: 1995: 1980: 1894: 1739: 1578: 1573: 1356: 1284: 1212: 1132: 1122: 1079: 737:
Garrett, C.; E. Kunze (2007). "Internal tide generation in the deep ocean".
494: 257: 772: 770: 768: 417: 392: 2228: 1950: 1809: 1701: 1691: 1636: 1112: 662: 637: 572: 551: 530: 509: 376: 351: 79: 1040: 690:"Internal tide reflection and turbulent mixing on the continental slope" 39: 2097: 2087: 1257: 1227: 211: 195: 121: 458: 434:"An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge" 433: 1804: 1217: 1037:
Eric Kunze's work on internal waves, internal tides, mixing, and more
939: 908: 2166: 1985: 1764: 1719: 550:
Johnston, T. M. S.; P. E. Holloway & M. A. Merrifield (2003).
161: 73: 72: 38: 23: 1021:
Internal Tides of the Oceans, Harper Simmons, by Jenn Wagaman of
1598: 223: 1044: 892:
Sandstrom, J. W. (1908). "Dynamische Versuche mit Meerwasser".
688:
Nash, J. D.; R.W. Schmitt; E. Kunze & J.M. Toole (2004).
1035: 715:
10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2
614:
10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2
510:"Internal tide scattering at seamounts, ridges and islands" 182:
Internal tides, internal mixing, and biological enhancement
1014: 1009: 589:"The Role of Internal Tides in Mixing the Deep Ocean" 137:
Abyssal mixing and meridional overturning circulation
96: 552:"Internal tide scattering at the Line Islands Ridge" 2106: 2080: 2042: 1994: 1933: 1828: 1700: 1597: 1392: 1078: 78:tidal signals are shifted to longer periods due to 1016:Southern California Coastal Ocean Observing System 108: 2014:North West Shelf Operational Oceanographic System 2004:Deep-ocean Assessment and Reporting of Tsunamis 1056: 508:Johnston, T. M. S.; M. A. Merrifield (2003). 8: 1063: 1049: 1041: 991: 798: 713: 661: 612: 571: 529: 457: 416: 375: 326: 100: 95: 636:MacKinnon, J. A.; K. B. Winters (2005). 587:St. Laurent; L. C.; C. Garrett (2002). 244: 1335:one-dimensional Saint-Venant equations 809:10.1146/annurev.fluid.36.050802.122121 759:10.1146/annurev.fluid.39.050905.110227 7: 2282: 857:Munk, W. (1966). "Abyssal recipes". 1023:Arctic Region Supercomputing Center 1011:Scripps Institution of Oceanography 168:Scripps Institution of Oceanography 2162:National Oceanographic Data Center 1589:World Ocean Circulation Experiment 1477:Global Ocean Data Analysis Project 254:Evolution of Physical Oceanography 14: 2009:Global Sea Level Observing System 894:Ann. Hydrodyn. Marine Meteorology 48:The surface tide propagates as a 2292: 2281: 2272: 2271: 1467:Geochemical Ocean Sections Study 1383: 1372: 2197:Ocean thermal energy conversion 1920:Vine–Matthews–Morley hypothesis 558:. 108. (C11) 3365 (C11): 3365. 16:Wave within the ocean interior 1: 844:10.1016/S0967-0637(98)00070-3 516:. 108. (C6) 3126 (C6): 3180. 22:are generated as the surface 1457:El Niño–Southern Oscillation 1427:Craik–Leibovich vortex force 1183:Luke's variational principle 879:10.1016/0011-7471(66)90602-4 192:Kelvin-Helmholtz instability 158:Internal tides at the beach 69:Propagation and dissipation 2341: 1522:Ocean dynamical thermostat 1370: 337:10.1016/j.dsr2.2004.09.015 2267: 2057:Ocean acoustic tomography 1870:Mohorovičić discontinuity 1462:General circulation model 1098:Benjamin–Feir instability 993:10.4319/lo.2007.52.5.1735 907:Alfonso-Sosa, E. (2002). 