Knowledge (XXG)

Intrinsically disordered proteins

Source πŸ“

582: 296:
individual proteins and regulated protein turnover. Often, post-translational modifications such as phosphorylation tune the affinity (not rarely by several orders of magnitude) of individual linear motifs for specific interactions. Relatively rapid evolution and a relatively small number of structural restraints for establishing novel (low-affinity) interfaces make it particularly challenging to detect linear motifs but their widespread biological roles and the fact that many viruses mimick/hijack linear motifs to efficiently recode infected cells underlines the timely urgency of research on this very challenging and exciting topic.
634:
characterized as disorder-promoting amino acids, while order-promoting amino acids W, C, F, I, Y, V, L, and N are hydrophobic and uncharged. The remaining amino acids H, M, T and D are ambiguous, found in both ordered and unstructured regions. A more recent analysis ranked amino acids by their propensity to form disordered regions as follows (order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P. As it can be seen from the list, small, charged, hydrophilic residues often promote disorder, while large and hydrophobic residues promote order.
317:). The coupled folding and binding may be local, involving only a few interacting residues, or it might involve an entire protein domain. It was recently shown that the coupled folding and binding allows the burial of a large surface area that would be possible only for fully structured proteins if they were much larger. Moreover, certain disordered regions might serve as "molecular switches" in regulating certain biological function by switching to ordered conformation upon molecular recognition like small molecule-binding, DNA/RNA binding, ion interactions etc. 389:). Many disordered proteins reveal regions without any regular secondary structure. These regions can be termed as flexible, compared to structured loops. While the latter are rigid and contain only one set of Ramachandran angles, IDPs involve multiple sets of angles. The term flexibility is also used for well-structured proteins, but describes a different phenomenon in the context of disordered proteins. Flexibility in structured proteins is bound to an equilibrium state, while it is not so in IDPs. Many disordered proteins also reveal 728:
for accurate representation of these ensembles by computer simulations. All-atom molecular dynamic simulations can be used for this purpose but their use is limited by the accuracy of current force-fields in representing disordered proteins. Nevertheless, some force-fields have been explicitly developed for studying disordered proteins by optimising force-field parameters using available NMR data for disordered proteins. (examples are CHARMM 22*, CHARMM 32, Amber ff03* etc.)
31: 146: 653:
the expense of IDP determination. In order to overcome this obstacle, computer-based methods are created for predicting protein structure and function. It is one of the main goals of bioinformatics to derive knowledge by prediction. Predictors for IDP function are also being developed, but mainly use structural information such as
716: 255:, thus it has been proposed that the flexibility of disordered proteins facilitates the different conformational requirements for binding the modifying enzymes as well as their receptors. Intrinsic disorder is particularly enriched in proteins implicated in cell signaling and transcription, as well as 701:
is thought to be responsible. The structural flexibility of this protein together with its susceptibility to modification in the cell leads to misfolding and aggregation. Genetics, oxidative and nitrative stress as well as mitochondrial impairment impact the structural flexibility of the unstructured
664:
Many computational methods exploit sequence information to predict whether a protein is disordered. Notable examples of such software include IUPRED and Disopred. Different methods may use different definitions of disorder. Meta-predictors show a new concept, combining different primary predictors to
178:
suggested that the systematic conformational search of a long polypeptide is unlikely to yield a single folded protein structure on biologically relevant timescales (i.e. microseconds to minutes). Curiously, for many (small) proteins or protein domains, relatively rapid and efficient refolding can be
727:
Owing to high structural heterogeneity, NMR/SAXS experimental parameters obtained will be an average over a large number of highly diverse and disordered states (an ensemble of disordered states). Hence, to understand the structural implications of these experimental parameters, there is a necessity
652:
Determining disordered regions from biochemical methods is very costly and time-consuming. Due to the variable nature of IDPs, only certain aspects of their structure can be detected, so that a full characterization requires a large number of different methods and experiments. This further increases
376:
Therefore, their structures are strongly function-related. However, only few proteins are fully disordered in their native state. Disorder is mostly found in intrinsically disordered regions (IDRs) within an otherwise well-structured protein. The term intrinsically disordered protein (IDP) therefore
637:
This information is the basis of most sequence-based predictors. Regions with little to no secondary structure, also known as NORS (NO Regular Secondary structure) regions, and low-complexity regions can easily be detected. However, not all disordered proteins contain such low complexity sequences.
304:
Unlike globular proteins, IDPs do not have spatially-disposed active pockets. Fascinatingly, 80% of target-unbound IDPs (~4 dozens) subjected to detailed structural characterization by NMR possess linear motifs termed PresMos (pre-structured motifs) that are transient secondary structural elements
633:
Separating disordered from ordered proteins is essential for disorder prediction. One of the first steps to find a factor that distinguishes IDPs from non-IDPs is to specify biases within the amino acid composition. The following hydrophilic, charged amino acids A, R, G, Q, S, P, E and K have been
364:
of the complex is modulated via post-translational modifications or protein interactions. Specificity of DNA binding proteins often depends on the length of fuzzy regions, which is varied by alternative splicing. Some fuzzy complexes may exhibit high binding affinity, although other studies showed
696:
and toxicity as those proteins start binding to each other randomly and can lead to cancer or cardiovascular diseases. Thereby, misfolding can happen spontaneously because millions of copies of proteins are made during the lifetime of an organism. The aggregation of the intrinsically unstructured
173:
in that the amino acid sequence of a protein determines its structure which, in turn, determines its function. In 1950, Karush wrote about 'Configurational Adaptability' contradicting this assumption. He was convinced that proteins have more than one configuration at the same energy level and can
549:
for visualising molecular interactions and conformational transitions, x-ray crystallography to highlight more mobile regions in otherwise rigid protein crystals, cryo-EM to reveal less fixed parts of proteins, light scattering to monitor size distributions of IDPs or their aggregation kinetics,
533:
have been introduced, which allow to determine the fraction folded/disordered without the need for purification. Even subtle differences in the stability of missense mutations, protein partner binding and (self)polymerisation-induced folding of (e.g.) coiled-coils can be detected using FASTpp as
706:
have large intrinsically unstructured regions, for example p53 and BRCA1. These regions of the proteins are responsible for mediating many of their interactions. Taking the cell's native defense mechanisms as a model drugs can be developed, trying to block the place of noxious substrates and
384:
amino acids and a high proportion of polar and charged amino acids, usually referred to as low hydrophobicity. This property leads to good interactions with water. Furthermore, high net charges promote disorder because of electrostatic repulsion resulting from equally charged residues. Thus
295:
Linear motifs are short disordered segments of proteins that mediate functional interactions with other proteins or other biomolecules (RNA, DNA, sugars etc.). Many roles of linear motifs are associated with cell regulation, for instance in control of cell shape, subcellular localisation of
215:
It is now generally accepted that proteins exist as an ensemble of similar structures with some regions more constrained than others. IDPs occupy the extreme end of this spectrum of flexibility and include proteins of considerable local structure tendency or flexible multidomain assemblies.
183:
from 1973, the fixed 3D structure of these proteins is uniquely encoded in its primary structure (the amino acid sequence), is kinetically accessible and stable under a range of (near) physiological conditions, and can therefore be considered as the native state of such "ordered" proteins.
731:
MD simulations restrained by experimental parameters (restrained-MD) have also been used to characterise disordered proteins. In principle, one can sample the whole conformational space given an MD simulation (with accurate Force-field) is run long enough. Because of very high structural
607:
can predict Intrinsic Disorder (ID) propensity with high accuracy (approaching around 80%) based on primary sequence composition, similarity to unassigned segments in protein x-ray datasets, flexible regions in NMR studies and physico-chemical properties of amino acids.
1283:
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001-01-01). "Intrinsically disordered protein".
385:
disordered sequences cannot sufficiently bury a hydrophobic core to fold into stable globular proteins. In some cases, hydrophobic clusters in disordered sequences provide the clues for identifying the regions that undergo coupled folding and binding (refer to
859:
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001). "Intrinsically disordered protein".
534:
recently demonstrated using the tropomyosin-troponin protein interaction. Fully unstructured protein regions can be experimentally validated by their hypersusceptibility to proteolysis using short digestion times and low protease concentrations.
198:
In 2001, Dunker questioned whether the newly found information was ignored for 50 years with more quantitative analyses becoming available in the 2000s. In the 2010s it became clear that IDPs are common among disease-related proteins, such as
305:
primed for target recognition. In several cases it has been demonstrated that these transient structures become full and stable secondary structures, e.g., helices, upon target binding. Hence, PresMos are the putative active sites in IDPs.
568:
for high-resolution insights into the ensembles of IDPs and their oligomers or aggregates, nanopores to reveal global shape distributions of IDPs, magnetic tweezers to study structural transitions for long times at low forces, high-speed
42:). The central part shows relatively ordered structure. Conversely, the N- and C-terminal regions (left and right, respectively) show β€˜intrinsic disorder’, although a short helical region persists in the N-terminal tail. Ten alternative 397:. While low complexity sequences are a strong indication of disorder, the reverse is not necessarily true, that is, not all disordered proteins have low complexity sequences. Disordered proteins have a low content of predicted 753:
Moreover, various protocols and methods of analyzing IDPs, such as studies based on quantitative analysis of GC content in genes and their respective chromosomal bands, have been used to understand functional IDP segments.
