Knowledge

Intersection form of a 4-manifold

Source đź“ť

1103:
The definition of a cup product is dual (and so is analogous) to the above definition of the intersection form on homology of a manifold, but is more abstract. However, the definition of a cup product generalizes to complexes and topological manifolds. This is an advantage for mathematicians who
362: 579: 1017: 1366:
simply-connected 4-manifold with positive definite intersection form has the diagonal (scalar 1) intersection form. So Freedman's classification implies there are many non-smoothable 4-manifolds, for example the
227: 655: 180: 1098: 1217: 442: 733: 797: 460: 873: 1249:
The definition using cup product has a simpler analogue modulo 2 (which works for non-orientable manifolds). Of course one does not have this in de Rham cohomology.
1240: 1137: 911: 831: 1301: 1157: 219: 107: 927: 447:
This is well-defined because the intersection of a cycle and a boundary consists of an even number of points (by definition of a cycle and a boundary).
1328:
used the intersection form to classify simply-connected topological 4-manifolds. Given any unimodular symmetric bilinear form over the integers,
584:
Using the notion of transversality, one can state the following results (which constitute an equivalent definition of the intersection form).
1450: 1314:
The signature of the intersection form is an important invariant. A 4-manifold bounds a 5-manifold if and only if it has zero signature.
357:{\displaystyle \cap _{M,2}:H_{2}(M;\mathbb {Z} /2\mathbb {Z} )\times H_{2}(M;\mathbb {Z} /2\mathbb {Z} )\to \mathbb {Z} /2\mathbb {Z} } 1430: 591: 116: 1353: 454:
is oriented, analogously (i.e. counting intersections with signs) one defines the intersection form on the 2nd homology group
1352:
4-manifolds with the same intersection form are homeomorphic. In the odd case, the two manifolds are distinguished by their
1028: 1422: 1165: 373: 1348:
is odd, there are two, with at least one (possibly both) having no smooth structure. Thus two simply-connected closed
1473: 43:
of the 4-manifold. It reflects much of the topology of the 4-manifolds, including information on the existence of a
668: 1311:
smooth 4-manifold (or more generally one with no 2-torsion residing in the first homology), the converse holds.
746: 72: 1315: 574:{\displaystyle Q_{M}=\cap _{M}=\cdot _{M}:H_{2}(M;\mathbb {Z} )\times H_{2}(M;\mathbb {Z} )\to \mathbb {Z} .} 36: 1359: 1308: 921:
be a closed oriented 4-manifold (PL or smooth). Define the intersection form on the 2nd cohomology group
1468: 1319: 1390: 914: 885: 1108: 836: 1104:
are interested in complexes and topological manifolds (not only in PL and smooth manifolds).
1446: 1426: 1225: 1122: 1012:{\displaystyle Q_{M}\colon H^{2}(M;\mathbb {Z} )\times H^{2}(M;\mathbb {Z} )\to \mathbb {Z} } 896: 810: 1325: 1271: 1243: 1142: 110: 44: 1440: 197: 85: 1258: 68: 60: 1265: 40: 1462: 1381: 1368: 891: 64: 20: 1408: 16:
A special symmetric bilinear form on the 2nd (co)homology group of a 4-manifold
1322:
implies that a smooth compact spin 4-manifold has signature a multiple of 16.
32: 1318:
implies that a spin 4-manifold has signature a multiple of eight. In fact,
28: 833:
has the sign +1 or −1 depending on the orientations, and
1159:, then the intersection form can be expressed by the integral 422: 799:
are represented by closed oriented surfaces (or 2-cycles)
657:
are represented by closed surfaces (or 2-cycles modulo 2)