307:Deep-Sea Research Part II 274:Atmosphere-ocean dynamics 142:(also referred to as the 2187:Ocean surface topography 1562:Thermohaline circulation 1552:Subsurface ocean current 1492:Hydrothermal circulation 1325:Wave–current interaction 1103:Boussinesq approximation 1031:Texas A&M University 350:Holloway, P. E. (2001). 172:Office of Naval Research 144:thermohaline circulation 2224:Sea surface temperature 2207:Outline of oceanography 1402:Atmospheric circulation 1340:shallow water equations 1330:Waves and shallow water 1223:Significant wave height 495:10.1029/JC080i003p00289 362:(C9): 19, 625–19, 638. 2219:Sea surface microlayer 1584:Wind generated current 174: 110: 83: 45: 2325:Physical oceanography 2052:Deep scattering layer 2034:World Geodetic System 1542:Princeton Ocean Model 1422:Coriolis–Stokes force 1072:Physical oceanography 779:Annu. Rev. Fluid Mech 739:Annu. Rev. Fluid Mech 418:10.1175/2008JPO3860.1 277:. Academic. pp.  234:Physical oceanography 165: 111: 76: 42: 2072:Underwater acoustics 1632:Perigean spring tide 1497:Langmuir circulation 1208:Rossby-gravity waves 663:10.1029/2005GL023376 573:10.1029/2003JC001844 531:10.1029/2002JC001528 377:10.1029/2000jc000675 313:(25–26): 3043–3068. 271:Gill, A. E. (1982). 109:{\displaystyle ^{2}} 94: 2234:Science On a Sphere 1840:Convergent boundary 1512:Modular Ocean Model 1472:Geostrophic current 1188:Mild-slope equation 984:2007LimOc..52.1735S 871:1966DSRA...13..707M 836:1998DSRI...45.1977M 791:2004AnRFM..36..281W 751:2007AnRFM..39...57G 706:2004JPO....34.1117N 654:2005GeoRL..3215605M 605:2002JPO....32.2882S 564:2003JGRC..108.3365J 522:2003JGRC..108.3180J 487:1975JGR....80..289B 450:2006JPO....36.1148K 409:2008JPO....38.2205C 368:2001JGR...10619625H 319:2004DSRII..51.3043S 1890:Seafloor spreading 1880:Outer trench swell 1845:Divergent boundary 1745:Continental margin 1730:Carbonate platform 1627:Lunitidal interval 642:Geophys. Res. Lett 175: 106: 84: 46: 35:Simple explanation 2307: 2306: 2299:Oceans portal 2259:World Ocean Atlas 2249:Underwater glider 2192:Ocean temperature 1855:Hydrothermal vent 1820:Submarine volcano 1755:Continental shelf 1735:Coastal geography 1725:Bathymetric chart 1607:Amphidromic point 1295:Wave nonlinearity 1153:Infragravity wave 859:Deep-Sea Research 830:(12): 1977–2010. 824:Deep-Sea Research 694:J. Phys. Oceanogr 599:(10): 2882–2899. 593:J. Phys. Oceanogr 459:10.1175/JPO2885.1 438:J. Phys. Oceanogr 403:(10): 2205–2223. 397:J. Phys. Oceanogr 288:978-0-12-283522-3 2332: 2297: 2296: 2285: 2284: 2275: 2274: 2214:Pelagic sediment 2152:Marine pollution 1946:Deep ocean water 1815:Submarine canyon 1750:Continental rise 1642:Rule of twelfths 1557:Sverdrup balance 1487:Humboldt Current 1412:Boundary current 1387: 1376: 1193:Radiation stress 1163:Iribarren number 1138:Equatorial waves 1093:Ballantine scale 1088:Airy wave theory 1065: 1058: 1051: 1042: 998: 997: 995: 978:(5): 1735–1747. 972:Limnol. Oceanogr 963: 957: 956: 954: 953: 948: 935: 929: 928: 926: 925: 919: 904: 898: 897: 889: 883: 882: 854: 848: 847: 819: 813: 812: 802: 774: 763: 762: 734: 728: 727: 717: 700:(5): 1117–1134. 685: 676: 675: 665: 633: 627: 626: 616: 584: 578: 577: 575: 547: 536: 535: 533: 505: 499: 498: 470: 464: 463: 461: 444:(6): 1148–1164. 