Knowledge

Magnetosphere of Jupiter

Source 📝

1218: 1264:
which are bright, narrow (less than 1000 km in width) circular features located at approximately 16° from the magnetic poles; the satellites' auroral spots, which correspond to the footprints of the magnetic field lines connecting Jupiter's ionosphere with those of its largest moons, and transient polar emissions situated within the main ovals (elliptical field may prove to be a better description). Auroral emissions have been detected in almost all parts of the electromagnetic spectrum from radio waves to X-rays (up to 3 keV); they are most frequently observed in the mid-infrared (wavelength 3–4 μm and 7–14 μm) and far ultraviolet spectral regions (wavelength 120–180 nm).
1980: 40: 1988: 1034: 1383:. The electrons involved in the generation of radio waves are probably those carrying currents from the poles of the planet to the magnetodisk. The intensity of Jovian radio emissions usually varies smoothly with time. However, there are short and powerful bursts (S bursts) of emission superimposed on the more gradual variations and which can outshine all other components. The total emitted power of the DAM component is about 100 GW, while the power of all other HOM/KOM components is about 10 GW. In comparison, the total power of Earth's radio emissions is about 0.1 GW. 1414:
100 MeV, while the leading contribution comes from the electrons with energy in the range 1–20 MeV. This radiation is well understood and was used since the beginning of the 1960s to study the structure of the planet's magnetic field and radiation belts. The particles in the radiation belts originate in the outer magnetosphere and are adiabatically accelerated, when they are transported to the inner magnetosphere. However, this requires a source population of moderately high energy electrons (>> 1 keV), and the origin of this population is not well understood.
1602:. The pressure from the co-rotating plasma continuously strips gases from the moons' atmospheres (especially from that of Io), and some of these atoms are ionized and brought into co-rotation. This process creates gas and plasma tori in the vicinity of moons' orbits with the Ionian torus being the most prominent. In effect, the Galilean moons (mainly Io) serve as the principal plasma sources in Jupiter's inner and middle magnetosphere. Meanwhile, the energetic particles are largely unaffected by the Alfvén wings and have free access to the moons' surfaces (except Ganymede's). 1057:—large blobs of plasma. The reconnection processes may correspond to the global reconfiguration events also observed by the Galileo spacecraft, which occurred regularly every 2–3 days. The reconfiguration events usually included rapid and chaotic variation of the magnetic field strength and direction, as well as abrupt changes in the motion of the plasma, which often stopped co-rotating and began flowing outward. They were mainly observed in the dawn sector of the night magnetosphere. The plasma flowing down the tail along the open field lines is called the planetary wind. 1633:
creating a mini-magnetosphere within Jupiter's magnetosphere. Ganymede's magnetic field diverts the co-rotating plasma flow around its magnetosphere. It also protects the moon's equatorial regions, where the field lines are closed, from energetic particles. The latter can still freely strike Ganymede's poles, where the field lines are open. Some of the energetic particles are trapped near the equator of Ganymede, creating mini-radiation belts. Energetic electrons entering its thin atmosphere are responsible for the observed Ganymedian polar aurorae.
1846:(for a human, a whole body dose of 500 rads would be fatal). The level of radiation at Jupiter was ten times more powerful than Pioneer's designers had predicted, leading to fears that the probe would not survive; however, with a few minor glitches, it managed to pass through the radiation belts, saved in large part by the fact that Jupiter's magnetosphere had "wobbled" slightly upward at that point, moving away from the spacecraft. However, Pioneer 11 did lose most images of Io, as the radiation had caused its imaging photo 1045:, which detected regions of sharply reduced plasma density and increased field strength in the inner magnetosphere. These voids may correspond to the almost empty flux tubes arriving from the outer magnetosphere. In the middle magnetosphere, Galileo detected so-called injection events, which occur when hot plasma from the outer magnetosphere impacts the magnetodisk, leading to increased flux of energetic particles and a strengthened magnetic field. No mechanism is yet known to explain the transport of cold plasma outward. 1363: 1248: 1085:. The structure of the outer magnetosphere shows some features of a solar wind-driven magnetosphere, including a significant dawn–dusk asymmetry. In particular, magnetic field lines in the dusk sector are bent in the opposite direction to those in the dawn sector. In addition, the dawn magnetosphere contains open field lines connecting to the magnetotail, whereas in the dusk magnetosphere, the field lines are closed. All these observations indicate that a solar wind driven reconnection process, known on Earth as the 5686: 1625:, all generate induced magnetic moments in response to changes in Jupiter's magnetic field. These varying magnetic moments create dipole magnetic fields around them, which act to compensate for changes in the ambient field. The induction is thought to take place in subsurface layers of salty water, which are likely to exist in all of Jupiter's large icy moons. These underground oceans can potentially harbor life, and evidence for their presence was one of the most important discoveries made in the 1990s by 1074: 1606: 925: 1792: 1240: 694: 1702: 6126: 878:. The magnetic field lines point away from Jupiter above the sheet and towards Jupiter below it. The load of plasma from Io greatly expands the size of the Jovian magnetosphere, because the magnetodisk creates an additional internal pressure which balances the pressure of the solar wind. In the absence of Io the distance from the planet to the magnetopause at the subsolar point would be no more than 42  720:, the tail currents, which flow against Jupiter's rotation at the outer boundary of the magnetotail, and the magnetopause currents (or Chapman–Ferraro currents), which flow against rotation along the dayside magnetopause. These currents create the magnetic field that cancels the internal field outside the magnetosphere. They also interact substantially with the solar wind. 1463: 506:, magnetodisk, and other components. The magnetic field around Jupiter emanates from a number of different sources, including fluid circulation at the planet's core (the internal field), electrical currents in the plasma surrounding Jupiter and the currents flowing at the boundary of the planet's magnetosphere. The magnetosphere is embedded within the plasma of the 6137: 1780: 1317:. The polar auroral emissions could be similar to those observed around Earth's poles: appearing when electrons are accelerated towards the planet by potential drops, during reconnection of solar magnetic field with that of the planet. The regions within the main ovals emits most of auroral X-rays. The spectrum of the auroral X-ray radiation consists of 940:, which appears as a result of this motion, drives negatively charged electrons to the poles, while positively charged ions are pushed towards the equator. As a result, the poles become negatively charged and the regions closer to the equator become positively charged. Since the magnetosphere of Jupiter is filled with highly conductive plasma, the 550:, with north and south magnetic poles at the ends of a single magnetic axis. On Jupiter the north pole of the dipole (where magnetic field lines point radially outward) is located in the planet's northern hemisphere and the south pole of the dipole lies in its southern hemisphere. This is opposite from the Earth. Jupiter's field also has 754: 805:(100,000–1,000,000 K), which is much lower than that of the particles in the radiation belts—10 keV (100 million K). The plasma in the torus is forced into co-rotation with Jupiter, meaning both share the same period of rotation. The Io torus fundamentally alters the dynamics of the Jovian magnetosphere. 483: 1309:. The auroral spot associated with Callisto is probably similar to that of Europa, but has only been seen once as of June, 2019. Normally, magnetic field lines connected to Callisto touch Jupiter's atmosphere very close to or along the main auroral oval, making it difficult to detect Callisto's auroral spot. 709:. The structure of Jupiter's magnetotail is similar to Earth's. It consists of two lobes (blue areas in the figure), with the magnetic field in the southern lobe pointing toward Jupiter, and that in the northern lobe pointing away from it. The lobes are separated by a thin layer of plasma called the tail 1267:
The main ovals are the dominant part of the Jovian aurorae. They have roughly stable shapes and locations, but their intensities are strongly modulated by the solar wind pressure—the stronger solar wind, the weaker the aurorae. As mentioned above, the main ovals are maintained by the strong influx of
1470:
Close to Jupiter, the planet's rings and small moons absorb high-energy particles (energy above 10 keV) from the radiation belts. This creates noticeable gaps in the belts' spatial distribution and affects the decimetric synchrotron radiation. In fact, the existence of Jupiter's rings was first
1321:
of highly ionized oxygen and sulfur, which probably appear when energetic (hundreds of kiloelectronvolts) S and O ions precipitate into the polar atmosphere of Jupiter. The source of this precipitation remains unknown but this is inconsistent with the theory that these magnetic field lines are open
1300:
flowing from the Jovian to Ionian ionosphere. Europa's is similar but much dimmer, because it has a more tenuous atmosphere and is a weaker plasma source. Europa's atmosphere is produced by sublimation of water ice from its surfaces, rather than the volcanic activity which produces Io's atmosphere.
1263:
Jupiter demonstrates bright, persistent aurorae around both poles. Unlike Earth's aurorae, which are transient and only occur at times of heightened solar activity, Jupiter's aurorae are permanent, though their intensity varies from day to day. They consist of three main components: the main ovals,
1640:
ions farther from the planet, where they are implanted preferentially on the trailing hemispheres of Europa and Ganymede. On Callisto however, for unknown reasons, sulfur is concentrated on the leading hemisphere. Plasma may also be responsible for darkening the moons' trailing hemispheres (again,
1413:
radiation or DIM radiation) with frequencies in the range of 0.1–15 GHz (wavelength from 3 m to 2 cm),. These emissions are from relativistic electrons trapped in the inner radiation belts of the planet. The energy of the electrons that contribute to the DIM emissions is from 0.1 to
1312:
Bright arcs and spots sporadically appear within the main ovals. These transient phenomena are thought to be related to interaction with either the solar wind or the dynamics of the outer magnetosphere. The magnetic field lines in this region are believed to be open or to map onto the magnetotail.