3718:
Iida S, Kawabata T, Kasahara K, Nakamura H, Higo J (April 2019). "Multimodal Structural Distribution of the p53 C-Terminal Domain upon Binding to S100B via a Generalized Ensemble Method: From Disorder to Extradisorder".
133:. Many IDPs can also adopt a fixed three-dimensional structure after binding to other macromolecules. Overall, IDPs are different from structured proteins in many ways and tend to have distinctive function, structure, 3625:
Zerze GH, Miller CM, Granata D, Mittal J (June 2015). "Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics".
408:
has been applied to track the dynamics of disordered protein domains. By employing a topological approach, one can categorize motifs according to their topological buildup and the timescale of their formation.
624:
is a database combining experimentally curated disorder annotations (e.g. from DisProt) with data derived from missing residues in X-ray crystallographic structures and flexible regions in NMR structures.
2867:
Japrung D, Dogan J, Freedman KJ, Nadzeyka A, Bauerdick S, Albrecht T, Kim MJ, Jemth P, Edel JB (February 2013). "Single-molecule studies of intrinsically disordered proteins using solid-state nanopores".
732:
heterogeneity, the time scales that needs to be run for this purpose are very large and are limited by computational power. However, other computational techniques such as accelerated-MD simulations,
235:. Based on DISOPRED2 prediction, long (>30 residue) disordered segments occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins, including certain disease-related proteins. 417:
IDPs can be validated in several contexts. Most approaches for experimental validation of IDPs are restricted to extracted or purified proteins while some new experimental strategies aim to explore
2960:
Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (September 2008). "Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy".
356:
Intrinsically disordered proteins can retain their conformational freedom even when they bind specifically to other proteins. The structural disorder in bound state can be static or dynamic. In
723:. The globular thioredoxin fold is depicted in blue, while the disordered N-tail in green. According to the MD results, the disordered tail can be modulating the dynamics of the binding pocket. 4056: 117:
IDPs are a very large and functionally important class of proteins and their discovery has disproved the idea that three-dimensional structures of proteins must be fixed to accomplish their
462:
Intrinsically unfolded proteins, once purified, can be identified by various experimental methods. The primary method to obtain information on disordered regions of a protein is
3257:
Balatti GE, Barletta GP, Parisi G, Tosatto SC, Bellanda M, Fernandez-Alberti S (December 2021). "Intrinsically Disordered Region Modulates Ligand Binding in Glutaredoxin 1 from
187:
During the subsequent decades, however, many large protein regions could not be assigned in x-ray datasets, indicating that they occupy multiple positions, which average out in
192: 43: 3848:
Garaizar A, Espinosa JR (September 2021). "Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions".
3572:
Apicella A, Marascio M, Colangelo V, Soncini M, Gautieri A, Plummer CJ (June 2017). "Molecular dynamics simulations of the intrinsically disordered protein amelogenin".
1332:
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (March 2004). "Prediction and functional analysis of native disorder in proteins from the three kingdoms of life".
271:
Disordered regions are often found as flexible linkers or loops connecting domains. Linker sequences vary greatly in length but are typically rich in polar uncharged
2241:
Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B (March 2018).
320:
The ability of disordered proteins to bind, and thus to exert a function, shows that stability is not a required condition. Many short functional sites, for example
2679:
Robaszkiewicz K, Ostrowska Z, Cyranka-Czaja A, Moraczewska J (May 2015). "Impaired tropomyosin-troponin interactions reduce activation of the actin thin filament".
1917:
Lee SH, Kim DH, Han JJ, Cha EJ, Lim JE, Cho YJ, Lee C, Han KH (February 2012). "Understanding pre-structured motifs (PresMos) in intrinsically unfolded proteins".
404:
Due to the disordered nature of these proteins, topological approaches have been developed to search for conformational patterns in their dynamics. For instance,
3762:
Kurcinski M, Kolinski A, Kmiecik S (June 2014). "Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations".
3306:"Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone Ο†, ψ and side-chain Ο‡(1) and Ο‡(2) dihedral angles" 373:
Intrinsically disordered proteins adapt many different structures in vivo according to the cell's conditions, creating a structural or conformational ensemble.
2431:
Scalvini B. et al., Circuit Topology Approach for the Comparative Analysis of Intrinsically Disordered Proteins. J. Chem. Inf. Model. 63, 8, 2586–2602 (2023)
1952:
Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (October 2006). "Analysis of molecular recognition features (MoRFs)".
444:
persistence of intrinsic disorder has been achieved by in-cell NMR upon electroporation of a purified IDP and recovery of cells to an intact state.
2114:
Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, Paxman JJ, Wagstaff KM, Buckle AM, Moseley GW, Jans DA, Borg NA (January 2018).
1621:
Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (October 2002). "Intrinsic disorder in cell-signaling and cancer-associated proteins".
1571:"Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder" 3044:
Schlessinger A, Schaefer C, Vicedo E, Schmidberger M, Punta M, Rost B (June 2011). "Protein disorder--a breakthrough invention of evolution?".
380:
The existence and kind of protein disorder is encoded in its amino acid sequence. In general, IDPs are characterized by a low content of bulky
2636:
Park C, Marqusee S (March 2005). "Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding".
344:. This enables such viruses to overcome their informationally limited genomes by facilitating binding, and manipulation of, a large number of 1987:
Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R (February 2003). "Extended disordered proteins: targeting function with less scaffold".
564:
Single-molecule methods to study IDPs include spFRET to study conformational flexibility of IDPs and the kinetics of structural transitions,
3159:"Structures of the E46K mutant-type Ξ±-synuclein protein and impact of E46K mutation on the structures of the wild-type Ξ±-synuclein protein" 647: 604: 581: 2300:"Binding Affinity and Function of the Extremely Disordered Protein Complex Containing Human Linker Histone H1.0 and Its Chaperone ProTΞ±" 668:
Due to the different approaches of predicting disordered proteins, estimating their relative accuracy is fairly difficult. For example,
490: 530: 390: 170: 1439: 836: 2442:
Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016).
750:
representation with implicit and explicit solvents have been used to sample broader conformational space in smaller time scales.
1038:
Mir M, Stadler MR, Ortiz SA, Hannon CE, Harrison MM, Darzacq X, Eisen MB (December 2018). Singer RH, Struhl K, Crocker J (eds.).
4042: 620:
database contains a collection of manually curated protein segments which have been experimentally determined to be disordered.
677: 595:​, human growth hormone bound to receptor). Compilation of screenshots from PDB database and molecule representation via 252: 1382:
Uversky VN, Oldfield CJ, Dunker AK (2008). "Intrinsically disordered proteins in human diseases: introducing the D2 concept".
4098: 486: 421:
conformations and structural variations of IDPs inside intact living cells and systematic comparisons between their dynamics
341: 360:
structural multiplicity is required for function and the manipulation of the bound disordered region changes activity. The
324:
are over-represented in disordered proteins. Disordered proteins and short linear motifs are particularly abundant in many
2716:"Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations" 482: 191:
maps. The lack of fixed, unique positions relative to the crystal lattice suggested that these regions were "disordered".
954:
Dunker AK, Silman I, Uversky VN, Sussman JL (December 2008). "Function and structure of inherently disordered proteins".
529:. (Folded proteins typically show dispersions as large as 5 ppm for the amide protons.) Recently, new methods including 813: 676:
experiment that is designed to test methods according accuracy in finding regions with missing 3D structure (marked in
3799:"Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields" 3114:
Ferron F, Longhi S, Canard B, Karlin D (October 2006). "A practical overview of protein disorder prediction methods".
518: 287:. The flexible linker of FBP25 which connects two domains of FKBP25 is important for the binding of FKBP25 with DNA. 4103: 3353:
Best RB (February 2017). "Computational and theoretical advances in studies of intrinsically disordered proteins".
232: 75: 2905:"Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism" 2396:
Oldfield CJ, Dunker AK (2014). "Intrinsically disordered proteins and intrinsically disordered protein regions".
669: 658: 603:
Intrinsic disorder can be either annotated from experimental information or predicted with specialized software.
596: 275:. Flexible linkers allow the connecting domains to freely twist and rotate to recruit their binding partners via 134: 361: 150: 2528:"Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions" 1193:"Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications" 263:
tend to have higher disorder. In animals, genes with high disorder are lost at higher rates during evolution.
2773:
Brucale M, Schuler B, Samorì B (March 2014). "Single-molecule studies of intrinsically disordered proteins".
153:
of NMR structures of the Thylakoid soluble phosphoprotein TSP9, which shows a largely flexible protein chain.
747: 743: 570: 162: 1870:"Structural basis of nucleic acid recognition by FK506-binding protein 25 (FKBP25), a nuclear immunophilin" 243:
Highly dynamic disordered regions of proteins have been linked to functionally important phenomena such as
169:
might be generally required to mediate biological functions of proteins. These publications solidified the
3663:"The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments" 2206:
Fuxreiter M, Simon I, Bondos S (August 2011). "Dynamic protein-DNA recognition: beyond what can be seen".