429: 423: 422: 420: 388: 382: 381: 379: 347: 341: 340: 330: 302: 293: 292: 268: 262: 261: 249: 206:and can sustain 152:mesoscale eddies 115: 113: 112: 107: 105: 104: 2340: 2339: 2335: 2334: 2333: 2331: 2330: 2329: 2310: 2309: 2308: 2303: 2291: 2263: 2102: 2076: 2038: 2019:Sea-level curve 1990: 1929: 1915:Transform fault 1865:Mid-ocean ridge 1831: 1824: 1790:Oceanic plateau 1696: 1682:Tidal resonance 1652:Theory of tides 1593: 1502:Longshore drift 1452:Ekman transport 1388: 1382: 1381: 1380: 1379: 1378: 1377: 1368: 1320:Wave turbulence 1253:Trochoidal wave 1178:Longshore drift 1074: 1069: 1006: 1001: 965: 964: 960: 951: 949: 942: 937: 936: 932: 923: 921: 913: 906: 905: 901: 891: 890: 886: 856: 855: 851: 821: 820: 816: 800:10.1.1.394.8352 776: 775: 766: 736: 735: 731: 687: 686: 679: 635: 634: 630: 586: 585: 581: 556:J. Geophys. Res 549: 548: 539: 514:J. Geophys. Res 507: 506: 502: 475:J. Geophys. Res 472: 471: 467: 431: 430: 426: 390: 389: 385: 356:J. Geophys. Res 349: 348: 344: 328:10.1.1.143.5083 304: 303: 296: 289: 270: 269: 265: 251: 250: 246: 242: 220: 201: 184: 160: 139: 97: 92: 91: 71: 62: 37: 17: 12: 11: 5: 2338: 2336: 2328: 2327: 2322: 2312: 2311: 2305: 2304: 2302: 2301: 2289: 2279: 2268: 2265: 2264: 2262: 2261: 2256: 2251: 2246: 2241: 2239:Stratification 2236: 2231: 2226: 2221: 2216: 2211: 2210: 2209: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2131: 2129:Color of water 2126: 2124:Benthic lander 2121: 2116: 2110: 2108: 2104: 2103: 2101: 2100: 2095: 2090: 2084: 2082: 2078: 2077: 2075: 2074: 2069: 2064: 2059: 2054: 2048: 2046: 2040: 2039: 2037: 2036: 2031: 2029:Sea level rise 2026: 2024:Sea level drop 2021: 2016: 2011: 2006: 2000: 1998: 1992: 1991: 1989: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1943: 1937: 1935: 1931: 1930: 1928: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1860:Marine geology 1857: 1852: 1847: 1842: 1836: 1834: 1826: 1825: 1823: 1822: 1817: 1812: 1807: 1802: 1800:Passive margin 1797: 1795:Oceanic trench 1792: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1732: 1727: 1722: 1717: 1712: 1706: 1704: 1698: 1697: 1695: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1603: 1601: 1595: 1594: 1592: 1591: 1586: 1581: 1576: 1571: 1570: 1569: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1527:Ocean dynamics 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1417:Coriolis force 1414: 1409: 1404: 1398: 1396: 1390: 1389: 1371: 1369: 1367: 1366: 1365: 1364: 1354: 1349: 1344: 1343: 1342: 1337: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1266: 1265: 1255: 1250: 1245: 1240: 1238:Stokes problem 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1173:Kinematic wave 1170: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1084: 1082: 1076: 1075: 1070: 1068: 1067: 1060: 1053: 1045: 1039: 1038: 1033: 1025: 1017: 1012: 1005: 1004:External links 1002: 1000: 999: 958: 930: 899: 884: 865:(4): 707–730. 849: 814: 785:(1): 281–314. 764: 729: 677: 648:(15): L15605. 628: 579: 537: 500: 481:(3): 289–290. 465: 424: 383: 342: 294: 287: 263: 243: 241: 238: 237: 236: 231: 226: 219: 216: 208:new production 199: 183: 180: 159: 156: 138: 135: 118:Topex/Poseidon 103: 99: 70: 67: 61: 58: 36: 33: 28:internal waves 20:Internal tides 15: 13: 10: 9: 6: 4: 3: 2: 2337: 2326: 2323: 2321: 2318: 2317: 2315: 2300: 2295: 2290: 2288: 2280: 2278: 2270: 2269: 2266: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2208: 2205: 2204: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2147:Marine energy 2145: 2143: 2140: 2138: 2137: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2114:Acidification 