1064:
in the Earth's magnetosphere. The difference seems to be their respective energy sources: terrestrial substorms involve storage of the solar wind's energy in the magnetotail followed by its release through a reconnection event in the tail's neutral current sheet. The latter also creates a plasmoid
944:
is closed through it. A current called the direct current flows along the magnetic field lines from the ionosphere to the equatorial plasma sheet. This current then flows radially away from the planet within the equatorial plasma sheet and finally returns to the planetary ionosphere from the outer
1632:
The interaction of the Jovian magnetosphere with Ganymede, which has an intrinsic magnetic moment, differs from its interaction with the non-magnetized moons. Ganymede's internal magnetic field carves a cavity inside Jupiter's magnetosphere with a diameter of approximately two Ganymede diameters,
605:
The inner, solid, and incandescent cores of the planets Jupiter and Saturn possess rotation axes with inclinations of 9.6 degrees and zero degrees, respectively, and, surprisingly, exhibit opposite directions to the rotation of their respective planets. What is the basis for the evidence? These
1585:
with electron densities in the range of 1,000–10,000 cm. The co-rotational flow of cold magnetospheric plasma is partially diverted around them by the currents induced in their ionospheres, creating wedge-shaped structures known as Alfvén wings. The interaction of the large moons with the
1358:
radiation or DAM. The latter radiation was the first to be observed from Earth, and its approximately 10-hour periodicity helped to identify it as originating from Jupiter. The strongest part of decametric emission, which is related to Io and to the Io–Jupiter current system, is called Io-DAM.
1370:
The majority of these emissions are thought to be produced by a mechanism called "cyclotron maser instability", which develops close to the auroral regions. Electrons moving parallel to the magnetic field precipitate into the atmosphere while those with a sufficient perpendicular velocity are
816:
being the main escape mechanisms—the plasma slowly leaks away from Jupiter. As the plasma moves further from the planet, the radial currents flowing within it gradually increase its velocity, maintaining co-rotation. These radial currents are also the source of the magnetic field's azimuthal
1955:
was inserted into Jupiter orbit, its scientific objectives include exploration of Jupiter's polar magnetosphere. The coverage of Jupiter's magnetosphere remains much poorer than for Earth's magnetic field. Further study is important to further understand the Jovian magnetosphere's dynamics.
2022:
A primary objective of the Juno mission is to explore the polar magnetosphere of Jupiter. While Ulysses briefly attained latitudes of ~48 degrees, this was at relatively large distances from Jupiter (~8.6 RJ). Hence, the polar magnetosphere of Jupiter is largely uncharted territory and, in
1967:. The possibility was mooted of building a surface base on Callisto, because of the low radiation levels at the moon's distance from Jupiter and its geological stability. Callisto is the only one of Jupiter's Galilean satellites for which human exploration is feasible. The levels of 3893:
Connerney, JEP; Adriani, A; Allegrini, F; Bagenal, F; Bolton, SJ; Bonfond, B; Cowley, SWH; Gerard, JC; Gladstone, GR; Grodent, D; Hospodarsky, G; Jorgensen, JL; Kurth, WS; Levin, SM; Mauk, B; McComas, DJ; Mura, A; Paranicas, C; Smith, EJ; Thorne, RM; Valek, P; Waite, J (2017).
1276:
and producing potential drops. The precipitating electrons have energy in the range 10–100 keV and penetrate deep into the atmosphere of Jupiter, where they ionize and excite molecular hydrogen causing ultraviolet emission. The total energy input into the ionosphere is
593:
spacecraft show a small but measurable change from the planet's magnetic field observed during the Pioneer era. In particular, Jupiter has a region of strongly non-dipolar field, known as the "Great Blue Spot", near the equator. This may be roughly analogous to the Earth's
949:. The radial current interacts with the planetary magnetic field, and the resulting Lorentz force accelerates the magnetospheric plasma in the direction of planetary rotation. This is the main mechanism that maintains co-rotation of the plasma in Jupiter's magnetosphere. 1296:. They develop because the co-rotation of the plasma interacts with the moons and is slowed in their vicinity. The brightest spot belongs to Io, which is the main source of the plasma in the magnetosphere (see above). The Ionian auroral spot is thought to be related to 1903:. The regions studied included the magnetotail and the dawn and dusk sectors of the magnetosphere. While Galileo successfully survived in the harsh radiation environment of Jupiter, it still experienced a few technical problems. In particular, the spacecraft's 1475:
spacecraft, which detected a sharp drop in the number of high-energy ions close to the planet. The planetary magnetic field strongly influences the motion of sub-micrometer ring particles as well, which acquire an electrical charge under the influence of solar
842:(in the outer magnetosphere) this plasma is no longer confined by the magnetic field and leaves the magnetosphere through the magnetotail. As cold, dense plasma moves outward, it is replaced by hot, low-density plasma, with temperatures of up to 20  2038:
revealed a planetary magnetic field rich in spatial variation, possibly due to a relatively large dynamo radius. The most surprising observation until late 2017 was the absence of the expected magnetic signature of intense field aligned currents
1052:
process, which separates the magnetic field from the plasma. The former returns to the inner magnetosphere in the form of flux tubes filled with hot and less dense plasma, while the latter are probably ejected down the magnetotail in the form of
1868:
from the planet's center, was first to encounter the Io plasma torus. It received a radiation dosage one thousand times the lethal level for humans, the damage resulting in serious degradation of some high-resolution images of Io and Ganymede.
952:
The current flowing from the ionosphere to the plasma sheet is especially strong when the corresponding part of the plasma sheet rotates slower than the planet. As mentioned above, co-rotation breaks down in the region located between 20 and
1092:
The extent of the solar wind's influence on the dynamics of Jupiter's magnetosphere is currently unknown; however, it could be especially strong at times of elevated solar activity. The auroral radio, optical and X-ray emissions, as well as
4273:
Cowley, S.W. H.; Bunce, E. J. (2003). "Modulation of Jovian middle magnetosphere currents and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: initial response and steady state".
960:
from Jupiter. This region corresponds to the magnetodisk, where the magnetic field is highly stretched. The strong direct current flowing into the magnetodisk originates in a very limited latitudinal range of about
1025:
filled with plasma. The buoyant empty flux tubes move towards the planet, while pushing the heavy tubes, filled with the Ionian plasma, away from Jupiter. This interchange of flux tubes is a form of magnetospheric
423:, in the process stretching it into a pancake-like structure called a magnetodisk. In effect, Jupiter's magnetosphere is internally driven, shaped primarily by Io's plasma and its own rotation, rather than by the 1755:
trapped in the planet's radiation belts. These synchrotron emissions were used to estimate the number and energy of the electrons around Jupiter and led to improved estimates of the magnetic moment and its tilt.
858:
While Earth's magnetic field is roughly teardrop-shaped, Jupiter's is flatter, more closely resembling a disk, and "wobbles" periodically about its axis. The main reasons for this disk-like configuration are the
730:
from the planet. The magnetic field within it remains approximately dipole, because contributions from the currents flowing in the magnetospheric equatorial plasma sheet are small. In the middle (between 10 and
1390:. This periodical modulation is probably related to asymmetries in the Jovian magnetosphere, which are caused by the tilt of the magnetic moment with respect to the rotational axis as well as by high-latitude 1272:, which maintain the plasma's co-rotation in the magnetodisk. The potential drops develop because the sparse plasma outside the equatorial sheet can only carry a current of a limited strength without driving 667:—the unfixed point on the surface at which the Sun would appear directly overhead to an observer. The position of the magnetopause depends on the pressure exerted by the solar wind, which in turn depends on 2410:
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R.J.; Espley, J.R.; Joergensen, J. L.; Joergensen, P.S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K.M.; Bolton, S. J.; Levin, S. M. (2017-05-26).
585:
at the same speed as the region below its atmosphere, with a period of 9 h 55 m. No changes in its strength or structure had been observed since the first measurements were taken by the
1097:
emissions from the radiation belts all show correlations with solar wind pressure, indicating that the solar wind may drive plasma circulation or modulate internal processes in the magnetosphere.
1285:. This heating, which produces up to 300 TW of power, is responsible for the strong infrared radiation from the Jovian aurorae and partially for the heating of the thermosphere of Jupiter. 765:
is a strong source of plasma in its own right, and loads Jupiter's magnetosphere with as much as 1,000 kg of new material every second. Strong volcanic eruptions on Io emit huge amounts of
1693:
produced by radiolysis, like oxygen and ozone, may be trapped inside the ice and carried downward to the oceans over geologic time intervals, thus serving as a possible energy source for life.
1021:) plasma, and the light liquid is the hot, much less dense plasma from the outer magnetosphere. The instability leads to an exchange between the outer and inner parts of the magnetosphere of 1451:. Orbiting near the magnetic equator, these bodies serve as sources and sinks of magnetospheric plasma, while energetic particles from the magnetosphere alter their surfaces. The particles 716:
The shape of Jupiter's magnetosphere described above is sustained by the neutral sheet current (also known as the magnetotail current), which flows with Jupiter's rotation through the tail
1484:. Resonant interactions between the co-rotation and the particles' orbital motion has been used to explain the creation of Jupiter's innermost halo ring (located between 1.4 and 1.71  1802:
As of 2009 a total of eight spacecraft have flown around Jupiter and all have contributed to the present knowledge of the Jovian magnetosphere. The first space probe to reach Jupiter was
1657:, maintaining the thin oxygen atmospheres of the icy moons (since the hydrogen escapes more rapidly). The compounds produced radiolytically on the surfaces of Galilean moons also include 1366:
The spectrum of Jovian radio emissions compared with spectra of four other magnetized planets, where (N,T,S,U)KR means (Neptunian, Terrestrial, Saturnian and Uranian) kilometric radiation
392:
is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the
976:
enters the Jovian ionosphere near the poles, closing the electrical circuit. The total radial current in the Jovian magnetosphere is estimated at 60 million–140 million amperes.