1630: 1341: 1293: 869: 313:
Many unstructured proteins undergo transitions to more ordered states upon binding to their targets (e.g.
219:
Intrinsic disorder is particularly elevated among proteins that regulate chromatin and transcription, and
195:
also demonstrated the presence of large flexible linkers and termini in many solved structural ensembles.
175: 473:
Folded proteins have a high density (partial specific volume of 0.72-0.74 mL/g) and commensurately small
1666:
Sandhu KS (2009). "Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins".
1422:
Bu Z, Callaway DJ (2011). "Proteins MOVE! Protein dynamics and long-range allostery in cell signaling".
467: 280: 244: 3661:
Granata D, Baftizadeh F, Habchi J, Galvagnion C, De Simone A, Camilloni C, et al. (October 2015).
3388:
Chong SH, Chatterjee P, Ham S (May 2017). "Computer Simulations of Intrinsically Disordered Proteins".
616:
Databases have been established to annotate protein sequences with intrinsic disorder information. The
477:. Hence, unfolded proteins can be detected by methods that are sensitive to molecular size, density or 2116:"Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V" 3961: 3857: 3674: 3479: 3397: 3215: 2916: 2821: 2810:"Diverse metastable structures formed by small oligomers of Ξ±-synuclein probed by force spectroscopy" 2727: 2590: 2455: 2254: 2127: 1726: 1249: 4009: 1346: 1635: 1468:"At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?" 1298: 1142:
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al. (July 2014).
874: 498: 398: 394: 180: 118: 95: 4079: 3881: 3744: 3607: 3286: 3239: 3139: 2661: 2479: 2047: 1691: 1603: 933: 688:
Intrinsically unstructured proteins have been implicated in a number of diseases. Aggregation of
558: 502: 494: 474: 321: 260: 166: 672:
are often trained on different datasets. The disorder prediction category is a part of biannual
17: 3989: 3930: 3873: 3830: 3779: 3736: 3700: 3643: 3599: 3554: 3505: 3448: 3413: 3370: 3335: 3278: 3231: 3188: 3131: 3096: 3061: 3026: 2977: 2942: 2885: 2849: 2790: 2755: 2696: 2653: 2618: 2559: 2471: 2413: 2371: 2329: 2280: 2223: 2188: 2153: 2096: 2039: 2004: 1969: 1934: 1899: 1850: 1801: 1752: 1683: 1648: 1595: 1551: 1497: 1445: 1435: 1399: 1359: 1311: 1265: 1222: 1173: 1124: 1075: 1020: 971: 925: 887: 832: 703: 587: 478: 333: 158: 59: 39: 1395: 599:. Blue and red arrows point to missing residues on receptor and growth hormone, respectively. 3979: 3969: 3920: 3912: 3865: 3820: 3810: 3771: 3728: 3690: 3682: 3635: 3589: 3581: 3544: 3536: 3495: 3487: 3440: 3405: 3362: 3325: 3317: 3270: 3223: 3178: 3170: 3123: 3088: 3053: 3016: 3008: 2969: 2932: 2924: 2877: 2839: 2829: 2782: 2745: 2735: 2688: 2645: 2608: 2598: 2549: 2539: 2506: 2463: 2405: 2363: 2319: 2311: 2270: 2262: 2215: 2180: 2143: 2135: 2086: 2078: 2031: 1996: 1961: 1926: 1889: 1881: 1840: 1832: 1791: 1783: 1742: 1734: 1675: 1640: 1585: 1541: 1533: 1487: 1479: 1427: 1391: 1351: 1303: 1257: 1212: 1204: 1163: 1155: 1114: 1106: 1065: 1055: 1010: 1002: 963: 917: 879: 824: 733: 565: 405: 276: 248: 188: 111: 103: 3409: 2022:
Sandhu KS, Dash D (July 2007). "Dynamic alpha-helices: conformations that do not conform".
4083: 4046: 3468:"Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain" 2579:"Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp" 2409: 698: 337: 200: 126: 107: 585:
REMARK465 - missing electron densities in X-ray structure representing protein disorder (
3965: 3861: 3678: 3483: 3401: 3219: 2920: 2825: 2731: 2594: 2459: 2258: 2131: 1845: 1820: 1730: 1546: 1521: 1426:. Advances in Protein Chemistry and Structural Biology. Vol. 83. pp. 163–221. 1253: 3984: 3949: 3925: 3901:"Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013)" 3900: 3825: 3798: 3695: 3662: 3549: 3524: 3500: 3467: 3330: 3305: 3183: 3158: 3021: 2996: 2937: 2904: 2844: 2809: 2750: 2715: 2613: 2578: 2554: 2527: 2324: 2299: 2275: 2242: 2148: 2115: 2091: 2066: 1894: 1869: 1796: 1771: 1747: 1710: 1492: 1467: 1431: 1217: 1192: 1168: 1143: 1119: 1094: 1070: 1039: 1015: 990: 778: 554: 522: 345: 251:. Many disordered proteins have the binding affinity with their receptors regulated by 130: 99: 91: 79: 3950:"Genealogy of an ancient protein family: the Sirtuins, a family of disordered members" 2443: 2000: 1644: 1307: 883: 4092: 4019: 3885: 3797:
Ciemny MP, Badaczewska-Dawid AE, Pikuzinska M, Kolinski A, Kmiecik S (January 2019).
3611: 3444: 3290: 1821:"Differential Retention of Pfam Domains Contributes to Long-term Evolutionary Trends" 1570: 1040:"Dynamic multifactor hubs interact transiently with sites of active transcription in 908:, Wright PE (March 2005). "Intrinsically unstructured proteins and their functions". 793: 689: 661:
or matrix calculations, based on different structural and/or biophysical properties.
357: 220: 3748: 3143: 2665: 2430: 2051: 1695: 1607: 937: 3948:
Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G (March 2013).
3304:
Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD (September 2012).
3243: 2997:"TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder" 2483: 1711:"Young Genes are Highly Disordered as Predicted by the Preadaptation Hypothesis of 739: 546: 365:
different affinity values for the same system in a different concentration regime.
102:
proteins. They are sometimes considered as a separate class of proteins along with
35: 30: 3585: 2834: 2740: 2692: 2603: 2367: 2171:
Fuxreiter M (January 2012). "Fuzziness: linking regulation to protein dynamics".
1261: 1240:
Anfinsen CB (July 1973). "Principles that govern the folding of protein chains".
125:
interactions that are highly cooperative and dynamic, lending them importance in
4061: 2315: 1787: 788: 526: 463: 381: 329: 272: 204: 122: 87: 47: 4066: 3012: 2714:
Minde DP, Radli M, Forneris F, Maurice MM, RΓΌdiger SG (2013). Buckle AM (ed.).
2219: 2139: 1930: 1590: 1537: 3540: 3491: 3366: 3092: 3057: 2544: 1965: 1355: 967: 905: 828: 51: 3732: 3639: 3274: 1836: 3974: 1772:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 1738: 693: 657:
sites. There are different approaches for predicting IDP structure, such as
325: 284: 256: 3993: 3934: 3877: 3834: 3783: 3740: 3704: 3647: 3603: 3558: 3509: 3452: 3417: 3374: 3339: 3282: 3235: 3192: 3135: 3100: 3065: 3030: 2981: 2973: 2946: 2889: 2853: 2794: 2759: 2700: 2657: 2622: 2563: 2475: 2417: 2375: 2333: 2284: 2227: 2192: 2157: 2100: 2043: 2008: 1973: 1938: 1903: 1854: 1805: 1756: 1687: 1652: 1599: 1555: 1501: 1449: 1403: 1363: 1315: 1226: 1177: 1128: 1079: 1024: 975: 929: 891: 4015:
MobiDB: a comprehensive database of intrinsic protein disorder annotations
3157:
Wise-Scira O, Dunn A, Aloglu AK, Sakallioglu IT, Coskuner O (March 2013).
2444:"Structural disorder of monomeric Ξ±-synuclein persists in mammalian cells" 1269: 1006: 377:
includes proteins that contain IDRs as well as fully disordered proteins.
145: 3815: 3594: 2082: 2067:"Drawing on disorder: How viruses use histone mimicry to their advantage" 1885: 1095:"Intrinsically disordered proteins in cellular signalling and regulation" 763: 514: 506: 228: 86:. IDPs range from fully unstructured to partially structured and include 3227: 2467: 2266: 1060: 3431:
Fox SJ, Kannan S (September 2017). "Probing the dynamics of disorder".
3127: 2995:
Campen A, Williams RM, Brown CJ, Meng J, Uversky VN, Dunker AK (2008).
2928: 2184: 2035: 1483: 989:
Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (January 2014).
768: 617: 510: 451:
validation of IDR predictions is now possible using biotin 'painting'.
71: 3916: 3869: 3775: 3686: 3321: 3174: 2881: 2786: 1208: 1159: 591: 2649: 812:
Majorek K, Kozlowski L, Jakalski M, Bujnicki JM (December 18, 2008).
773: 621: 224: 1679: 1110: 921: 2511: 2498: 2351: 1569:
Collins MO, Yu L, Campuzano I, Grant SG, Choudhary JS (July 2008).