2112: 2111: 2109: 2105: 2099: 2096: 2094: 2091: 2089: 2086: 2085: 2083: 2079: 2073: 2070: 2068: 2067:SOFAR channel 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2049: 2047: 2045: 2041: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2001: 1999: 1997: 1993: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1938: 1936: 1932: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1875:Oceanic crust 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1850:Fracture zone 1848: 1846: 1843: 1841: 1838: 1837: 1835: 1833: 1827: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1785:Oceanic basin 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1715:Abyssal plain 1713: 1711: 1708: 1707: 1705: 1703: 1699: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1622:Internal tide 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1604: 1602: 1600: 1596: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1568: 1565: 1564: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1517:Ocean current 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1399: 1397: 1395: 1391: 1386: 1375: 1363: 1360: 1359: 1358: 1355: 1353: 1350: 1348: 1345: 1341: 1338: 1336: 1333: 1332: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1315:Wave shoaling 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1275:Ursell number 1273: 1271: 1268: 1264: 1261: 1260: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1158:Internal wave 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1108:Breaking wave 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1085: 1083: 1081: 1077: 1073: 1066: 1061: 1059: 1054: 1052: 1047: 1046: 1043: 1036: 1034: 1032: 1028: 1026: 1024: 1020: 1018: 1015: 1013: 1010: 1008: 1007: 1003: 994: 989: 985: 981: 977: 973: 969: 962: 959: 946: 941: 934: 931: 917: 912: 911: 903: 900: 895: 888: 885: 880: 876: 872: 868: 864: 860: 853: 850: 845: 841: 837: 833: 829: 825: 818: 815: 810: 806: 801: 796: 792: 788: 784: 780: 773: 771: 769: 765: 760: 756: 752: 748: 744: 740: 733: 730: 725: 721: 716: 711: 707: 703: 699: 695: 691: 684: 682: 678: 673: 669: 664: 659: 655: 651: 647: 643: 639: 632: 629: 624: 620: 615: 610: 606: 602: 598: 594: 590: 583: 580: 574: 569: 565: 561: 557: 553: 546: 544: 542: 538: 532: 527: 523: 519: 515: 511: 504: 501: 496: 492: 488: 484: 480: 476: 469: 466: 460: 455: 451: 447: 443: 439: 435: 428: 425: 419: 414: 410: 406: 402: 398: 394: 387: 384: 378: 373: 369: 365: 361: 357: 353: 346: 343: 338: 334: 329: 324: 320: 316: 312: 308: 301: 299: 295: 290: 284: 280: 276: 275: 267: 264: 259: 255: 248: 245: 239: 235: 232: 230: 229:Internal wave 227: 225: 222: 221: 217: 215: 213: 209: 205: 197: 193: 189: 181: 179: 173: 169: 164: 157: 155: 153: 147: 145: 136: 134: 132: 126: 123: 119: 101: 98: 88: 81: 75: 68: 66: 59: 57: 54: 51: 41: 34: 32: 29: 25: 21: 2254:Water column 2202:Oceanography 2177:Observations 2172:Explorations 2142:Marginal sea 2135: 2093:OSTM/Jason-2 1925:Volcanic arc 1900:Slab suction 1621: 1617:Head of tide 1507:Loop Current 1447:Ekman spiral 1233:Stokes drift 1143:Gravity wave 1118:Cnoidal wave 975: 971: 961: 950:. Retrieved 933: 922:. Retrieved 909: 902: 893: 887: 862: 858: 852: 827: 823: 817: 782: 778: 745:(1): 57–87. 