2001:
New Frontiers mission to Jupiter was launched in 2011 and arrived at Jupiter in 2016. It includes a suite of instruments designed to better understand the magnetosphere, including a
1005:. The precise mechanism of this process is not known, but it is hypothesized to occur as a result of plasma diffusion due to interchange instability. The process is similar to the 936:. When Jupiter rotates, its ionosphere moves relatively to the dipole magnetic field of the planet. Because the dipole magnetic moment points in the direction of the rotation, the 1081:
Whereas the dynamics of the Jovian magnetosphere mainly depend on internal sources of energy, the solar wind probably has a role as well, particularly as a source of high-energy
723:
Jupiter's magnetosphere is traditionally divided into three parts: the inner, middle and outer magnetosphere. The inner magnetosphere is located at distances closer than 10 
645:
As with Earth's magnetosphere, the boundary separating the denser and colder solar wind's plasma from the hotter and less dense one within Jupiter's magnetosphere is called the
1499:
orbits. The particles originate in the main ring; however, when they drift toward Jupiter, their orbits are modified by the strong 3:2 Lorentz resonance located at 1.71 
761:
Although overall the shape of Jupiter's magnetosphere resembles that of the Earth's, closer to the planet its structure is very different. Jupiter's volcanically active moon
5244:
Edwards, T.M.; Bunce, E.J.; Cowley, S.W.H. (2001). "A note on the vector potential of Connerney et al.'s model of the equatorial current sheet in Jupiter's magnetosphere".
2118:
A Lorentz resonance is one that exists between a particle's orbital speed and the rotation period of a planet's magnetosphere. If the ratio of their angular frequencies is
1641:
except Callisto's). Energetic electrons and ions, with the flux of the latter being more isotropic, bombard surface ice, sputtering atoms and molecules off and causing
1459:. The plasma's co-rotation with the planet means that the plasma preferably interacts with the moons' trailing hemispheres, causing noticeable hemispheric asymmetries. 6600: 945:
reaches of the magnetosphere along the field lines connected to the poles. The currents that flow along the magnetic field lines are generally called field-aligned or
561:
The dipole is tilted roughly 10° from Jupiter's axis of rotation; the tilt is similar to that of the Earth (11.3°). Its equatorial field strength is about 417.0  
835:
from Jupiter, co-rotation gradually breaks down and the plasma begins to rotate more slowly than the planet. Eventually at the distances greater than roughly 40 
4916: 1243:
Image of Jupiter's northern aurorae, showing the main auroral oval, the polar emissions, and the spots generated by the interaction with Jupiter's natural satellites
1065:
which moves down the tail. Conversely, in Jupiter's magnetosphere the rotational energy is stored in the magnetodisk and released when a plasmoid separates from it.
5561:
Zarka, Philippe; Queinnec, Julien; Crary, Frank J. (2001). "Low-frequency limit of Jovian radio emissions and implications on source locations and Io plasma wake".
3866:
Kurth, W. S.; Kirchner, D. L.; Hospodarsky, G. B.; Gurnett, D. A.; Zarka, P.; Ergun, R.; Bolton, S. (2008). "A Wave Investigation for the Juno Mission to Jupiter".
470:
markedly affects their chemical and physical properties. Those same particles also affect and are affected by the motions of the particles within Jupiter's tenuous
983:
of the plasma. In that sense, the Jovian magnetosphere is powered by the planet's rotation, whereas the Earth's magnetosphere is powered mainly by the solar wind.
6453: 2070:
The magnetic moment is proportional to the product of the equatorial field strength and cube of Jupiter's radius, which is 11 times larger than that of the Earth.
1394:. The physics governing Jupiter's radio emissions is similar to that of radio pulsars. They differ only in the scale, and Jupiter can be considered a very small 1313:
The secondary ovals are sometimes observed inside the main oval and may be related to the boundary between open and closed magnetic field lines or to the polar
1896:, which orbited Jupiter from 1995 to 2003, provided a comprehensive coverage of Jupiter's magnetic field near the equatorial plane at distances up to 100  6458: 4675: 2455:
Connerney, J. E. P.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Cowley, S. W. H.; Gerard, J.-C.; Gladstone, G. R. (2017-05-26).
907:, which keeps the co-rotating plasma from escaping the planet. The total ring current in the equatorial current sheet is estimated at 90–160 million 1759:
By 1973 the magnetic moment was known within a factor of two, whereas the tilt was correctly estimated at about 10°. The modulation of Jupiter's DAM by
581:. This makes Jupiter's magnetic field about 20 times stronger than Earth's, and its magnetic moment ~20,000 times larger. Jupiter's magnetic field 991:
The main problem encountered in deciphering the dynamics of the Jovian magnetosphere is the transport of heavy cold plasma from the Io torus at 6 
6174: 4733:
Miller, Steve; Aylward, Alan; Millward, George (January 2005). "Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling".
1217: 686:-like disturbance in the solar wind caused by its collision with the magnetosphere. The region between the bow shock and magnetopause is called the 4384: 1506:, which increases their inclinations and eccentricities. Another 2:1 Lorentz resonance at 1.4 Rj defines the inner boundary of the halo ring. 745:) magnetospheres, the magnetic field is not a dipole, and is seriously disturbed by its interaction with the plasma sheet (see magnetodisk below). 2015: 5831: 2514:
Bolton, S. J.; Adriani, A.; Adumitroaie, V.; Allison, M.; Anderson, J.; Atreya, S.; Bloxham, J.; Brown, S.; Connerney, J. E. P. (2017-05-26).
399:
Jupiter's internal magnetic field is generated by electrical currents in the planet's outer core, which is theorized to be composed of liquid
5859: 5122: 4664: 4638: 4568: 4528: 4127: 3770: 3741: 3840: 5854: 1636:
Charged particles have a considerable influence on the surface properties of Galilean moons. Plasma originating from Io carries sulfur and
1425:
and vary with the rotational period of the planet like the radio emissions. In this respect as well, Jupiter shows similarity to a pulsar.
626:, and instead diverts it away from the planet, effectively creating a cavity in the solar wind flow, called a magnetosphere, composed of a 1827:
Pioneer 10 provided the best coverage available of the inner magnetic field as it passed through the inner radiation belts within 20 
5494:
Maclennan, G.G.; Maclennan, L.J.; Lagg, Andreas (2001). "Hot plasma heavy ion abundance in the inner Jovian magnetosphere (<10 Rj)".
4339: 1268:
electrons accelerated by the electric potential drops between the magnetodisk plasma and the Jovian ionosphere. These electrons carry
5449:
McComas, D.J.; Allegrini, F.; Bagenal, F.; et al. (2007). "Diverse Plasma Populations and Structures in Jupiter's Magnetotail".
5415:"First evidence of IMF control of Jovian magnetospheric boundary locations: Cassini and Galileo magnetic field measurements compared" 4200: 6475: 6404: 5612: 1979: 39: 5685: 4965:
Santos-Costa, D.; Bourdarie, S.A. (2001). "Modeling the inner Jovian electron radiation belt including non-equatorial particles".
6470: 4513: 3550: 2171:, which measured the magnetic field of Jupiter directly. The spacecraft also made observations of plasma and energetic particles. 1228:
emissions), Jupiter system, and Rings of Jupiter (composite image utilizing two filters – F212N (orange) and F335M (cyan) in the
1350:
radiation or KOM. Those with frequencies in the interval of 0.3–3 MHz (with wavelengths of 100–1000 m) are called the
5328: 5138: 5078: 5025:
Troutman, P.A.; Bethke, K.; et al. (28 January 2003). "Revolutionary concepts for Human Outer Planet Exploration (HOPE)".
4996: 4481: 4074: 3802: 2412: 1987: 4244:
Cowley, S.W. H.; Bunce, E. J. (2001). "Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system".
1942:
passed close to Jupiter in 2007, carrying out a unique investigation of the Jovian magnetotail, traveling as far as 2500 
932:
The main driver of Jupiter's magnetosphere is the planet's rotation. In this respect Jupiter is similar to a device called a
4340:"X-ray probes of magnetospheric interactions with Jupiter's auroral zones, the Galilean satellites, and the Io plasma torus" 1386:
Jupiter's radio and particle emissions are strongly modulated by its rotation, which makes the planet somewhat similar to a
1963:
conducted a conceptual study called "Human Outer Planets Exploration" (HOPE) regarding the future human exploration of the
1817:
visited Jupiter a year later, traveling along a highly inclined trajectory and approaching the planet as close as 1.6 
6331: 6273: 6167: 4994:
Smith, E. J.; Davis, L. Jr.; et al. (1974). "The Planetary Magnetic Field and Magnetosphere of Jupiter: Pioneer 10".
4947: 511: 431:
around the planet's poles and intense variable radio emissions, which means that Jupiter can be thought of as a very weak
172: 1354:
radiation or HOM, while emissions in the range 3–40 MHz (with wavelengths of 10–100 m) are referred to as the
1033: 1767:
to be precisely determined. The definitive discovery of the Jovian magnetic field occurred in December 1973, when the
1006: 6491: 5877: 2050:(JUICE) mission, launched April, 2023, is to understand the magnetic field from Ganymede and how it impacts Jupiter. 1915:, which led to total loss of the data from the 16th, 18th and 33rd orbits. The radiation also caused phase shifts in 4772:"Magnetopause reconnection rate estimates for Jupiter's magnetosphere based on interplanetary measurements at ~5 AU" 4072:
Burke, B. F.; Franklin, K. L. (1955). "Observations of a variable radio source associated with the planet Jupiter".
979:
The acceleration of the plasma into the co-rotation leads to the transfer of energy from the Jovian rotation to the
6615: 6496: 6336: 6032: 2047: 1752: 1233: 638:
would fit inside it with room to spare. If one could see it from Earth, it would appear five times larger than the
4431: 701:
At the opposite side of the planet, the solar wind stretches Jupiter's magnetic field lines into a long, trailing
6207: 5892: 5887: 5882: 5836: 2647: 1519: 793:. Further electron impacts produce higher charge state, resulting in a plasma of S, O, S, O and S. They form the 523: 466:, but thousands of times stronger. The interaction of energetic particles with the surfaces of Jupiter's largest 4722: 2145:
from Jupiter makes three revolutions around the planet, while the planet's magnetic field makes two revolutions.
1971:
on Io, Europa and Ganymede are inimical to human life, and adequate protective measures have yet to be devised.