650:{\displaystyle a,b\in H_{2}(M;\mathbb {Z} /2\mathbb {Z} )} 175:{\displaystyle a,b\in H_{2}(M;\mathbb {Z} /2\mathbb {Z} )} 1442:
Algebraic Topology From Geometric Viewpoint (in Russian)
1401:
The topology of 4-manifolds, Lecture Notes in Math. 1374
807:
meeting transversely, then every intersection point in
221:, respectively. Define the intersection form modulo 2 1257:
Poincare duality states that the intersection form is
1093:{\displaystyle Q_{M}(a,b)=\langle a\smile b,\rangle .} 1274: 1228: 1168: 1145: 1125: 1031: 930: 899: 839: 813: 749: 671: 594: 463: 376: 230: 200: 119: 88: 1212:{\displaystyle Q(a,b)=\int _{M}\alpha \wedge \beta } 1268:4-manifold must have even intersection form, i.e., 917:(and so an equivalent) definition as follows. Let 437:{\displaystyle a\cap _{M,2}b=|A\cap B|{\bmod {2}}.} 1295: 1234: 1211: 1151: 1131: 1092: 1011: 905: 867: 825: 791: 727: 649: 573: 436: 356: 213: 174: 101: 1332:, there is a simply-connected closed 4-manifold 1344:is even, there is only one such manifold. If 728:{\displaystyle a\cap _{M,2}b=|A\cap B|\mod 2.} 8: 1084: 1060: 792:{\displaystyle a,b\in H_{2}(M;\mathbb {Z} )} 190:modulo 2 viewed as unions of 2-simplices of 1273: 1227: 1194: 1167: 1144: 1124: 1036: 1030: 1005: 1004: 994: 993: 978: 964: 963: 948: 935: 929: 898: 844: 838: 812: 782: 781: 766: 748: 721: 720: 711: 697: 679: 670: 640: 639: 631: 627: 626: 611: 593: 564: 563: 553: 552: 537: 523: 522: 507: 494: 481: 468: 462: 425: 421: 416: 402: 384: 375: 350: 349: 341: 337: 336: 326: 325: 317: 313: 312: 297: 283: 282: 274: 270: 269: 254: 235: 229: 205: 199: 165: 164: 156: 152: 151: 136: 118: 93: 87: 1107:When the 4-manifold is smooth, then in 7: 14: 1392:Intersection_number_of_immersions 716: 1290: 1278: 1184: 1172: 1081: 1075: 1054: 1042: 1001: 998: 984: 968: 954: 862: 850: 786: 772: 712: 698: 644: 617: 560: 557: 543: 527: 513: 417: 403: 333: 330: 303: 287: 260: 169: 142: 1: 1423:American Mathematical Society 1419:The wild world of 4-manifolds 665:meeting transversely, then 51:Definition using intersection 880:Definition using cup product 1439:Skopenkov, Arkadiy (2015), 1417:Scorpan, Alexandru (2005), 1253:Properties and applications 1119:are represented by 2-forms 1490: 1354:Kirby–Siebenmann invariant 883: 875:is the sum of these signs. 868:{\displaystyle Q_{M}(a,b)} 890:Using the notion of the 743:is oriented and classes 1336:with intersection form 1235:{\displaystyle \wedge } 1132:{\displaystyle \alpha } 906:{\displaystyle \smile } 826:{\displaystyle A\cap B} 37:symmetric bilinear form 1399:Kirby, Robion (1989), 1297: 1296:{\displaystyle Q(x,x)} 1236: 1213: 1153: 1152:{\displaystyle \beta } 1133: 1094: 1013: 907: 869: 827: 793: 729: 651: 575: 438: 358: 215: 176: 103: 1298: 1237: 1214: 1154: 1134: 1095: 1014: 908: 884:Further information: 870: 828: 794: 730: 652: 576: 439: 359: 216: 214:{\displaystyle T^{*}} 177: 113:. Represent classes 111:dual cell subdivision 104: 102:{\displaystyle T^{*}} 1316:Van der Blij's lemma 1272: 1226: 1166: 1143: 1123: 1029: 928: 897: 837: 811: 747: 669: 592: 461: 374: 228: 198: 117: 86: 1360:Donaldson's theorem 1264:By Wu's formula, a 886:Intersection theory 1474:Geometric topology 1303:is even for every 1293: 1232: 1209: 1149: 1129: 1109:de Rham cohomology 1090: 1009: 903: 865: 823: 789: 725: 647: 571: 434: 354: 211: 172: 99: 1452:978-5-4439-0293-7 1403:, Springer-Verlag 1383:Intersection form 1320:Rokhlin's theorem 1261:(up to torsion). 