1522:"Interaction modules that impart specificity to disordered protein" 1191:
Song J, Lee MS, Carlberg I, Vener AV, Markley JL (December 2006).
783: 715: 714: 314: 1819:
James, Jennifer E; Nelson, Paul G; Masel, Joanna (4 April 2023).
1144:"Classification of intrinsically disordered regions and proteins" 2499:"Biotinylation by proximity labelling favours unfolded proteins" 702:Ξ±-synuclein protein and associated disease mechanisms. Many key 673: 538: 279:. They also allow their binding partners to induce larger scale 121:. For example, IDPs have been identified to participate in weak 680:
as REMARK465, missing electron densities in X-ray structures).
573:
to visualise the spatio-temporal flexibility of IDPs directly.
513:
groups exposed to solvent, so that they are readily cleaved by
3525:"Constructing ensembles for intrinsically disordered proteins" 551: 542: 83: 4014: 3206:
Dobson CM (December 2003). "Protein folding and misfolding".
2808:
Neupane K, Solanki A, Sosova I, Belov M, Woodside MT (2014).
2681:
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
991:"SCOP2 prototype: a new approach to protein structure mining" 821:
Prediction of Protein Structures, Functions, and Interactions
521:
and exhibit a small dispersion (<1 ppm) in their 1H amide
2356:
The International Journal of Biochemistry & Cell Biology
497:. Unfolded proteins are also characterized by their lack of 3079:
Tompa P (June 2011). "Unstructural biology coming of age".
2577:
Minde DP, Maurice MM, RΓΌdiger SG (2012). Uversky VN (ed.).
2243:"Extreme disorder in an ultrahigh-affinity protein complex" 509:
spectroscopy. Unfolded proteins also have exposed backbone
174:
choose one when binding to other substrates. In the 1960s,
4071: 537:
Bulk methods to study IDP structure and dynamics include
259:
remodeling functions. Genes that have recently been born
2903:
Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY (2013).
4076: 4057:
Gallery of images of intrinsically disordered proteins
4062:
First IDP journal covering all topics of IDP research
707:
inhibiting them, and thus counteracting the disease.
4051: 393:, i.e. sequences with over-representation of a few 193:
Nuclear magnetic resonance spectroscopy of proteins
1868:Prakash A, Shin J, Rajan S, Yoon HS (April 2016). 1515: 1513: 1511: 3574:Journal of Biomolecular Structure & Dynamics 1709:Wilson BA, Foy SG, Neme R, Masel J (June 2017). 165:. These early structures suggested that a fixed 82:interaction partners, such as other proteins or 4010:Intrinsically disordered protein at Proteopedia 2352:"Intrinsically disordered proteins from A to Z" 1461: 1459: 1417: 1415: 1413: 1377: 1375: 1373: 505:(esp. a pronounced minimum at ~200 nm) or 854: 852: 850: 848: 823:. John Wiley & Sons, Ltd. pp. 39–62. 4052:DP Database of Disordered Protein Predictions 2391: 2389: 2387: 2385: 1286:Journal of Molecular Graphics & Modelling 862:Journal of Molecular Graphics & Modelling 814:"First Steps of Protein Structure Prediction" 665:create a more competent and exact predictor. 352:Disorder in the bound state (fuzzy complexes) 8: 3433:Progress in Biophysics and Molecular Biology 2345: 2343: 1327: 1325: 223:predictions indicate that is more common in 46:were morphed. Secondary structure elements: 3803:International Journal of Molecular Sciences 2526:Minde DP, Ramakrishna M, Lilley KS (2020). 2497:Minde DP, Ramakrishna M, Lilley KS (2018). 3764:Journal of Chemical Theory and Computation 3721:Journal of Chemical Theory and Computation 3628:Journal of Chemical Theory and Computation 3310:Journal of Chemical Theory and Computation 949: 947: 501:, as assessed by far-UV (170-250 nm) 137:, interactions, evolution and regulation. 4072:Database of experimentally validated IDPs 3983: 3973: 3924: 3824: 3814: 3694: 3593: 3548: 3499: 3329: 3182: 3020: 2936: 2843: 2833: 2749: 2739: 2612: 2602: 2553: 2543: 2510: 2323: 2274: 2147: 2090: 1893: 1844: 1795: 1746: 1634: 1589: 1545: 1491: 1345: 1297: 1216: 1167: 1118: 1069: 1059: 1014: 873: 719:MD simulation of the Glutaredoxin 1 from 2298:Feng H, Zhou BR, Bai Y (November 2018). 1396:10.1146/annurev.biophys.37.032807.125924 580: 561:to monitor secondary structure of IDPs. 470:studies may also be a sign of disorder. 144: 29: 3466:Terakawa T, Takada S (September 2011). 2065:Tarakhovsky A, Prinjha RK (July 2018). 804: 3410:10.1146/annurev-physchem-052516-050843 1099:Nature Reviews. Molecular Cell Biology 315:Molecular Recognition Features (MoRFs) 3529:Current Opinion in Structural Biology 3355:Current Opinion in Structural Biology 3081:Current Opinion in Structural Biology 3046:Current Opinion in Structural Biology 2410:10.1146/annurev-biochem-072711-164947 1919:Current Protein & Peptide Science 956:Current Opinion in Structural Biology 910:Nature Reviews Molecular Cell Biology 386: 98:, or flexible linkers in large multi- 7: 2071:The Journal of Experimental Medicine 1770:Willis S, Masel J (September 2018). 1093:Wright PE, Dyson HJ (January 2015). 648:List of disorder prediction software 27:Protein without a fixed 3D structure 3390:Annual Review of Physical Chemistry 3263:The Journal of Physical Chemistry B 1578:Molecular & Cellular Proteomics 1520:Cermakova K, Hodges HC (May 2023). 1466:Kamerlin SC, Warshel A (May 2010). 545:for atomistic ensemble refinement, 491:small angle X-ray scattering (SAXS) 3523:Fisher CK, Stultz CM (June 2011). 1432:10.1016/B978-0-12-381262-9.00005-7 654: 531:Fast parallel proteolysis (FASTpp) 466:. The lack of electron density in 171:central dogma of molecular biology 78:, typically in the absence of its 25: 3905:Intrinsically Disordered Proteins 746:MD simulations, or methods using 3445:10.1016/j.pbiomolbio.2017.05.008 1668:Journal of Molecular Recognition 541:for ensemble shape information, 231:than in known structures in the 179:observed in vitro. As stated in 64:intrinsically disordered protein 18:Intrinsically disordered protein 3850:The Journal of Chemical Physics 1825:Molecular Biology and Evolution 253:post-translational modification 2208:Trends in Biochemical Sciences 1989:Trends in Biochemical Sciences 1719:Nature Ecology & Evolution 1526:Trends in Biochemical Sciences 1424:Protein Structure and Diseases 605:Disorder prediction algorithms 487:analytical ultracentrifugation 440:The first direct evidence for 157:In the 1930s-1950s, the first 74:that lacks a fixed or ordered 34:Conformational flexibility in 1: 3586:10.1080/07391102.2016.1196151 2398:Annual Review of Biochemistry 2001:10.1016/S0968-0004(03)00003-3 1645:10.1016/S0022-2836(02)00969-5 1308:10.1016/s1093-3263(00)00138-8 884:10.1016/s1093-3263(00)00138-8 483:size exclusion chromatography 2835:10.1371/journal.pone.0086495 2741:10.1371/journal.pone.0077257 2693:10.1016/j.bbapap.2015.01.004 2604:10.1371/journal.pone.0046147 2368:10.1016/j.biocel.2011.04.001 1954:Journal of Molecular Biology 1623:Journal of Molecular Biology 1334:Journal of Molecular Biology 1262:10.1126/science.181.4096.223 3001:Protein and Peptide Letters 2316:10.1021/acs.biochem.8b01075 1788:10.1534/genetics.118.301249 1384:Annual Review of Biophysics 629:Predicting IDPs by sequence 519:hydrogen-deuterium exchange 309:Coupled folding and binding 167:three-dimensional structure 76:three-dimensional structure 4120: 3013:10.2174/092986608785849164 2350:Uversky VN (August 2011). 