1724:, astronomers concluded that Jupiter must possess a magnetic field with a maximum strength of above 1 milli 821:
of the plasma decreases from around 2,000 cm in the Io torus to about 0.2 cm at a distance of 35 
6288: 6268: 6160: 5869: 3798: 1438: 770: 482: 436: 5524: 5320: 3251: 1362: 1247: 867:, forming a flattened pancake-like structure, known as the magnetodisk, at the distances greater than 20  381: 5369:"Transport and acceleration of plasma in the magnetospheres of Earth and Jupiter and expectations for Saturn" 4579: 6610: 6516: 6389: 6384: 6197: 5675: 5670: 2593: 899:(not an analog of Earth's ring current), which flows with rotation through the equatorial plasma sheet. The 818: 813: 5368: 2054:
is a proposed Chinese mission that will either explore the moon Callisto or gather more information on Io.
6501: 6341: 5906: 5414: 5391: 5345: 1912: 1273: 595: 45: 1716:
The first evidence for the existence of Jupiter's magnetic field came in 1955, with the discovery of the
474:. Radiation belts present a significant hazard for spacecraft and potentially to human space travellers. 6311: 5648: 5605: 5274: 4415: 4104: 1748: 1477: 1406: 1306: 1269: 782: 623: 1073: 863:
from the co-rotating plasma and thermal pressure of hot plasma, both of which act to stretch Jupiter's
4649: 4623: 4553: 1605: 874:
from the planet. The magnetodisk has a thin current sheet at the middle plane, approximately near the
6346: 6064: 5994: 5957: 5570: 5539: 5503: 5458: 5429: 5383: 5337: 5289: 5253: 5224: 5178: 5147: 5087: 5034: 5005: 4974: 4931: 4895: 4858: 4822: 4783: 4742: 4690: 4594: 4490: 4443: 4399: 4356: 4316: 4283: 4253: 4217: 4153: 4115: 4083: 4042: 4001: 3970: 3907: 3875: 3289: 2608: 2530: 2468: 2427: 1928: 1890: 1882: 1626: 1496: 5945: 5396: 5350: 5321:"Sheared magnetic field structure in Jupiter's dusk magnetosphere: Implications for return currents" 2515: 1305:
of its own. The interaction between this magnetosphere and that of Jupiter produces currents due to
1048:
When flux tubes loaded with the cold Ionian plasma reach the outer magnetosphere, they go through a
924: 6141: 6111: 6071: 3896:"Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits" 2457:"Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits" 2138:
Lorentz resonance. So, in the case of a 3:2 resonance, a particle at a distance of about 1.71 
2109:
The non-Io-DAM is much weaker than the Io-DAM, and is the high-frequency tail of the HOM emissions.
2084: 2002: 1448: 1380: 1346:
of less than about 0.3 MHz (and thus wavelengths longer than 1 km) are called the Jovian
864: 778: 697:
An artist's concept of a magnetosphere, where plasmasphere (7) refers to the plasma torus and sheet
4813:
Palier, L.; Prangé, Renée (2001). "More about the structure of the high latitude Jovian aurorae".
2516:"Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft" 1398:
too. In addition, Jupiter's radio emissions strongly depend on solar wind pressure and, hence, on
846:(200 million K) or higher) moving in from the outer magnetosphere. Some of this plasma, 6399: 6106: 6084: 5632: 5482: 5194: 5060: 4874: 4801: 4758: 4714: 4610: 4187: 4017: 3844: 3313: 2624: 2040: 1968: 1964: 1880:
and discovered the current sheet in the equatorial plane. The next probe to approach Jupiter was
1682: 1314: 1042: 966: 941: 933: 459: 428: 385: 4843: 1850:
to receive a number of spurious commands. The subsequent and far more technologically advanced
6431: 6414: 6375: 6321: 6238: 5927: 5474: 5307: 5169:
Zarka, P.; Kurth, W. S. (2005). "Radio wave emissions from the outer planets before Cassini".
5118: 4706: 4660: 4634: 4564: 4524: 4179: 4123: 4060: 3935: 3766: 3737: 2548: 2496: 2155: 1996: 1951: 1920: 1857:
Voyagers 1 and 2 arrived at Jupiter in 1979–1980 and traveled almost in its equatorial plane.
1662: 1646: 1376: 1014: 946: 904: 860: 847: 797:: a thick and relatively cool ring of plasma encircling Jupiter, located near Io's orbit. The 599: 590: 582: 558:
and higher components, though they are less than one-tenth as strong as the dipole component.
543: 400: 1017:
plays the role of gravity; the heavy liquid is the cold and dense Ionian (i.e. pertaining to
965:° from the Jovian magnetic poles. These narrow circular regions correspond to Jupiter's main 364:. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of 6605: 6577: 6562: 6425: 6129: 5694: 5665: 5598: 5578: 5574: 5547: 5511: 5507: 5466: 5437: 5433: 5401: 5355: 5297: 5261: 5257: 5232: 5228: 5186: 5155: 5095: 5050: 5042: 5013: 4982: 4978: 4939: 4903: 4899: 4866: 4830: 4826: 4791: 4750: 4698: 4602: 4498: 4451: 4407: 4364: 4347: 4324: 4291: 4287: 4261: 4257: 4225: 4208: 4169: 4161: 4091: 4050: 4009: 3978: 3925: 3915: 3305: 3297: 2616: 2538: 2486: 2476: 2435: 1791: 1681:
can be produced as well. In the presence of sulfur, likely products include sulfur dioxide,
1442: 1434: 1418: 1417:
Jupiter's magnetosphere ejects streams of high-energy electrons and ions (energy up to tens
1391: 1222: 875: 843: 627: 471: 458:
The action of the magnetosphere traps and accelerates particles, producing intense belts of
420: 416: 17: 4580:"The current systems of the Jovian magnetosphere and ionosphere and predictions for Saturn" 4372: 903:
resulting from the interaction of this current with the planetary magnetic field creates a
6572: 6567: 6511: 6000: 5972: 5951: 5789: 5778: 5757: 5752: 5719: 5714: 4233: 4139:"Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter" 2594:"Time variation of Jupiter's internal magnetic field consistent with zonal wind advection" 2127: 1851: 1764: 1622: 1618: 1399: 1372: 1343: 1302: 1293: 586: 570: 463: 389: 144: 89: 1577:
All Galilean moons have thin atmospheres with surface pressures in the range 0.01–1 
1297: 850:
as it approaches Jupiter, may form the radiation belts in Jupiter's inner magnetosphere.
5543: 5462: 5387: 5341: 5293: 5236: 5182: 5151: 5091: 5038: 5009: 4935: 4862: 4787: 4746: 4694: 4598: 4494: 4447: 4403: 4360: 4320: 4221: 4157: 4119: 4087: 4046: 4005: 3974: 3911: 3879: 3293: 2612: 2534: 2472: 2431: 1911:
occurred between rotating and non-rotating parts of the spacecraft, causing it to enter
6306: 6039: 5846: 5804: 5734: 5653: 5111: 5074:"Properties of Ganymede's magnetosphere as revealed by energetic particle observations" 2080: 1908: 1670: 1595: 1379:. This velocity distribution spontaneously generates radio waves at the local electron 1239: 1041:
This highly hypothetical picture of the flux tube exchange was partly confirmed by the
980: 766: 683: 664: 467: 408: 361: 107: 5582: 5515: 5441: 5265: 4986: 4907: 4834: 4534: 4295: 4265: 3554: 2642: 2567: 1701: 1447:
Jupiter's extensive magnetosphere envelops its ring system and the orbits of all four
1281:. In addition, the currents flowing in the ionosphere heat it by the process known as 969:. (See below.) The return current flowing from the outer magnetosphere beyond 50  6594: 6356: 6351: 6263: 6258: 6183: 5773: 5747: 5064: 4878: 4870: 4762: 4103:
Burns, J. A.; Simonelli, D. P.; Showalter; Hamilton; Porco; Throop; Esposito (2004).
4021: 3317: 2628: 1686: 1678: 1614: 1318: 1289: 1282: 1061: 1010: 937: 900: 710: 687: 630:
different from that of the solar wind. The Jovian magnetosphere is so large that the
527: 495: 444: 427:
as at Earth's magnetosphere. Strong currents in the magnetosphere generate permanent
415:
around the planet. Jupiter's magnetic field forces the torus to rotate with the same
376:, and by volume the largest known continuous structure in the Solar System after the 369: 316: 5486: 5198: 4805: 4718: 4614: 3843:. Johns Hopkins University Applied Physics Laboratory. June 29, 2016. Archived from 693: 6552: 6283: 6278: 6253: 5966: 5794: 5783: 5724: 5709: 4427: 4191: 3759: 2168: 2006: 1938: 1729: 1725: 1395: 1086: 1049: 896: 802: 717: 649:. The distance from the magnetopause to the center of the planet is from 45 to 100 646: 635: 574: 566: 499: 432: 373: 221: 117: 95: 1779: 4368: 6557: 6463: 6326: 6316: 5799: 4432:"Space physics and astronomy converge in exploration of Jupiter's Magnetosphere" 3992:
Blanc, M.; Kallenbach, R.; Erkaev, N. V. (2005). "Solar System magnetospheres".
1847: 1492: 1094: 757:
Io's interaction with Jupiter's magnetosphere. The Io plasma torus is in yellow.
702: 578: 503: 452: 448: 377: 320: 238: 99: 1932:
spacecraft flew by Jupiter in 2000, it conducted coordinated measurements with
606:
planets have reversed their magnetism, which is caused by their core rotating.
6298: 6248: 6222: 6217: 5985: 5978: 5405: 5190: 4943: 4796: 4771: 4754: 4606: 4013: 2620: 2097: 2079:
The direct current in the Jovian magnetosphere is not to be confused with the
2005:
as well as other devices such as a detector for plasma and radio waves called
1835: 1814: 1803: 1768: 1705: 1642: 1598:(the speeds vary from 74 to 328 km/s), which prevents the formation of a 1587: 1582: 1578: 1472: 1456: 1452: 1422: 1351: 1331: 1027: 798: 774: 668: 615: 562: 551: 531: 507: 424: 393: 353: 273: 156: 113: 61: 4138: 419:
and direction as the planet. The torus in turn loads the magnetic field with
6547: 6542: 6243: 6212: 6077: 6057: 6013: 6006: 5742: 5470: 5055: 5017: 4702: 4411: 4095: 3920: 3895: 3277: 2543: 2481: 2456: 2051: 1904: 1870: 1858: 1839: 1760: 1744: 1736: 1717: 1666: 1599: 1410: 1355: 1347: 1339: 1335: 1022: 1018: 895:
The configuration of the magnetodisk's field is maintained by the azimuthal
809: 762: 679: 639: 491: 412: 404: 269: 204: 44:
False-color image of aurorae on the north pole of Jupiter, as viewed by the
5478: 5311: 4710: 4229: 4183: 4064: 3939: 3278:"Evidence for Auroral Emissions From Callisto's Footprint in HST UV Images" 2552: 2500: 1854:
spacecraft had to be redesigned to cope with the massive radiation levels.