913:, one can give a 25:intersection form 1481: 1455: 1435: 1413: 1404: 1395: 1386: 1326:Michael Freedman 1309:simply-connected 1302: 1300: 1299: 1294: 1241: 1239: 1238: 1233: 1218: 1216: 1215: 1210: 1199: 1198: 1158: 1156: 1155: 1150: 1138: 1136: 1135: 1130: 1099: 1097: 1096: 1091: 1041: 1040: 1018: 1016: 1015: 1010: 1008: 997: 983: 982: 967: 953: 952: 940: 939: 912: 910: 909: 904: 874: 872: 871: 866: 849: 848: 832: 830: 829: 824: 798: 796: 795: 790: 785: 771: 770: 734: 732: 731: 726: 715: 701: 690: 689: 656: 654: 653: 648: 643: 635: 630: 616: 615: 580: 578: 577: 572: 567: 556: 542: 541: 526: 512: 511: 499: 498: 486: 485: 473: 472: 443: 441: 440: 435: 430: 429: 420: 406: 395: 394: 363: 361: 360: 355: 353: 345: 340: 329: 321: 316: 302: 301: 286: 278: 273: 259: 258: 246: 245: 220: 218: 217: 212: 210: 209: 181: 179: 178: 173: 168: 160: 155: 141: 140: 108: 106: 105: 100: 98: 97: 45:smooth structure 1489: 1488: 1484: 1483: 1482: 1480: 1479: 1478: 1459: 1458: 1453: 1438: 1433: 1416: 1407: 1398: 1389: 1380: 1377: 1270: 1269: 1255: 1224: 1223: 1190: 1164: 1163: 1141: 1140: 1121: 1120: 1032: 1027: 1026: 1022:by the formula 974: 944: 931: 926: 925: 895: 894: 888: 882: 840: 835: 834: 809: 808: 762: 745: 744: 675: 667: 666: 607: 590: 589: 533: 503: 490: 477: 464: 459: 458: 380: 372: 371: 367:by the formula 293: 250: 231: 226: 225: 201: 196: 195: 132: 115: 114: 89: 84: 83: 53: 39:on the 2nd (co) 17: 12: 11: 5: 1487: 1485: 1477: 1476: 1471: 1461: 1460: 1457: 1456: 1451: 1436: 1431: 1414: 1405: 1396: 1387: 1376: 1373: 1292: 1289: 1286: 1283: 1280: 1277: 1254: 1251: 1231: 1220: 1219: 1208: 1205: 1202: 1197: 1193: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1148: 1128: 1101: 1100: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1039: 1035: 1020: 1019: 1007: 1003: 1000: 996: 992: 989: 986: 981: 977: 973: 970: 966: 962: 959: 956: 951: 947: 943: 938: 934: 902: 881: 878: 877: 876: 864: 861: 858: 855: 852: 847: 843: 822: 819: 816: 788: 784: 780: 777: 774: 769: 765: 761: 758: 755: 752: 736: 735: 724: 719: 714: 710: 707: 704: 700: 696: 693: 688: 685: 682: 678: 674: 646: 642: 638: 634: 629: 625: 622: 619: 614: 610: 606: 603: 600: 597: 582: 581: 570: 566: 562: 559: 555: 551: 548: 545: 540: 536: 532: 529: 525: 521: 518: 515: 510: 506: 502: 497: 493: 489: 484: 480: 476: 471: 467: 445: 444: 433: 428: 424: 419: 415: 412: 409: 405: 401: 398: 393: 390: 387: 383: 379: 365: 364: 352: 348: 344: 339: 335: 332: 328: 324: 320: 315: 311: 308: 305: 300: 296: 292: 289: 285: 281: 277: 272: 268: 265: 262: 257: 253: 249: 244: 241: 238: 234: 208: 204: 171: 167: 163: 159: 154: 150: 147: 144: 139: 135: 131: 128: 125: 122: 96: 92: 52: 49: 41:homology group 15: 13: 10: 9: 6: 4: 3: 2: 1486: 1475: 1472: 1470: 1467: 1466: 1464: 1454: 1448: 1444: 1443: 1437: 1434: 1432:0-8218-3749-4 1428: 1424: 1420: 1415: 1412: 1411: 1406: 1402: 1397: 1394: 1393: 1388: 1385: 1384: 1379: 1378: 1374: 1372: 1370: 1365: 1361: 1357: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1321: 1317: 1312: 1310: 1306: 1287: 1284: 1281: 1275: 1267: 1262: 1260: 1252: 1250: 1247: 1245: 1244:wedge product 1229: 1206: 1203: 1200: 1195: 1191: 1187: 1181: 1178: 1175: 1169: 1162: 1161: 1160: 1146: 1126: 1118: 1114: 1110: 1105: 1087: 1078: 1072: 1069: 1066: 1063: 1057: 1051: 1048: 1045: 1037: 1033: 1025: 1024: 1023: 990: 987: 979: 975: 971: 960: 957: 949: 945: 941: 936: 932: 924: 923: 922: 920: 916: 900: 893: 887: 879: 859: 856: 853: 845: 841: 820: 817: 814: 