2220:10.1016/j.tibs.2011.04.006 2140:10.1038/s41598-017-18742-8 1931:10.2174/138920312799277974 1591:10.1074/mcp.M700564-MCP200 1538:10.1016/j.tibs.2023.01.004 1001:(Database issue): D310–4. 645: 493:, and measurements of the 3541:10.1016/j.sbi.2011.04.001 3492:10.1016/j.bpj.2011.08.003 3367:10.1016/j.sbi.2017.01.006 3163:ACS Chemical Neuroscience 3093:10.1016/j.sbi.2011.03.012 3058:10.1016/j.sbi.2011.03.014 2545:10.1038/s42003-020-0758-y 1966:10.1016/j.jmb.2006.07.087 1356:10.1016/j.jmb.2004.02.002 968:10.1016/j.sbi.2008.10.002 829:10.1002/9780470741894.ch2 4028:isordered proteins with 3954:BMC Evolutionary Biology 3733:10.1021/acs.jctc.8b01042 3640:10.1021/acs.jctc.5b00047 3275:10.1021/acs.jpcb.1c07035 391:low complexity sequences 3975:10.1186/1471-2148-13-60 1739:10.1038/s41559-017-0146 819:. In Bujnicki J (ed.). 413:Experimental validation 362:conformational ensemble 277:protein domain dynamics 163:protein crystallography 2974:10.1002/cphc.200800210 2532:Communications Biology 1874:Nucleic Acids Research 1837:10.1093/molbev/msad073 995:Nucleic Acids Research 724: 600: 468:X-ray crystallographic 342:human papillomaviruses 281:conformational changes 154: 55: 4099:Proteins by structure 4077:IDP ensemble database 2909:Nature Communications 718: 692:is the cause of many 584: 300:Pre-structured motifs 245:allosteric regulation 148: 33: 3816:10.3390/ijms20030606 2870:Analytical Chemistry 2173:Molecular BioSystems 2083:10.1084/jem.20180099 711:Computer simulations 684:Disorder and disease 119:biological functions 3966:2013BMCEE..13...60C 3899:Uversky VN (2013). 3862:2021JChPh.155l5103G 3679:2015NatSR...515449G 3484:2011BpJ...101.1450T 3472:Biophysical Journal 3402:2017ARPC...68..117C 3269:(49): 13366–13375. 3228:10.1038/nature02261 3220:2003Natur.426..884D 2921:2013NatCo...4.1705M 2826:2014PLoSO...986495N 2732:2013PLoSO...877257M 2595:2012PLoSO...746147M 2468:10.1038/nature16531 2460:2016Natur.530...45T 2267:10.1038/nature25762 2259:2018Natur.555...61B 2132:2018NatSR...8..358A 1731:2017NatEE...1..146W 1254:1973Sci...181..223A 1061:10.7554/eLife.40497 1007:10.1093/nar/gkt1242 577:Disorder annotation 499:secondary structure 399:secondary structure 322:Short Linear Motifs 176:Levinthal's paradox 4082:2018-03-10 at the 4045:2020-05-02 at the 3667:Scientific Reports 3259:Trypanosoma Brucei 3128:10.1002/prot.21075 2929:10.1038/ncomms2692 2185:10.1039/c1mb05234a 2120:Scientific Reports 2036:10.1002/prot.21328 1886:10.1093/nar/gkw001 1484:10.1002/prot.22654 725: 721:Trypanosoma brucei 704:tumour suppressors 690:misfolded proteins 642:Prediction methods 612:Disorder databases 601: 559:Circular Dichroism 503:circular dichroism 495:diffusion constant 475:radius of gyration 369:Structural aspects 159:protein structures 155: 56: 4104:Protein structure 3917:10.4161/idp.25496 3870:10.1063/5.0062687 3776:10.1021/ct500287c 3687:10.1038/srep15449 3322:10.1021/ct300400x 3175:10.1021/cn3002027 2882:10.1021/ac3035025 2787:10.1021/cr400297g 2310:(48): 6645–6648. 1248:(4096): 223–230. 1209:10.1021/bi062148m 1160:10.1021/cr400525m 1154:(13): 6589–6631. 694:synucleinopathies 479:hydrodynamic drag 112:membrane proteins 60:molecular biology 16:(Redirected from 4111: 3998: 3997: 3987: 3977: 3945: 3939: 3938: 3928: 3896: 3890: 3889: 3845: 3839: 3838: 3828: 3818: 3794: 3788: 3787: 3770:(6): 2224–2231. 3759: 3753: 3752: 3727:(4): 2597–2607. 3715: 3709: 3708: 3698: 3658: 3652: 3651: 3634:(6): 2776–2782. 3622: 3616: 3615: 3597: 3580:(8): 1813–1823. 3569: 3563: 3562: 3552: 3520: 3514: 3513: 3503: 3478:(6): 1450–1458. 3463: 3457: 3456: 3428: 3422: 3421: 3385: 3379: 3378: 3350: 3344: 3343: 3333: 3316:(9): 3257–3273. 3301: 3295: 3294: 3254: 3248: 3247: 3214:(6968): 884–90. 3203: 3197: 3196: 3186: 3154: 3148: 3147: 3111: 3105: 3104: 3076: 3070: 3069: 3041: 3035: 3034: 3024: 2992: 2986: 2985: 2957: 2951: 2950: 2940: 2900: 2894: 2893: 2864: 2858: 2857: 2847: 2837: 2805: 2799: 2798: 2775:Chemical Reviews 2770: 2764: 2763: 2753: 2743: 2711: 2705: 2704: 2676: 2670: 2669: 2650:10.1038/nmeth740 2633: 2627: 2626: 2616: 2606: 2574: 2568: 2567: 2557: 2547: 2523: 2517: 2516: 2514: 2494: 2488: 2487: 2439: 2433: 2428: 2422: 2421: 2393: 2380: 2379: 2362:(8): 1090–1103. 2347: 2338: 2337: 2327: 2295: 2289: 2288: 2278: 2238: 2232: 2231: 2203: 2197: 2196: 2168: 2162: 2161: 2151: 2111: 2105: 2104: 2094: 2077:(7): 1777–1787. 2062: 2056: 2055: 2019: 2013: 2012: 1984: 1978: 1977: 1949: 1943: 1942: 1914: 1908: 1907: 1897: 1880:(6): 2909–2925. 1865: 1859: 1858: 1848: 1816: 1810: 1809: 1799: 1767: 1761: 1760: 1750: 1706: 1700: 1699: 1663: 1657: 1656: 1638: 1618: 1612: 1611: 1593: 1575: 1566: 1560: 1559: 1549: 1517: 1506: 1505: 1495: 1463: 1454: 1453: 1419: 1408: 1407: 1379: 1368: 1367: 1349: 1329: 1320: 1319: 1301: 1280: 1274: 1273: 1237: 1231: 1230: 1220: 1203:(51): 15633–43. 1188: 1182: 1181: 1171: 1148:Chemical Reviews 1139: 1133: 1132: 1122: 1090: 1084: 1083: 1073: 1063: 1035: 1029: 1028: 1018: 986: 980: 979: 951: 942: 941: 902: 896: 895: 877: 856: 843: 842: 818: 809: 769:DisProt database 734:replica exchange 594: 566:optical tweezers 517:, undergo rapid 464:NMR spectroscopy 406:circuit topology 387:biological roles 267:Flexible linkers 249:enzyme catalysis 239:Biological roles 233:protein database 189:electron density 181:Anfinsen's Dogma 21: 4119: 4118: 4114: 4113: 4112: 4110: 4109: 4108: 4089: 4088: 4084:Wayback Machine 4047:Wayback Machine 4036:nnotations and 4006: 4001: 3947: 3946: 3942: 3898: 3897: 3893: 3847: 3846: 3842: 3796: 3795: 3791: 3761: 3760: 3756: 3717: 3716: 3712: 3660: 3659: 3655: 3624: 3623: 3619: 3571: 3570: 3566: 3522: 3521: 3517: 3465: 3464: 3460: 3430: 3429: 3425: 3387: 3386: 3382: 3352: 3351: 3347: 3303: 3302: 3298: 3256: 3255: 3251: 3205: 3204: 3200: 3156: 3155: 3151: 3113: 3112: 3108: 3078: 3077: 3073: 3043: 3042: 3038: 2994: 2993: 2989: 2968:(13): 1859–66. 2959: 2958: 2954: 2902: 2901: 2897: 2866: 2865: 2861: 2807: 2806: 2802: 2781:(6): 3281–317. 