1462: 589:
spacecraft in the mid-1970s, until 2019. Analysis of observations from the
4917:"The magnetospheres of Jupiter and Saturn and their lessons for the Earth" 5552: 5359: 4503: 4468: 4174: 3983: 3958: 3301: 3252:"Scientists Spot the Ghostly Aurora Footprint of Jupiter's Moon Callisto" 2440: 1674: 1654: 1278: 1221:
Annotated image of Magnetosphere of Jupiter (as evidenced by synthesized-
1054: 555: 440: 5215:
Carr, Thomas D.; Gulkis, Samuel (1969). "The magnetosphere of Jupiter".
1405:
In addition to relatively long-wavelength radiation, Jupiter also emits
6526: 6394: 5621: 5319:
Kivelson, Margaret G.; Khurana, Krishan K.; Walker, Raymond J. (2002).
5134:"Auroral radio emissions at the outer planets: Observations and theory" 4459: 4201:"Energetic ion and electron irradiation of the icy Galilean satellites" 3309: 2491: 2413:"A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits" 2023:
particular, the auroral acceleration region has never been visited. ...
1843: 1690: 372:
is the largest and most powerful of any planetary magnetosphere in the
357: 5160: 5133: 5100: 5073: 5046: 4655:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 4629:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 4559:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 4519:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 4455: 4110:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 3930: 6521: 6448: 6420: 6202: 5302: 4915:
Russell, C.T.; Khurana, K.K.; Arridge, C.S.; Dougherty, M.K. (2008).
1763:(the so-called Io-DAM) was discovered in 1964, and allowed Jupiter's 1650: 1637: 1387: 1253: 1229: 1225: 1082: 908: 790: 786: 706: 547: 539: 365: 305: 125: 4165: 4055: 4030: 3806: 2018:(JADE) instrument should also help to understand the magnetosphere. 1720:
radio emission or DAM. As the DAM's spectrum extended up to 40 
4329: 4304: 753: 6152: 4886:
Russell, C.T. (2001). "The dynamics of planetary magnetospheres".
1986: 1978: 1790: 1778: 1740: 1721: 1700: 1658: 1604: 1591: 1461: 1421:), which travel as far as Earth's orbit. These streams are highly 1361: 1032: 817:
component, which as a result bends back against the rotation. The
692: 671:. In front of the magnetopause (at a distance from 80 to 130  481: 435:. Jupiter's aurorae have been observed in almost all parts of the 324: 828:. In the middle magnetosphere, at distances greater than 10  4676:"New surprises in the largest magnetosphere of Our Solar System" 4385:"The radiation effects on Galileo spacecraft systems at Jupiter" 1960: 1037:
The magnetosphere of Jupiter as viewed from above the north pole
928:
The magnetic field of Jupiter and co-rotation enforcing currents
535: 256: 6156: 5594: 2083:
used in electrical circuits. The latter is the opposite of the
1455:
off material from the surfaces and create chemical changes via
1111:
Power emitted by Jovian aurorae in different parts of spectrum
4514:"Radiation Effects on the Surfaces of the Galilean Satellites" 1886:
in 1992, which investigated the planet's polar magnetosphere.
1481: 631: 619: 2154:
Technically, the flow is "sub-fast", meaning slower than the
998:
to the outer magnetosphere at distances of more than 50 
3841:"NASA's Juno and JEDI: Ready to Unlock Mysteries of Jupiter" 1491:). This ring consists of sub-micrometer particles on highly 490:
Jupiter's magnetosphere is a complex structure comprising a
4031:"Ultra-relativistic electrons in Jupiter's radiation belts" 3765:(1st ed.). London: Jane's Publishing Company Limited. 1983:
Waves data as Juno crosses the Jovian bow shock (June 2016)
5590: 530:
supported by the circulation of a conducting fluid in its
4770:
Nichols, J. D.; Cowley, S. W. H.; McComas, D. J. (2006).
1288:
Spots were found to correspond to the Galilean moons Io,
642:
in the sky despite being nearly 1700 times farther away.
1586:
co-rotational flow is similar to the interaction of the
1089:, may also be taking place in the Jovian magnetosphere. 1077:
Interactions between solar wind and Jovian magnetosphere
546:. As with Earth's, Jupiter's magnetic field is mostly a 2643:"NASA's Juno Finds Changes in Jupiter's Magnetic Field" 2568:"NASA's Juno Finds Changes in Jupiter's Magnetic Field" 2158:
mode. The flow is faster than the acoustic sound speed.
1787:
spacecraft through the magnetosphere of Jupiter in 1992
1739:
part of the electromagnetic (EM) spectrum (0.1–10 
4552:
Khurana, K. K.; Kivelson, M. G.; et al. (2004).
3553:. California State University, Fresno. Archived from 3276:
Bhattacharyya, Dolon; et al. (January 3, 2018).
3213: 4622:
Kivelson, M. G.; Bagenal, Fran; et al. (2004).
4512:
Johnson, R. E.; Carlson, R. V.; et al. (2004).
4383:
Fieseler, P.D.; Ardalan, S. M.; et al. (2002).
2029:
A Wave Investigation for the Juno Mission to Jupiter
1712:
and definitive discovery of the Jovian magnetosphere
6535: 6484: 6441: 6365: 6297: 6231: 6190: 6099: 6050: 6025: 5937: 5919: 5905: 5868: 5845: 5824: 5817: 5766: 5733: 5702: 5693: 5641: 5413:Kivelson, Margaret G.; Southwood, David J. (2003). 4467:Hibbitts, C.A.; McCord, T.B.; Hansen, T.B. (2000). 4199:Cooper, J. F.; Johnson, R. E.; et al. (2001). 2687: 2685: 2683: 1480:. Their behavior is similar to that of co-rotating 705:, which sometimes extends well beyond the orbit of 338: 330: 311: 304: 296: 288: 280: 265: 254: 237: 220: 203: 195: 190: 182: 171: 163: 155: 143: 135: 124: 105: 88: 80: 75: 67: 57: 52: 5273:Gladstone, G.R.; Waite, J.H.; Grodent, D. (2002). 5110: 5072:Williams, D.J.; Mauk, B.; McEntire, R. W. (1998). 4648:Krupp, N.; Vasyliunas, V. M.; et al. (2004). 4338:Elsner, R. F.; Ramsey, B. D.; et al. (2005). 3758: 2670: 2668: 2666: 2664: 2662: 2660: 2658: 1991:Waves data as Juno enters magnetopause (June 2016) 4657:Jupiter: The Planet, Satellites and Magnetosphere 4631:Jupiter: The Planet, Satellites and Magnetosphere 4561:Jupiter: The Planet, Satellites and Magnetosphere 4521:Jupiter: The Planet, Satellites and Magnetosphere 4112:Jupiter: The Planet, Satellites and Magnetosphere 2229: 2227: 663:=71,492 km is the radius of Jupiter) at the 5523:Russell, C.T.; Yu, Z.J.; Kivelson, M.G. (2001). 2994: 2992: 2046:One of the goals of the European Space Agency's 1907:often exhibited increased errors. Several times 1747:radiation (DIM) and the realization that it was 1334:in the spectral regions stretching from several 5275:"A pulsating auroral X-ray hot spot on Jupiter" 4029:Bolton, S.J.; Janssen, M.; et al. (2002). 3625: 3623: 3610: 3608: 2020: 1806:in December 1973, which passed within 2.9  618:, a stream of ionized particles emitted by the 614:Jupiter's internal magnetic field prevents the 4554:"The configuration of Jupiter's magnetosphere" 4305:"Non-thermal microwave radiation from Jupiter" 4137:Clarke, J.T.; Ajello, J.; et al. (2002). 3444: 3442: 3440: 3438: 3282:Journal of Geophysical Research: Space Physics 3149: 3147: 3145: 3143: 2393: 2391: 2389: 2387: 1594:, although the co-rotational speed is usually 1301:Ganymede has an internal magnetic field and a 6168: 5606: 4624:"Magnetospheric interactions with satellites" 3345: 3343: 3341: 3339: 3130: 3128: 2967: 2965: 2927: 2925: 2923: 2921: 2919: 2362: 2360: 1060:The reconnection events are analogues to the 534:. But whereas Earth's core is made of molten 8: 3691: 3689: 3652: 3650: 3471: 3469: 2855: 2853: 2828: 2826: 2813: 2811: 2809: 2807: 2805: 2803: 2733: 2731: 2729: 2727: 32: 5217:Annual Review of Astronomy and Astrophysics 4114:. Cambridge University Press. p. 241. 