742: 738: 732: 697: 693: 645: 641: 631: 596: 592: 582: 555: 513: 503: 478: 474: 468: 441: 437: 427: 400: 396: 386: 359: 355: 345: 310: 306: 273: 266: 253: 247: 188:Mona Passage 185: 176: 148: 140: 127: 89: 85: 63: 55: 47: 19: 18: 2244:Thermocline 1961:Mesopelagic 1934:Ocean zones 1905:Slab window 1770:Hydrography 1710:Abyssal fan 1677:Tidal range 1667:Tidal power 1662:Tidal force 1547:Rip current 1482:Gulf Stream 1442:Ekman layer 1432:Downwelling 1407:Baroclinity 1394:Circulation 1290:Wave height 1280:Wave action 1263:megatsunami 1243:Stokes wave 1203:Rossby wave 1168:Kelvin wave 1148:Green's law 204:photic zone 202:) into the 129:mixing the 2314:Categories 2182:Reanalysis 2081:Satellites 2062:Sofar bomb 1910:Subduction 1885:Ridge push 1780:Ocean bank 1760:Contourite 1687:Tide gauge 1672:Tidal race 1657:Tidal bore 1647:Slack tide 1612:Earth tide 1532:Ocean gyre 1352:Wind setup 1347:Wind fetch 1310:Wave setup 1305:Wave radar 1300:Wave power 1198:Rogue wave 1128:Dispersion 952:2015-01-01 924:2014-08-25 260:: 264–291. 240:References 2044:Acoustics 1996:Sea level 1895:Slab pull 1832:tectonics 1740:Cold seep 1702:Landforms 1579:Whirlpool 1574:Upwelling 1357:Wind wave 1285:Wave base 1213:Sea state 1133:Edge wave 1123:Cross sea 795:CiteSeerX 724:1520-0485 623:1520-0485 323:CiteSeerX 258:MIT Press 2277:Category 2229:Seawater 1956:Littoral 1951:Deep sea 1810:Seamount 1692:Tideline 1637:Rip tide 1567:shutdown 1537:Overflow 1270:Undertow 1113:Clapotis 672:54573466 218:See also 80:aliasing 60:Location 2287:Commons 2157:Mooring 2107:Related 2098:Jason-3 2088:Jason-1 1971:Pelagic 1966:Oceanic 1941:Benthic 1258:Tsunami 1228:Soliton 980:Bibcode 867:Bibcode 832:Bibcode 787:Bibcode 747:Bibcode 702:Bibcode 650:Bibcode 601:Bibcode 560:Bibcode 518:Bibcode 483:Bibcode 446:Bibcode 405:Bibcode 364:Bibcode 315:Bibcode 212:soliton 196:nitrate 133:ocean. 131:abyssal 122:Jason-1 1976:Photic 1805:Seabed 1218:Seiche 797:  722:  670:  621:  325:  285:  2320:Tides 2167:Ocean 2136:Alvin 1986:Swash 1830:Plate 1775:Knoll 1765:Guyot 1720:Atoll 1599:Tides 1362:model 1248:Swell 1080:Waves 668:S2CID 24:tides 2134:DSV 2119:Argo 1981:Surf 1437:Eddy 896:: 6. 720:ISSN 619:ISSN 283:ISBN 224:Tide 50:wave 988:doi 945:PDF 916:PDF 875:doi 840:doi 805:doi 755:doi 710:doi 658:doi 609:doi 568:doi 526:doi 491:doi 454:doi 413:doi 372:doi 360:106 333:doi 279:662 198:(NO 120:or 2316:: 986:. 976:52 974:. 970:. 873:. 863:13 861:. 838:. 828:45 826:. 803:. 793:. 783:36 781:. 767:^ 753:. 743:39 741:. 718:. 708:. 698:34 696:. 692:. 680:^ 666:. 656:. 646:32 644:. 640:. 617:. 607:. 597:32 595:. 591:. 566:. 554:. 540:^ 524:. 512:. 489:. 479:80 477:. 452:. 442:36 440:. 436:. 411:. 401:38 399:. 395:. 370:. 358:. 354:. 331:. 321:. 311:51 309:. 297:^ 281:. 256:. 1064:e 1057:t 1050:v 996:. 990:: 982:: 955:. 947:) 943:( 927:. 918:) 914:( 881:. 877:: 869:: 846:. 842:: 834:: 811:. 807:: 789:: 761:. 757:: 749:: 726:. 712:: 704:: 674:. 660:: 652:: 625:. 611:: 603:: 576:. 570:: 562:: 534:. 528:: 520:: 497:. 493:: 485:: 462:. 456:: 448:: 421:. 415:: 407:: 380:. 374:: 366:: 339:. 335:: 317:: 291:. 200:3 102:2

Index

tides
internal waves

wave

aliasing
Topex/Poseidon
Jason-1
abyssal
thermohaline circulation
mesoscale eddies

Scripps Institution of Oceanography
Office of Naval Research
Mona Passage
Kelvin-Helmholtz instability
nitrate
photic zone
new production
soliton
Tide
Internal wave
Physical oceanography
MIT Press
Atmosphere-ocean dynamics
662
ISBN
978-0-12-283522-3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