2772: 2771: 2767: 2713: 2712: 2708: 2678: 2677: 2673: 2635: 2634: 2630: 2576: 2575: 2571: 2525: 2524: 2520: 2496: 2495: 2491: 2454:(7588): 45–50. 2441: 2440: 2436: 2429: 2425: 2395: 2394: 2383: 2349: 2348: 2341: 2297: 2296: 2292: 2253:(7694): 61–66. 2240: 2239: 2235: 2205: 2204: 2200: 2170: 2169: 2165: 2113: 2112: 2108: 2064: 2063: 2059: 2021: 2020: 2016: 1986: 1985: 1981: 1951: 1950: 1946: 1916: 1915: 1911: 1867: 1866: 1862: 1818: 1817: 1813: 1769: 1768: 1764: 1725:(6): 0146–146. 1708: 1707: 1703: 1680:10.1002/jmr.915 1665: 1664: 1660: 1620: 1619: 1615: 1573: 1568: 1567: 1563: 1519: 1518: 1509: 1465: 1464: 1457: 1442: 1421: 1420: 1411: 1381: 1380: 1371: 1347:10.1.1.120.5605 1331: 1330: 1323: 1282: 1281: 1277: 1239: 1238: 1234: 1190: 1189: 1185: 1141: 1140: 1136: 1111:10.1038/nrm3920 1092: 1091: 1087: 1037: 1036: 1032: 988: 987: 983: 953: 952: 945: 922:10.1038/nrm1589 904: 903: 899: 858: 857: 846: 839: 816: 811: 810: 806: 802: 774:MobiDB database 760: 713: 686: 670:neural networks 659:neural networks 650: 644: 631: 614: 586: 579: 525:as measured by 523:chemical shifts 460: 438: 415: 371: 358:fuzzy complexes 354: 311: 302: 293: 269: 241: 213: 201:alpha-synuclein 161:were solved by 143: 54:(blue arrows). 28: 23: 22: 15: 12: 11: 5: 4117: 4115: 4107: 4106: 4101: 4091: 4090: 4087: 4086: 4074: 4069: 4064: 4059: 4054: 4049: 4017: 4012: 4005: 4004:External links 4002: 4000: 3999: 3940: 3891: 3856:(12): 125103. 3840: 3789: 3754: 3710: 3653: 3617: 3564: 3535:(3): 426–431. 3515: 3458: 3423: 3380: 3345: 3296: 3249: 3198: 3169:(3): 498–508. 3149: 3106: 3087:(3): 419–425. 3071: 3036: 3007:(9): 956–963. 2987: 2952: 2895: 2876:(4): 2449–56. 2859: 2800: 2765: 2726:(10): e77257. 2706: 2671: 2638:Nature Methods 2628: 2589:(10): e46147. 2569: 2518: 2512:10.1101/274761 2489: 2434: 2423: 2381: 2339: 2290: 2233: 2198: 2163: 2106: 2057: 2014: 1979: 1960:(5): 1043–59. 1944: 1909: 1860: 1811: 1782:(1): 303–313. 1762: 1701: 1658: 1636:10.1.1.132.682 1613: 1584:(7): 1331–48. 1561: 1532:(5): 477–490. 1507: 1478:(6): 1339–75. 1455: 1440: 1409: 1369: 1321: 1299:10.1.1.113.556 1275: 1232: 1183: 1134: 1085: 1030: 981: 943: 916:(3): 197–208. 897: 875:10.1.1.113.556 844: 837: 803: 801: 798: 797: 796: 791: 786: 781: 779:Molten globule 776: 771: 766: 759: 756: 748:coarse-grained 744:multicanonical 712: 709: 685: 682: 646:Main article: 643: 640: 630: 627: 613: 610: 578: 575: 555:chemical shift 459: 453: 437: 431: 414: 411: 370: 367: 353: 350: 310: 307: 301: 298: 292: 289: 283:by long-range 268: 265: 240: 237: 212: 209: 142: 139: 131:cell signaling 127:DNA regulation 92:molten globule 80:macromolecular 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4116: 4105: 4102: 4100: 4097: 4096: 4094: 4085: 4081: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4044: 4041: 4039: 4035: 4031: 4027: 4024:ntrinsically 4023: 4018: 4016: 4013: 4011: 4008: 4007: 4003: 3995: 3991: 3986: 3981: 3976: 3971: 3967: 3963: 3959: 3955: 3951: 3944: 3941: 3936: 3932: 3927: 3922: 3918: 3914: 3911:(1): e25496. 3910: 3906: 3902: 3895: 3892: 3887: 3883: 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3851: 3844: 3841: 3836: 3832: 3827: 3822: 3817: 3812: 3808: 3804: 3800: 3793: 3790: 3785: 3781: 3777: 3773: 3769: 3765: 3758: 3755: 3750: 3746: 3742: 3738: 3734: 3730: 3726: 3722: 3714: 3711: 3706: 3702: 3697: 3692: 3688: 3684: 3680: 3676: 3672: 3668: 3664: 3657: 3654: 3649: 3645: 3641: 3637: 3633: 3629: 3621: 3618: 3613: 3609: 3605: 3601: 3596: 3595:11311/1004711 3591: 3587: 3583: 3579: 3575: 3568: 3565: 3560: 3556: 3551: 3546: 3542: 3538: 3534: 3530: 3526: 3519: 3516: 3511: 3507: 3502: 3497: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3462: 3459: 3454: 3450: 3446: 3442: 3438: 3434: 3427: 3424: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3384: 3381: 3376: 3372: 3368: 3364: 3360: 3356: 3349: 3346: 3341: 3337: 3332: 3327: 3323: 3319: 3315: 3311: 3307: 3300: 3297: 3292: 3288: 3284: 3280: 3276: 3272: 3268: 3264: 3260: 3253: 3250: 3245: 3241: 3237: 3233: 3229: 3225: 3221: 3217: 3213: 3209: 3202: 3199: 3194: 3190: 3185: 3180: 3176: 3172: 3168: 3164: 3160: 3153: 3150: 3145: 3141: 3137: 3133: 3129: 3125: 3121: 3117: 3110: 3107: 3102: 3098: 3094: 3090: 3086: 3082: 3075: 3072: 3067: 3063: 3059: 3055: 3051: 3047: 3040: 3037: 3032: 3028: 3023: 3018: 3014: 3010: 3006: 3002: 2998: 2991: 2988: 2983: 2979: 2975: 2971: 2967: 2963: 2956: 2953: 2948: 2944: 2939: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2899: 2896: 2891: 2887: 2883: 2879: 2875: 2871: 2863: 2860: 2855: 2851: 2846: 2841: 2836: 2831: 2827: 2823: 2820:(1): e86495. 2819: 2815: 2811: 2804: 2801: 2796: 2792: 2788: 2784: 2780: 2776: 2769: 2766: 2761: 2757: 2752: 2747: 2742: 2737: 2733: 2729: 2725: 2721: 2717: 2710: 2707: 2702: 2698: 2694: 2690: 2687:(5): 381–90. 2686: 2682: 2675: 2672: 2667: 2663: 2659: 2655: 2651: 2647: 2644:(3): 207–12. 2643: 2639: 2632: 2629: 2624: 2620: 2615: 2610: 2605: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2570: 2565: 2561: 2556: 2551: 2546: 2541: 2537: 2533: 2529: 2522: 2519: 2513: 2508: 2504: 2500: 2493: 2490: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2438: 2435: 2432: 2427: 2424: 2419: 2415: 2411: 2407: 2403: 2399: 2392: 2390: 2388: 2386: 2382: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2346: 2344: 2340: 2335: 2331: 2326: 2321: 2317: 2313: 2309: 2305: 2301: 2294: 2291: 2286: 2282: 2277: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2237: 2234: 2229: 2225: 2221: 2217: 2214:(8): 415–23. 2213: 2209: 2202: 2199: 2194: 2190: 2186: 2182: 2179:(1): 168–77. 2178: 2174: 2167: 2164: 2159: 2155: 2150: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2107: 2102: 2098: 2093: 2088: 2084: 2080: 2076: 2072: 2068: 2061: 2058: 2053: 2049: 2045: 2041: 2037: 2033: 2030:(1): 109–22. 2029: 2025: 2018: 2015: 2010: 2006: 2002: 1998: 1994: 1990: 1983: 1980: 1975: 1971: 1967: 1963: 1959: 1955: 1948: 1945: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1910: 1905: 1901: 1896: 1891: 1887: 1883: 1879: 1875: 1871: 1864: 1861: 1856: 1852: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1815: 1812: 1807: 1803: 1798: 1793: 1789: 1785: 1781: 1777: 1773: 1766: 1763: 1758: 1754: 1749: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1714: 1705: 1702: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1662: 1659: 1654: 1650: 1646: 1642: 1637: 1632: 1629:(3): 573–84. 1628: 1624: 1617: 1614: 1609: 1605: 1601: 1597: 1592: 1587: 1583: 1579: 1572: 1565: 1562: 1557: 1553: 1548: 1543: 1539: 1535: 1531: 1527: 1523: 1516: 1514: 1512: 1508: 1503: 1499: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1460: 1456: 1451: 1447: 1443: 1441:9780123812629 1437: 1433: 1429: 1425: 1418: 1416: 1414: 1410: 1405: 1401: 1397: 1393: 1389: 1385: 1378: 1376: 1374: 1370: 1365: 1361: 1357: 1353: 1348: 1343: 1340:(3): 635–45. 