3551:"SPS 1020 (Introduction to Space Sciences)" 3549:Ringwald, Frederick A. (29 February 2000). 3544: 3542: 3540: 3538: 2952: 2950: 2948: 2946: 2944: 2942: 2940: 2307: 2305: 2303: 2301: 2299: 2297: 2295: 2293: 2291: 1649:. The energetic particles break water into 1471:hypothesized on the basis of data from the 1013:. In the case of the Jovian magnetosphere, 522:The bulk of Jupiter's magnetic field, like 6175: 6161: 6153: 5916: 5821: 5699: 5613: 5599: 5591: 3525: 3523: 3064: 3062: 3025: 3023: 3021: 3019: 2702: 2700: 2332: 2330: 2328: 2326: 2324: 2322: 2320: 2289: 2287: 2285: 2283: 2281: 2279: 2277: 2275: 2273: 2271: 2246: 2244: 2242: 2214: 2212: 2210: 2208: 1834:, receiving an integrated dose of 200,000 31: 5551: 5395: 5349: 5301: 5159: 5099: 5054: 4795: 4502: 4328: 4173: 4054: 3982: 3929: 3919: 3486: 3484: 3103: 3101: 2870: 2868: 2790: 2788: 2786: 2773: 2771: 2769: 2767: 2765: 2763: 2750: 2748: 2746: 2542: 2490: 2480: 2439: 2100:is another significant source of protons. 3959:"Auroral emissions of the giant planets" 3389: 3387: 2347: 2345: 1813:from the center of the planet. Its twin 1509: 1246: 1238: 1216: 1109: 1072: 987:Interchange instability and reconnection 923: 752: 6601:Astronomical objects discovered in 1973 3374: 3372: 3370: 2195: 2193: 2191: 2189: 2187: 2183: 2063: 2016:Jovian Auroral Distributions Experiment 403:. Volcanic eruptions on Jupiter's moon 4650:"Dynamics of the Jovian Magnetosphere" 3957:Bhardwaj, A.; Gladstone, G.R. (2000). 3736:(1st ed.). London: Rand McNally. 2592:Moore, K. M.; et al. (May 2019). 1743:) led to the discovery of the Jovian 1590:with the non-magnetized planets like 368:in the opposite direction, Jupiter's 7: 4392:IEEE Transactions on Nuclear Science 1609:Plasma tori created by Io and Europa 1581:, which in turn support substantial 5237:10.1146/annurev.aa.07.090169.003045 3250:Redd, Nola Taylor (April 5, 2018). 2167:Pioneer 10 carried a helium vector 2043:) associated with the main aurora. 678:from the planet's center) lies the 598:. This region shows signs of large 1466:Jupiter's variable radiation belts 738:) and outer (further than 40  25: 6476:Sura Ionospheric Heating Facility 4303:Drake, F. D.; Hvatum, S. (1959). 3732:Hunt, Garry; et al. (1981). 3405: 1798:orbiter's magnetometer instrument 1771:spacecraft flew near the planet. 885:, whereas it is actually 75  808:As a result of several processes— 622:, from interacting directly with 569:), which corresponds to a dipole 6135: 6125: 6124: 5684: 5525:"The rotation period of Jupiter" 5132:Zarka, P.; Kurth, W. S. (1998). 3053: 2983: 2886: 2844: 2718: 2691: 2674: 2233: 1429:Interaction with rings and moons 1330:Jupiter is a powerful source of 801:within the torus is 10–100  526:'s, is generated by an internal 411:gas into space, forming a large 38: 27:Cavity created in the solar wind 5329:Journal of Geophysical Research 5139:Journal of Geophysical Research 5079:Journal of Geophysical Research 4997:Journal of Geophysical Research 4482:Journal of Geophysical Research 4075:Journal of Geophysical Research 3803:University of Wisconsin-Madison 1949:along its length. In July 2016 1322:and connect to the solar wind. 1160:IR (hydrocarbons, 7–14 μm) 920:Co-rotation and radial currents 781:and, to a lesser extent, solar 5832:Jupiter-crossing minor planets 4851:Reports on Progress in Physics 4659:. Cambridge University Press. 4633:. Cambridge University Press. 4563:. Cambridge University Press. 4523:. Cambridge University Press. 3629: 3614: 3587: 3575: 3448: 2998: 2874: 1377:unstable velocity distribution 713:(orange layer in the middle). 384:, Jupiter's is stronger by an 1: 6332:Interplanetary magnetic field 6274:Magnetosphere particle motion 5583:10.1016/S0032-0633(01)00021-6 5516:10.1016/S0032-0633(00)00148-3 5442:10.1016/S0032-0633(03)00075-8 5266:10.1016/S0032-0633(00)00164-1 4987:10.1016/S0032-0633(00)00151-3 4908:10.1016/S0032-0633(01)00017-4 4835:10.1016/S0032-0633(01)00023-X 4296:10.1016/S0032-0633(02)00130-7 4266:10.1016/S0032-0633(00)00167-7 3827: 3785: 3680: 3641: 3201: 3189: 3177: 3153: 3119: 2898: 2397: 2366: 2130:) then scientists call it an 1861:, which passed within 5  1735:In 1959, observations in the 1251: 1127:Radio (KOM, <0.3 MHz) 573:of about 2.83 × 10 512:interplanetary magnetic field 380:. Wider and flatter than the 352:is the cavity created in the 5532:Geophysical Research Letters 4369:10.1016/j.icarus.2005.06.006 4105:"Jupiter's ring-moon system" 3695: 3668: 3475: 3460: 3165: 3092: 3068: 3041: 2859: 2832: 2817: 2737: 2420:Geophysical Research Letters 2378: 2336: 2311: 2218: 1326:Jupiter at radio wavelengths 1256:on the north and south poles 18:Jupiter's magnetosphere 5563:Planetary and Space Science 5496:Planetary and Space Science 5422:Planetary and Space Science 5246:Planetary and Space Science 4967:Planetary and Space Science 4888:Planetary and Space Science 4815:Planetary and Space Science 4477:on the surface of Callisto" 4276:Planetary and Space Science 4246:Planetary and Space Science 3656: 3599: 3417: 3393: 3330: 3225: 3134: 3107: 2971: 2931: 2351: 2250: 1138:Radio (HOM, 0.3–3 MHz) 1069:Influence of the solar wind 1007:Rayleigh-Taylor instability 769:, a major part of which is 542:, Jupiter's is composed of 6632: 6337:Heliospheric current sheet 6033:Jupiter Icy Moons Explorer 5376:Advances in Space Research 5027:AIP Conference Proceedings 4924:Advances in Space Research 4871:10.1088/0034-4885/56/6/001 4844:"Planetary Magnetospheres" 3868:AGU Fall Meeting Abstracts 3719: 3707: 3529: 3514: 3502: 3490: 3429: 3361: 3349: 3237: 3214:Miller Aylward et al. 2005 3080: 3029: 3010: 2956: 2910: 2794: 2777: 2754: 2706: 2265:, 2005, p. 238 (Table III) 2262: 2199: 2048:Jupiter Icy Moons Explorer 1432: 1409:(also known as the Jovian 1234:James Webb Space Telescope 1149:Radio (DAM, 3–40 MHz) 339:Radio emission frequencies 6120: 5893:2016 Jupiter impact event 5888:2010 Jupiter impact event 5883:2009 Jupiter impact event 5682: 5628: 5406:10.1016/j.asr.2005.05.104 5191:10.1007/s11214-005-1962-2 4944:10.1016/j.asr.2007.07.037 4797:10.5194/angeo-24-393-2006 4755:10.1007/s11214-005-1960-4 4607:10.1007/s11214-005-1959-x 4014:10.1007/s11214-005-1958-y 3799:"Juno Science Objectives" 3378: 2648:Jet Propulsion Laboratory 2621:10.1038/s41550-019-0772-5 2572:Jet Propulsion Laboratory 2566:Agle, DC (May 20, 2019). 1373:converging magnetic field 1183:Visible (0.385–1 μm) 1165: 191:Magnetospheric parameters 37: 6289:Van Allen radiation belt 6269:Magnetosphere chronology 2721:, 1993, pp. 725–727 1613:The icy Galilean moons, 1439:Ganymedian magnetosphere 1252:Average location of the 437:electromagnetic spectrum 350:magnetosphere of Jupiter 33:Magnetosphere of Jupiter 6198:Atmospheric circulation 6142:Solar System portal 5575:2001P&SS...49.1137Z 5508:2001P&SS...49..275M 5471:10.1126/science.1147393 5434:2003P&SS...51..891K 5367:Kivelson, M.G. (2005). 5258:2001P&SS...49.1115E 5229:1969ARA&A...7..577C 5018:10.1029/JA079i025p03501 4979:2001P&SS...49..303S 4900:2001P&SS...49.1005R 4827:2001P&SS...49.1159P 4703:10.1126/science.1150448 4578:Kivelson, M.G. (2005). 4412:10.1109/TNS.2002.805386 4288:2003P&SS...51...31C 4258:2001P&SS...49.1067C 4096:10.1029/JZ060i002p00213 3921:10.1126/science.aam5928 3757:Wilson, Andrew (1987). 