806: 802: 778: 775: 767: 763: 759: 756: 753: 750: 742: 738: 737: 722: 717: 708: 705: 702: 694: 691: 686: 683: 680: 676: 672: 664: 660: 636: 632: 623: 620: 612: 608: 604: 601: 598: 595: 587: 586: 585: 568: 549: 546: 538: 534: 530: 519: 516: 508: 504: 500: 495: 491: 487: 482: 478: 474: 469: 465: 457: 456: 455: 453: 448: 431: 426: 413: 410: 407: 399: 396: 391: 388: 385: 381: 377: 370: 369: 368: 346: 342: 322: 318: 309: 306: 298: 294: 290: 279: 275: 266: 263: 255: 251: 247: 242: 239: 236: 232: 224: 223: 222: 206: 202: 193: 189: 185: 161: 157: 148: 145: 137: 133: 129: 126: 123: 120: 112: 94: 90: 82:. Denote by 81: 77: 74: 73:triangulation 70: 66: 62: 58: 50: 48: 46: 42: 38: 35:is a special 34: 30: 26: 22: 1441: 1418: 1410:Linking_form 1409: 1400: 1391: 1382: 1363: 1358: 1349: 1345: 1341: 1337: 1333: 1329: 1324: 1313: 1304: 1263: 1256: 1248: 1221: 1116: 1112: 1106: 1102: 1021: 918: 889: 804: 800: 740: 662: 658: 583: 451: 449: 446: 366: 191: 187: 183: 182:by 2-cycles 79: 75: 63:4-manifold ( 56: 54: 24: 18: 1469:4-manifolds 1369:E8 manifold 892:cup product 588:If classes 71:). Take a 21:mathematics 1463:Categories 1375:References 1259:unimodular 33:4-manifold 1445:, MCCME, 1362:states a 1307:. For a 1230:∧ 1207:β 1204:∧ 1201:α 1192:∫ 1147:β 1127:α 1085:⟩ 1067:⌣ 1061:⟨ 1002:→ 972:× 942:: 901:⌣ 818:∩ 760:∈ 706:∩ 677:∩ 605:∈ 561:→ 531:× 492:⋅ 479:∩ 411:∩ 382:∩ 334:→ 291:× 233:∩ 207:∗ 130:∈ 95:∗ 31:compact 29:oriented 1242:is the 194:and of 1449:  1429:  1364:smooth 1350:smooth 1340:. If 1222:where 69:smooth 61:closed 27:of an 23:, the 1111:, if 59:be a 1447:ISBN 1427:ISBN 1266:spin 1139:and 1115:and 915:dual 803:and 661:and 186:and 109:the 55:Let 739:If 718:mod 450:If 423:mod 78:of 67:or 19:In 1465:: 1425:, 1421:, 1371:. 1356:. 1246:. 723:2. 65:PL 47:. 1346:Q 1342:Q 1338:Q 1334:M 1330:Q 1305:x 1291:) 1288:x 1285:, 1282:x 1279:( 1276:Q 1196:M 1188:= 1185:) 1182:b 1179:, 1176:a 1173:( 1170:Q 1117:b 1113:a 1088:. 1082:] 1079:M 1076:[ 1073:, 1070:b 1064:a 1058:= 1055:) 1052:b 1049:, 1046:a 1043:( 1038:M 1034:Q 1006:Z 999:) 995:Z 991:; 988:M 985:( 980:2 976:H 969:) 965:Z 961:; 958:M 955:( 950:2 946:H 937:M 933:Q 919:M 863:) 860:b 857:, 854:a 851:( 846:M 842:Q 821:B 815:A 805:B 801:A 787:) 783:Z 779:; 776:M 773:( 768:2 764:H 757:b 754:, 751:a 741:M 713:| 709:B 703:A 699:| 695:= 692:b 687:2 684:, 681:M 673:a 663:B 659:A 645:) 641:Z 637:2 633:/ 628:Z 624:; 621:M 618:( 613:2 609:H 602:b 599:, 596:a 569:. 565:Z 558:) 554:Z 550:; 547:M 544:( 539:2 535:H 528:) 524:Z 520:; 517:M 514:( 509:2 505:H 501:: 496:M 488:= 483:M 475:= 470:M 466:Q 452:M 432:. 427:2 418:| 414:B 408:A 404:| 400:= 397:b 392:2 389:, 386:M 378:a 351:Z 347:2 343:/ 338:Z 331:) 327:Z 323:2 319:/ 314:Z 310:; 307:M 304:( 299:2 295:H 288:) 284:Z 280:2 276:/ 271:Z 267:; 264:M 261:( 256:2 252:H 248:: 243:2 240:, 237:M 203:T 192:T 188:B 184:A 170:) 166:Z 162:2 158:/ 153:Z 149:; 146:M 143:( 138:2 134:H 127:b 124:, 121:a 91:T 80:M 76:T 57:M

Index

mathematics
oriented
4-manifold
symmetric bilinear form
homology group
smooth structure
closed
PL
smooth
triangulation
dual cell subdivision
Intersection theory
cup product
dual
de Rham cohomology
wedge product
unimodular
spin
simply-connected
Van der Blij's lemma
Rokhlin's theorem
Michael Freedman
Kirby–Siebenmann invariant
Donaldson's theorem
E8 manifold
Intersection form
Intersection_number_of_immersions
Linking_form
American Mathematical Society
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