1339: 1335: 1328: 1326: 1322: 1317: 1313: 1309: 1305: 1300: 1295: 1291: 1287: 1279: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1236: 1233: 1228: 1224: 1219: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1184: 1179: 1175: 1170: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1135: 1130: 1126: 1121: 1116: 1112: 1108: 1104: 1100: 1096: 1089: 1086: 1081: 1077: 1072: 1067: 1062: 1057: 1053: 1049: 1045: 1043: 1034: 1031: 1026: 1022: 1017: 1012: 1008: 1004: 1000: 996: 992: 985: 982: 977: 973: 969: 965: 962:(6): 756–64. 961: 957: 950: 948: 944: 939: 935: 931: 927: 923: 919: 915: 911: 907: 901: 898: 893: 889: 885: 881: 876: 871: 867: 863: 855: 853: 851: 849: 845: 840: 838:9780470517673 834: 830: 826: 822: 815: 808: 805: 799: 795: 794:Dark proteome 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 761: 757: 755: 751: 749: 745: 741: 737: 736:simulations, 735: 729: 722: 717: 710: 708: 705: 700: 695: 691: 683: 681: 679: 675: 671: 666: 662: 660: 656: 649: 641: 639: 635: 628: 626: 623: 619: 611: 609: 606: 598: 593: 589: 583: 576: 574: 572: 567: 562: 560: 556: 553: 548: 544: 540: 535: 532: 528: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 471: 469: 465: 457: 454: 452: 450: 447:Larger-scale 445: 443: 435: 432: 430: 428: 424: 420: 412: 410: 407: 402: 400: 396: 392: 388: 383: 378: 374: 368: 366: 363: 359: 351: 349: 347: 343: 339: 335: 331: 327: 323: 318: 316: 308: 306: 299: 297: 291:Linear motifs 290: 288: 286: 282: 278: 274: 266: 264: 262: 258: 254: 250: 246: 238: 236: 234: 230: 226: 222: 221:bioinformatic 217: 210: 208: 206: 202: 196: 194: 190: 185: 182: 177: 172: 168: 164: 160: 152: 147: 140: 138: 136: 132: 128: 124: 120: 115: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 53: 49: 45: 41: 38:protein (PDB: 37: 32: 19: 4037: 4033: 4029: 4025: 4021: 3957: 3953: 3943: 3908: 3904: 3894: 3853: 3849: 3843: 3806: 3802: 3792: 3767: 3763: 3757: 3724: 3720: 3713: 3670: 3666: 3656: 3631: 3627: 3620: 3577: 3573: 3567: 3532: 3528: 3518: 3475: 3471: 3461: 3436: 3432: 3426: 3393: 3389: 3383: 3358: 3354: 3348: 3313: 3309: 3299: 3266: 3262: 3258: 3252: 3211: 3207: 3201: 3166: 3162: 3152: 3119: 3115: 3109: 3084: 3080: 3074: 3052:(3): 412–8. 3049: 3045: 3039: 3004: 3000: 2990: 2965: 2962:ChemPhysChem 2961: 2955: 2912: 2908: 2898: 2873: 2869: 2862: 2817: 2813: 2803: 2778: 2774: 2768: 2723: 2719: 2709: 2684: 2680: 2674: 2641: 2637: 2631: 2586: 2582: 2572: 2535: 2531: 2521: 2502: 2492: 2451: 2447: 2437: 2426: 2401: 2397: 2359: 2355: 2307: 2304:Biochemistry 2303: 2293: 2250: 2246: 2236: 2211: 2207: 2201: 2176: 2172: 2166: 2123: 2119: 2109: 2074: 2070: 2060: 2027: 2023: 2017: 1992: 1988: 1982: 1957: 1953: 1947: 1925:(1): 34–54. 1922: 1918: 1912: 1877: 1873: 1863: 1828: 1824: 1814: 1779: 1775: 1765: 1722: 1718: 1712: 1704: 1671: 1667: 1661: 1626: 1622: 1616: 1581: 1577: 1564: 1529: 1525: 1475: 1471: 1423: 1387: 1383: 1337: 1333: 1292:(1): 26–59. 1289: 1285: 1278: 1245: 1241: 1235: 1200: 1197:Biochemistry 1196: 1186: 1151: 1147: 1137: 1105:(1): 18–29. 1102: 1098: 1088: 1051: 1047: 1041: 1033: 998: 994: 984: 959: 955: 913: 909: 900: 868:(1): 26–59. 865: 861: 820: 807: 752: 740:metadynamics 738: 730: 726: 720: 687: 667: 663: 655:linear motif 651: 636: 632: 615: 602: 563: 547:Fluorescence 536: 472: 461: 455: 448: 446: 441: 439: 433: 426: 422: 418: 416: 403: 379: 375: 372: 355: 330:Hendra virus 319: 312: 303: 294: 270: 242: 218: 214: 197: 186: 156: 116: 67: 63: 57: 4067:IDP Journal 3396:: 117–134. 3361:: 147–154. 3122:(1): 1–14. 2915:(4): 1705. 2404:: 553–584. 1995:(2): 81–5. 1715:Gene Birth" 789:Random coil 699:Ξ±-synuclein 382:hydrophobic 326:RNA viruses 273:amino acids 123:multivalent 88:random coil 4093:Categories 3809:(3): 606. 2126:(1): 358. 1674:(1): 1–8. 1390:: 215–46. 1054:: e40497. 1042:Drosophila 800:References 481:, such as 458:approaches 436:approaches 348:proteins. 96:aggregates 44:NMR models 4040:iterature 4032:xtensive 3960:(1): 60. 3886:238249229 3673:: 15449. 3612:205576649 3439:: 57–62. 3291:244942842 2538:(1): 38. 1631:CiteSeerX 1342:CiteSeerX 1294:CiteSeerX 870:CiteSeerX 678:PDB files 515:proteases 346:host cell 285:allostery 257:chromatin 229:proteomes 211:Abundance 52:Ξ²-strands 48:Ξ±-helices 4080:Archived 4043:Archived 4020:IDEAL - 3994:23497088 3935:28516015 3878:34598583 3835:30708941 3784:26580746 3749:75138292 3741:30855964 3705:26498066 3648:26575570 3604:27366858 3559:21530234 3510:21943426 3453:28554553 3418:28226222 3375:28259050 3340:23341755 3283:34870419 3236:14685248 3193:23374074 3144:30231497 3136:16856179 3116:Proteins 3101:21514142 3066:21514145 3031:18991772 2982:18698566 2947:23591872 2890:23327569 2854:24475132 2814:PLOS ONE 2795:24432838 2760:24130866 2720:PLOS ONE 2701:25603119 2666:21364478 2658:15782190 2623:23056252 2583:PLOS ONE 2564:31969649 2476:26808899 2418:24606139 2376:21501695 2334:30430826 2285:29466338 2228:21620710 2193:21927770 2158:29321677 2101:29934321 2052:96719019 2044:17407165 2024:Proteins 2009:12575995 1974:16935303 1939:22044148 1904:26762975 1855:36947137 1846:10089649 1806:30026186 1776:Genetics 1757:28642936 1696:33010897 1688:18802931 1653:12381310 1608:22193414 1600:18388127 1556:36754681 1547:10106370 1502:20099310 1472:Proteins 1450:21570668 1404:18573080 1364:15019783 1316:11381529 1227:17176085 1178:24773235 1129:25531225 1080:30589412 1044:embryos" 1025:24293656 976:18952168 938:18068406 930:15738986 906:Dyson HJ 892:11381529 764:IDPbyNMR 758:See also 697:protein 507:infrared 456:In vitro 427:in vitro 395:residues 328:such as 151:ensemble 135:sequence 104:globular 3985:3599600 3962:Bibcode 3926:5424799 3858:Bibcode 3826:6386871 3696:4620491 3675:Bibcode 3550:3112268 3501:3177054 3480:Bibcode 3398:Bibcode 3331:3549273 3244:1036192 3216:Bibcode 3184:3605821 3022:2676888 2938:3644077 2917:Bibcode 2845:3901707 2822:Bibcode 2751:3793970 2728:Bibcode 2614:3463568 2591:Bibcode 2555:6976632 2503:bioRxiv 2484:4461465 2456:Bibcode 2325:7984725 2276:6264893 2255:Bibcode 2149:5762688 2128:Bibcode 2092:6028506 1895:4824100 1797:6116962 1748:5476217 1727:Bibcode 1713:De Novo 1493:2841229 1270:4124164 1250:Bibcode 1242:Science 1218:2533273 1169:4095912 1120:4405151 1071:6307861 1016:3964979 618:DisProt 511:peptide 449:in vivo 442:in vivo 434:In vivo 423:in vivo 419:in vivo 261:de novo 225:genomes 141:History 129:and in 108:fibrous 72:protein 70:) is a 50:(red), 3992:  3982:  3933:  3923:  3884:  3876:  3833:  3823:  3782:  3747:  3739:  3703:  3693:  3646:  3610:  3602:  3557:  3547:  3508:  3498:  3451:  3416:  3373:  3338:  3328:  3289:  3281:  3242:  3234:  3208:Nature 3191:  3181:  3142:  3134:  3099:  3064:  3029:  3019:  2980:  2945:  2935:  2888:  2852:  2842:  2793:  2758:  2748:  2699:  2664:  2656:  2621:  2611:  2562:  2552:  2482:  2474:  2448:Nature 2416:  2374:  2332:  2322:  2283:  2273:  2247:Nature 2226:  2191:  2156:  2146:  2099:  2089:  2050:  2042:  2007:  1972:  1937:  1902:  1892:  1853:  1843:  1804:  1794:  1755:  1745:  1694:  1686:  1651:  1633:  1606:  1598:  1554:  1544:  1500:  1490:  1448:  1438:  1402:  1362:  1344:  1314:  1296:  1268:  1225:  1215:  1176:  1166:  1127:  1117:  1078:  1068:  1023:  1013:  974:  936:  928:  890:  872:  835:  622:MobiDB 100:domain 94:-like 36:SUMO-1 3882:S2CID 3745:S2CID 3608:S2CID 3287:S2CID 3240:S2CID 3140:S2CID 2662:S2CID 2480:S2CID 2048:S2CID 1831:(4). 