3364:, 1998, pp. 20, 173–181 2544:10.1126/science.aal2108 2482:10.1126/science.aam5928 1155:0.1–1 GW (Io-DAM) 819:particle number density 814:interchange instability 518:Internal magnetic field 407:eject large amounts of 297:Maximum particle energy 136:Magnetic pole longitude 6208:Earth's magnetic field 5878:Comet Shoemaker–Levy 9 5117:. Joseph Henry Press. 5109:Wolverton, M. (2004). 4842:Russell, C.T. (1993). 4230:10.1006/icar.2000.6498 3352:, 1998, pp. 20,160–168 3122:, 2000, Tables 2 and 5 2740:, 2004, pp. 17–18 2709:, 2004, pp. 15–16 2033: 1992: 1984: 1975:Exploration after 2010 1873:passed within 10  1799: 1788: 1775:Exploration after 1970 1753:relativistic electrons 1713: 1610: 1467: 1367: 1270:field aligned currents 1260: 1244: 1236: 1205:X-ray (0.1–3 keV) 1078: 1038: 929: 758: 698: 596:South Atlantic Anomaly 487: 289:Maximum plasma density 46:Hubble Space Telescope 6312:Coronal mass ejection 6232:Earth's magnetosphere 5171:Space Science Reviews 4735:Space Science Reviews 4587:Space Science Reviews 3994:Space Science Reviews 3963:Reviews of Geophysics 2889:, 2001, pp. 1021–1024 2847:, 2001, pp. 1024–1025 2694:, 2001, pp. 1015–1016 1990: 1982: 1842:and 56,000 rads from 1794: 1782: 1749:synchrotron radiation 1704: 1608: 1478:ultraviolet radiation 1465: 1407:synchrotron radiation 1375:. This results in an 1365: 1307:magnetic reconnection 1250: 1242: 1220: 1076: 1036: 927: 783:ultraviolet radiation 756: 696: 485: 472:planetary ring system 382:Earth's magnetosphere 6485:Other magnetospheres 6347:Solar particle event 5676:Jupiter's South Pole 5671:Jupiter's North Pole 5553:10.1029/2001GL012917 5360:10.1029/2001JA000251 4894:(10–11): 1005–1030. 4504:10.1029/1999JE001101 4309:Astronomical Journal 3984:10.1029/1998RG000046 3302:10.1002/2017JA024791 2441:10.1002/2018GL077312 865:magnetic field lines 848:adiabatically heated 785:, producing ions of 510:, which carries the 396:spacecraft in 1973. 94:2.83 × 10 6072:Io Volcano Observer 5544:2001GeoRL..28.1911R 5463:2007Sci...318..217M 5388:2005AdSpR..36.2077K 5342:2002JGRA..107.1116K 5294:2002Natur.415.1000G 5183:2005SSRv..116..371Z 5152:1998JGR...10320159Z 5146:(E9): 20, 159–194. 5113:The Depths of Space 5092:1998JGR...10317523W 5086:(A8): 17, 523–534. 5039:2003AIPC..654..821T 5010:1974JGR....79.3501S 4936:2008AdSpR..41.1310R 4863:1993RPPh...56..687R 4788:2006AnGeo..24..393N 4776:Annales Geophysicae 4747:2005SSRv..116..319M 4695:2007Sci...318..216K 4599:2005SSRv..116..299K 4495:2000JGR...10522541H 4489:(E9): 22, 541–557. 4469:"Distribution of CO 4448:1995EOSTr..76..313H 4404:2002ITNS...49.2739F 4361:2005Icar..178..417E 4321:1959AJ.....64S.329D 4222:2001Icar..149..133C 4158:2002Natur.415..997C 4120:2004jpsm.book..241B 4088:1955JGR....60..213B 4047:2002Natur.415..987B 4006:2005SSRv..116..227B 3975:2000RvGeo..38..295B 3912:2017Sci...356..826C 3880:2008AGUFMSM41B1680K 3809:on October 16, 2008 3659:, 2001, pp. 154–156 3602:, 2001, pp. 137,139 3420:, 2005, pp. 384–385 3396:, 2005, pp. 371–375 3333:, 2001, pp. 1170–71 3294:2018JGRA..123..364B 3240:, 2005, pp. 277–283 3216:, pp. 335–339. 3192:, 2000, pp. 306–311 3180:, 2000, pp. 316–319 3156:, 2000, pp. 311–316 3137:, 2001, pp. 1171–73 3110:, 2005, pp. 419–420 3095:, 2006, pp. 404–405 3071:, 2006, pp. 393–394 2974:, 2001, pp. 1083–87 2959:, 2005, pp. 254–261 2934:, 2001, pp. 1069–76 2913:, 2005, pp. 250–253 2901:, 2005, pp. 315–316 2877:, 2004, pp. 100–157 2677:, 1993, pp. 715–717 2613:2019NatAs...3..730M 2535:2017Sci...356..821B 2473:2017Sci...356..826C 2432:2018GeoRL..45.2590C 2400:, 2005, pp. 303–313 2253:, 2005, pp. 375–377 2085:alternating current 1708:provided the first 1645:of water and other 1512: 1449:Galilean satellites 1381:cyclotron frequency 1342:. Radio waves with 1194:UV (80–180 nm) 1112: 462:similar to Earth's 34: 5633:Outline of Jupiter 5569:(10–11): 1137–49. 5252:(10–11): 1115–23. 4821:(10–11): 1159–73. 4674:Krupp, N. (2007). 4252:(10–11): 1067–66. 4152:(6875): 997–1000. 3708:Burke and Franklin 2041:Birkeland currents 1993: 1985: 1969:ionizing radiation 1965:outer Solar System 1800: 1789: 1714: 1683:hydrogen disulfide 1647:chemical compounds 1611: 1510: 1468: 1392:magnetic anomalies 1368: 1261: 1245: 1237: 1223:visible wavelength 1110: 1079: 1062:magnetic substorms 1043:Galileo spacecraft 1039: 947:Birkeland currents 942:electrical circuit 934:Unipolar generator 930: 799:plasma temperature 759: 699: 600:secular variations 488: 386:order of magnitude 300:up to 100 MeV 150:9h 55m 29.7 ± 0.1s 6616:Planetary science 6588: 6587: 6442:Research projects 6410: 6381: 6322:Geomagnetic storm 6239:Birkeland current 6150: 6149: 6095: 6094: 5901: 5900: 5813: 5812: 5288:(6875): 1000–03. 5161:10.1029/98JE01323 5124:978-0-309-09050-6 5101:10.1029/98JA01370 5047:10.1063/1.1541373 4689:(5848): 216–217. 4666:978-0-521-81808-7 4640:978-0-521-81808-7 4570:978-0-521-81808-7 4530:978-0-521-81808-7 4456:10.1029/95EO00190 4129:978-0-521-81808-7 4041:(6875): 987–991. 3906:(6340): 826–832. 3847:on March 24, 2017 3772:978-0-7106-0444-6 3743:978-0-528-81542-3 3671:, 2004, pp. 15–19 3632:, 2004, pp. 16–18 3617:, 2004, pp. 10–11 3532:, 2004, pp. 17–19 3517:, 2004, pp. 10–11 3505:, 2004, pp. 12–14 3432:, 2004, pp. 17–18 3168:, 2003, pp. 49–53 3083:, 2004, pp. 18–19 3044:, 2004, pp. 18–19 3032:, 2004, pp. 11–14 2862:, 2004, pp. 20–21 2835:, 2004, pp. 10–12 2820:, 2004, pp. 13–16 2529:(6340): 821–825. 2467:(6340): 826–832. 2381:, 2004, pp. 12–13 2156:fast magnetosonic 1921:quartz oscillator 1665:. If organics or 1663:hydrogen peroxide 1574: 1573: 1511:Jovian radiation 1419:megaelectronvolts 1371:reflected by the 1215: 1214: 1015:centrifugal force 905:centripetal force 861:centrifugal force 544:metallic hydrogen 486:Jupiter radiation 401:metallic hydrogen 346: 345: 281:Mass loading rate 81:Radius of Jupiter 16:(Redirected from 6623: 6426:Van Allen Probes 6408: 6379: 6191:Submagnetosphere 6177: 6170: 6163: 6154: 6140: 6139: 6138: 6128: 6127: 6035:(2023, en route) 5917: 5822: 5700: 5688: 5615: 5608: 5601: 5592: 5586: 5557: 5555: 5529: 5519: 5490: 5457:(5848): 217–20. 5445: 5419: 5409: 5399: 5373: 5363: 5353: 5325: 5315: 5305: 5303:10.1038/4151000a 5279: 5269: 5240: 5202: 5177:(1–2): 371–397. 5165: 5163: 5128: 5116: 5105: 5103: 5068: 5058: 5056:2060/20030063128 5021: 4990: 4973:(3–4): 303–312. 4961: 4959: 4958: 4952: 4946:. Archived from 4921: 4911: 4882: 4848: 4838: 4809: 4799: 4766: 4741:(1–2): 319–343. 4729: 4727: 4721:. Archived from 4680: 4670: 4654: 4644: 4628: 4618: 4593:(1–2): 299–318. 4584: 4574: 4558: 4548: 4546: 4545: 4539: 4533:. Archived from 4518: 4508: 4506: 4463: 4458:. Archived from 4422: 4420: 4414:. Archived from 4389: 4379: 4377: 4371:. Archived from 4344: 4334: 4332: 4299: 4269: 4240: 4238: 4232:. Archived from 4205: 4195: 4177: 4143: 4133: 4109: 4099: 4068: 4058: 4025: 4000:(1–2): 227–298. 