1692:S2CID 1604:S2CID 1574:(PDF) 1048:eLife 934:S2CID 817:(PDF) 784:Prion 338:HIV-1 62:, an 3990:PMID 3931:PMID 3874:PMID 3831:PMID 3780:PMID 3737:PMID 3701:PMID 3644:PMID 3600:PMID 3555:PMID 3506:PMID 3449:PMID 3414:PMID 3371:PMID 3336:PMID 3279:PMID 3232:PMID 3189:PMID 3132:PMID 3097:PMID 3062:PMID 3027:PMID 2978:PMID 2943:PMID 2886:PMID 2850:PMID 2791:PMID 2756:PMID 2697:PMID 2685:1854 2654:PMID 2619:PMID 2560:PMID 2472:PMID 2414:PMID 2372:PMID 2330:PMID 2281:PMID 2224:PMID 2189:PMID 2154:PMID 2097:PMID 2040:PMID 2005:PMID 1970:PMID 1935:PMID 1900:PMID 1851:PMID 1802:PMID 1753:PMID 1684:PMID 1649:PMID 1596:PMID 1552:PMID 1498:PMID 1446:PMID 1436:ISBN 1400:PMID 1360:PMID 1312:PMID 1266:PMID 1223:PMID 1174:PMID 1125:PMID 1076:PMID 1021:PMID 972:PMID 926:PMID 888:PMID 833:ISBN 674:CASP 592:1a22 557:and 539:SAXS 425:and 340:and 247:and 227:and 203:and 110:and 40:1a5r 3980:PMC 3970:doi 3921:PMC 3913:doi 3866:doi 3854:155 3821:PMC 3811:doi 3772:doi 3729:doi 3691:PMC 3683:doi 3636:doi 3590:hdl 3582:doi 3545:PMC 3537:doi 3496:PMC 3488:doi 3476:101 3441:doi 3437:128 3406:doi 3363:doi 3326:PMC 3318:doi 3271:doi 3267:125 3261:". 3224:doi 3212:426 3179:PMC 3171:doi 3124:doi 3089:doi 3054:doi 3017:PMC 3009:doi 2970:doi 2933:PMC 2925:doi 2878:doi 2840:PMC 2830:doi 2783:doi 2779:114 2746:PMC 2736:doi 2689:doi 2646:doi 2609:PMC 2599:doi 2550:PMC 2540:doi 2507:doi 2464:doi 2452:530 2406:doi 2364:doi 2320:PMC 2312:doi 2271:PMC 2263:doi 2251:555 2216:doi 2181:doi 2144:PMC 2136:doi 2087:PMC 2079:doi 2075:215 2032:doi 1997:doi 1962:doi 1958:362 1927:doi 1890:PMC 1882:doi 1841:PMC 1833:doi 1792:PMC 1784:doi 1780:210 1743:PMC 1735:doi 1676:doi 1641:doi 1627:323 1586:doi 1542:PMC 1534:doi 1488:PMC 1480:doi 1428:doi 1392:doi 1352:doi 1338:337 1304:doi 1258:doi 1246:181 1213:PMC 1205:doi 1164:PMC 1156:doi 1152:114 1115:PMC 1107:doi 1066:PMC 1056:doi 1011:PMC 1003:doi 964:doi 918:doi 880:doi 825:doi 597:VMD 588:PDB 571:AFM 552:NMR 543:NMR 527:NMR 334:HCV 205:tau 149:An 84:RNA 68:IDP 58:In 4095:: 3988:. 3978:. 3968:. 3958:13 3956:. 3952:. 3929:. 3919:. 3907:. 3903:. 3880:. 3872:. 3864:. 3852:. 3829:. 3819:. 3807:20 3805:. 3801:. 3778:. 3768:10 3766:. 3743:. 3735:. 3725:15 3723:. 3699:. 3689:. 3681:. 3669:. 3665:. 3642:. 3632:11 3630:. 3606:. 3598:. 3588:. 3578:35 3576:. 3553:. 3543:. 3533:21 3531:. 3527:. 3504:. 3494:. 3486:. 3474:. 3470:. 3447:. 3435:. 3412:. 3404:. 3394:68 3392:. 3369:. 3359:42 3357:. 3334:. 3324:. 3312:. 3308:. 3285:. 3277:. 3265:. 3238:. 3230:. 3222:. 3210:. 3187:. 3177:. 3165:. 3161:. 3138:. 3130:. 3120:65 3118:. 3095:. 3085:21 3083:. 3060:. 3050:21 3048:. 3025:. 3015:. 3005:15 3003:. 2999:. 2976:. 2964:. 2941:. 2931:. 2923:. 2911:. 2907:. 2884:. 2874:85 2872:. 2848:. 2838:. 2828:. 2816:. 2812:. 2789:. 2777:. 2754:. 2744:. 2734:. 2722:. 2718:. 2695:. 2683:. 2660:. 2652:. 2640:. 2617:. 2607:. 2597:. 2585:. 2581:. 2558:. 2548:. 2534:. 2530:. 2505:. 2501:. 2478:. 2470:. 2462:. 2450:. 2446:. 2412:. 2402:83 2400:. 2384:^ 2370:. 2360:43 2358:. 2354:. 2342:^ 2328:. 2318:. 2308:57 2306:. 2302:. 2279:. 2269:. 2261:. 2249:. 2245:. 2222:. 2212:36 2210:. 2187:. 2175:. 2152:. 2142:. 2134:. 2122:. 2118:. 2095:. 2085:. 2073:. 2069:. 2046:. 2038:. 2028:68 2026:. 2003:. 1993:28 1991:. 1968:. 1956:. 1933:. 1923:13 1921:. 1898:. 1888:. 1878:44 1876:. 1872:. 1849:. 1839:. 1829:40 1827:. 1823:. 1800:. 1790:. 1778:. 1774:. 1751:. 1741:. 1733:. 1721:. 1717:. 1690:. 1682:. 1672:22 1670:. 1647:. 1639:. 1625:. 1602:. 1594:. 1580:. 1576:. 1550:. 1540:. 1530:48 1528:. 1524:. 1510:^ 1496:. 1486:. 1476:78 1474:. 1470:. 1458:^ 1444:. 1434:. 1412:^ 1398:. 1388:37 1386:. 1372:^ 1358:. 1350:. 1336:. 1324:^ 1310:. 1302:. 1290:19 1288:. 1264:. 1256:. 1244:. 1221:. 1211:. 1201:45 1199:. 1195:. 1172:. 1162:. 1150:. 1146:. 1123:. 1113:. 1103:16 1101:. 1097:. 1074:. 1064:. 1050:. 1046:. 1019:. 1009:. 999:42 997:. 993:. 970:. 960:18 958:. 946:^ 932:. 924:. 912:. 886:. 878:. 866:19 864:. 847:^ 831:. 742:, 590:: 489:, 485:, 429:. 401:. 336:, 332:, 207:. 114:. 106:, 90:, 4038:L 4034:A 4030:E 4026:D 4022:I 3996:. 3972:: 3964:: 3937:. 3915:: 3909:1 3888:. 3868:: 3860:: 3837:. 3813:: 3786:. 3774:: 3751:. 3731:: 3707:. 3685:: 3677:: 3671:5 3650:. 3638:: 3614:. 3592:: 3584:: 3561:. 3539:: 3512:. 3490:: 3482:: 3455:. 3443:: 3420:. 3408:: 3400:: 3377:. 3365:: 3342:. 3320:: 3314:8 3293:. 3273:: 3246:. 3226:: 3218:: 3195:. 3173:: 3167:4 3146:. 3126:: 3103:. 3091:: 3068:. 3056:: 3033:. 3011:: 2984:. 2972:: 2966:9 2949:. 2927:: 2919:: 2913:4 2892:. 2880:: 2856:. 2832:: 2824:: 2818:9 2797:. 2785:: 2762:. 2738:: 2730:: 2724:8 2703:. 2691:: 2668:. 2648:: 2642:2 2625:. 2601:: 2593:: 2587:7 2566:. 2542:: 2536:3 2515:. 2509:: 2486:. 2466:: 2458:: 2420:. 2408:: 2378:. 2366:: 2336:. 2314:: 2287:. 2265:: 2257:: 2230:. 2218:: 2195:. 2183:: 2177:8 2160:. 2138:: 2130:: 2124:8 2103:. 2081:: 2054:. 2034:: 2011:. 1999:: 1976:. 1964:: 1941:. 1929:: 1906:. 1884:: 1857:. 1835:: 1808:. 1786:: 1759:. 1737:: 1729:: 1723:1 1698:. 1678:: 1655:. 1643:: 1610:. 1588:: 1582:7 1558:. 1536:: 1504:. 1482:: 1452:. 1430:: 1406:. 1394:: 1366:. 1354:: 1318:. 1306:: 1272:. 1260:: 1252:: 1229:. 1207:: 1180:. 1158:: 1131:. 1109:: 1082:. 1058:: 1052:7 1027:. 1005:: 978:. 966:: 940:. 920:: 914:6 894:. 882:: 841:. 827:: 66:( 20:)

Index

Intrinsically disordered protein

SUMO-1
1a5r
NMR models
Ξ±-helices
Ξ²-strands
molecular biology
protein
three-dimensional structure
macromolecular
RNA
random coil
molten globule
aggregates
domain
globular
fibrous
membrane proteins
biological functions
multivalent
DNA regulation
cell signaling
sequence

ensemble
protein structures
protein crystallography
three-dimensional structure
central dogma of molecular biology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