3988: 3986: 3944: 3943: 3933: 3923: 3890: 3884: 3883: 3863: 3857: 3856: 3854: 3852: 3837: 3831: 3825: 3819: 3818: 3816: 3814: 3805:. Archived from 3795: 3789: 3783: 3777: 3776: 3764: 3761:Solar System Log 3754: 3748: 3747: 3729: 3723: 3717: 3711: 3705: 3699: 3698:, 2004, pp. 8–13 3693: 3684: 3678: 3672: 3666: 3660: 3654: 3645: 3639: 3633: 3627: 3618: 3612: 3603: 3597: 3591: 3585: 3579: 3578:, 2004, pp. 8–10 3573: 3567: 3566: 3564: 3562: 3546: 3533: 3527: 3518: 3512: 3506: 3500: 3494: 3488: 3479: 3473: 3464: 3458: 3452: 3446: 3433: 3427: 3421: 3415: 3409: 3403: 3397: 3391: 3382: 3376: 3365: 3359: 3353: 3347: 3334: 3328: 3322: 3321: 3273: 3267: 3266: 3264: 3262: 3247: 3241: 3235: 3229: 3223: 3217: 3211: 3205: 3199: 3193: 3187: 3181: 3175: 3169: 3163: 3157: 3151: 3138: 3132: 3123: 3117: 3111: 3105: 3096: 3090: 3084: 3078: 3072: 3066: 3057: 3051: 3045: 3039: 3033: 3027: 3014: 3008: 3002: 2996: 2987: 2981: 2975: 2969: 2960: 2954: 2935: 2929: 2914: 2908: 2902: 2896: 2890: 2884: 2878: 2872: 2863: 2857: 2848: 2842: 2836: 2830: 2821: 2815: 2798: 2792: 2781: 2775: 2758: 2752: 2741: 2735: 2722: 2716: 2710: 2704: 2695: 2689: 2678: 2672: 2653: 2652: 2639: 2633: 2632: 2601:Nature Astronomy 2598: 2589: 2583: 2582: 2580: 2578: 2563: 2557: 2556: 2546: 2520: 2511: 2505: 2504: 2494: 2484: 2452: 2446: 2445: 2443: 2426:(6): 2590–2596. 2417: 2407: 2401: 2395: 2382: 2376: 2370: 2364: 2355: 2349: 2340: 2334: 2315: 2309: 2266: 2260: 2254: 2248: 2237: 2231: 2222: 2216: 2203: 2197: 2172: 2165: 2159: 2152: 2146: 2116: 2110: 2107: 2101: 2094: 2088: 2077: 2071: 2068: 2031: 1783:The path of the 1513: 1443:Space weathering 1435:Rings of Jupiter 1113: 964: 876:magnetic equator 779:electron impacts 634:and its visible 417:angular velocity 342:0.01–40 MHz 244:up to 7000  151: 42: 35: 21: 6631: 6630: 6626: 6625: 6624: 6622: 6621: 6620: 6591: 6590: 6589: 6584: 6531: 6480: 6437: 6361: 6293: 6227: 6186: 6184:Magnetospherics 6181: 6151: 6146: 6136: 6134: 6116: 6091: 6046: 6021: 6001:Voyager program 5973:Pioneer program 5952:Galileo project 5946:Cassini–Huygens 5933: 5912: 5910: 5897: 5864: 5841: 5809: 5762: 5729: 5689: 5680: 5637: 5624: 5619: 5589: 5560: 5538:(10): 1911–12. 5527: 5522: 5502:(3–4): 275–82. 5493: 5448: 5417: 5412: 5397:10.1.1.486.8721 5382:(11): 2077–89. 5371: 5366: 5351:10.1.1.424.7769 5323: 5318: 5277: 5272: 5243: 5214: 5210: 5208:Further reading 5205: 5168: 5131: 5125: 5108: 5071: 5024: 5004:(25): 3501–13. 4993: 4964: 4956: 4954: 4950: 4919: 4914: 4885: 4846: 4841: 4812: 4769: 4732: 4725: 4678: 4673: 4667: 4652: 4647: 4641: 4626: 4621: 4582: 4577: 4571: 4556: 4551: 4543: 4541: 4537: 4531: 4516: 4511: 4476: 4472: 4466: 4425: 4418: 4387: 4382: 4375: 4342: 4337: 4302: 4272: 4243: 4236: 4203: 4198: 4166:10.1038/415997a 4141: 4136: 4130: 4107: 4102: 4071: 4056:10.1038/415987a 4028: 3991: 3956: 3952: 3947: 3892: 3891: 3887: 3865: 3864: 3860: 3850: 3848: 3839: 3838: 3834: 3826: 3822: 3812: 3810: 3797: 3796: 3792: 3784: 3780: 3773: 3756: 3755: 3751: 3744: 3731: 3730: 3726: 3718: 3714: 3706: 3702: 3694: 3687: 3679: 3675: 3667: 3663: 3655: 3648: 3640: 3636: 3628: 3621: 3613: 3606: 3598: 3594: 3590:, 2004, pp. 1–2 3586: 3582: 3574: 3570: 3560: 3558: 3557:on 25 July 2008 3548: 3547: 3536: 3528: 3521: 3513: 3509: 3501: 3497: 3493:, 2004, pp. 1–2 3489: 3482: 3478:, 2004, pp. 3–5 3474: 3467: 3463:, 2004, pp. 1–2 3459: 3455: 3451:, 2004, pp. 2–4 3447: 3436: 3428: 3424: 3416: 3412: 3404: 3400: 3392: 3385: 3377: 3368: 3360: 3356: 3348: 3337: 3329: 3325: 3275: 3274: 3270: 3260: 3258: 3249: 3248: 3244: 3236: 3232: 3224: 3220: 3212: 3208: 3200: 3196: 3188: 3184: 3176: 3172: 3164: 3160: 3152: 3141: 3133: 3126: 3118: 3114: 3106: 3099: 3091: 3087: 3079: 3075: 3067: 3060: 3056:, 2001, p. 1011 3052: 3048: 3040: 3036: 3028: 3017: 3013:, 2004, pp. 7–9 3009: 3005: 2997: 2990: 2982: 2978: 2970: 2963: 2955: 2938: 2930: 2917: 2909: 2905: 2897: 2893: 2885: 2881: 2873: 2866: 2858: 2851: 2843: 2839: 2831: 2824: 2816: 2801: 2797:, 2004, pp. 1–3 2793: 2784: 2780:, 2004, pp. 4–7 2776: 2761: 2757:, 2004, pp. 3–4 2753: 2744: 2736: 2725: 2717: 2713: 2705: 2698: 2690: 2681: 2673: 2656: 2641: 2640: 2636: 2596: 2591: 2590: 2586: 2576: 2574: 2565: 2564: 2560: 2518: 2513: 2512: 2508: 2454: 2453: 2449: 2415: 2409: 2408: 2404: 2396: 2385: 2377: 2373: 2365: 2358: 2350: 2343: 2339:, 2004, pp. 5–7 2335: 2318: 2314:, 2004, pp. 1–3 2310: 2269: 2261: 2257: 2249: 2240: 2232: 2225: 2221:, 2004, pp. 3–5 2217: 2206: 2198: 2185: 2181: 2176: 2175: 2166: 2162: 2153: 2149: 2144: 2128:rational number 2117: 2113: 2108: 2104: 2095: 2091: 2078: 2074: 2069: 2065: 2060: 2032: 2027: 1977: 1948: 1919:s ultra-stable 1909:electrical arcs 1902: 1879: 1867: 1833: 1823: 1812: 1777: 1765:rotation period 1699: 1575: 1505: 1490: 1445: 1431: 1328: 1298:Alfvén currents 1259: 1257: 1174: 1166:30–100 GW 1108: 1103: 1071: 1004: 997: 989: 975: 962: 959: 922: 917: 891: 884: 873: 856: 841: 834: 827: 795:Io plasma torus 773:into atoms and 751: 744: 737: 729: 677: 662: 655: 612: 571:magnetic moment 520: 480: 464:Van Allen belts 390:magnetic moment 284:~1000 kg/s 250: 233: 216: 149: 145:Rotation period 90:Magnetic moment 48: 28: 23: 22: 15: 12: 11: 5: 6629: 6627: 6619: 6618: 6613: 6611:Magnetospheres 6608: 6603: 6593: 6592: 6586: 6585: 6583: 6582: 6581: 6580: 6575: 6570: 6565: 6555: 6550: 6545: 6539: 6537: 6536:Related topics 6533: 6532: 6530: 6529: 6524: 6519: 6514: 6509: 6504: 6499: 6494: 6488: 6486: 6482: 6481: 6479: 6478: 6473: 6468: 6467: 6466: 6456: 6451: 6445: 6443: 6439: 6438: 6436: 6435: 6428: 6423: 6418: 6411: 6402: 6397: 6392: 6387: 6382: 6373: 6369: 6367: 6363: 6362: 6360: 6359: 6354: 6349: 6344: 6339: 6334: 6329: 6324: 6319: 6314: 6309: 6307:Magnetic cloud 6303: 6301: 6295: 6294: 6292: 6291: 6286: 6281: 6276: 6271: 6266: 6261: 6256: 6251: 6246: 6241: 6235: 6233: 6229: 6228: 6226: 6225: 6220: 6215: 6210: 6205: 6200: 6194: 6192: 6188: 6187: 6182: 6180: 6179: 6172: 6165: 6157: 6148: 6147: 6145: 6144: 6132: 6121: 6118: 6117: 6115: 6114: 6109: 6103: 6101: 6097: 6096: 6093: 6092: 6090: 6089: 6081: 6075: 6069: 6061: 6054: 6052: 6048: 6047: 6045: 6044: 6040:Europa Clipper 6036: 6029: 6027: 6023: 6022: 6020: 6019: 6018: 6017: 6010: 5998: 5991: 5990: 5989: 5982: 5970: 5963: 5962: 5961: 5949: 5941: 5939: 5935: 5934: 5932: 5931: 5923: 5921: 5914: 5903: 5902: 5899: 5898: 5896: 5895: 5890: 5885: 5880: 5874: 5872: 5866: 5865: 5863: 5862: 5857: 5851: 5849: 5843: 5842: 5840: 5839: 5837:Solar eclipses 5834: 5828: 5826: 5819: 5815: 5814: 5811: 5810: 5808: 5807: 5805:Pasiphae group 5802: 5797: 5792: 5787: 5781: 5776: 5770: 5768: 5764: 5763: 5761: 5760: 5755: 5750: 5745: 5739: 5737: 5731: 5730: 5728: 5727: 5722: 5717: 5712: 5706: 5704: 5697: 5691: 5690: 5683: 5681: 5679: 5678: 5673: 5668: 5663: 5658: 5657: 5656: 5654:Great Red Spot 5645: 5643: 5639: 5638: 5636: 5635: 5629: 5626: 5625: 5620: 5618: 5617: 5610: 5603: 5595: 5588: 5587: 5558: 5520: 5491: 5446: 5428:(A7): 891–98. 5410: 5364: 5316: 5270: 5241: 5223:(1): 577–618. 5211: 5209: 5206: 5204: 5203: 5166: 5129: 5123: 5106: 5069: 5022: 4991: 4962: 4930:(8): 1310–18. 4912: 4883: 4857:(6): 687–732. 4839: 4810: 4782:(1): 393–406. 4767: 4730: 4728:on 2019-02-23. 4671: 4665: 4645: 4639: 4619: 4575: 4569: 4549: 4529: 4509: 4474: 4470: 4464: 4462:on 1997-05-01. 4436:Earth in Space 4428:Dessler, A. J. 4423: 4421:on 2011-07-19. 4398:(6): 2739–58. 4380: 4378:on 2009-03-20. 4355:(2): 417–428. 4335: 4330:10.1086/108047 4300: 4270: 4241: 4239:on 2009-02-25. 4216:(1): 133–159. 4196: 4134: 4128: 4100: 4082:(2): 213–217. 4069: 4026: 3989: 3969:(3): 295–353. 3953: 3951: 3948: 3946: 3945: 3885: 3874:: SM41B–1680. 3858: 3832: 3820: 3790: 3778: 3771: 3749: 3742: 3724: 3712: 3700: 3685: 3673: 3661: 3646: 3634: 3619: 3604: 3592: 3580: 3568: 3534: 3519: 3507: 3495: 3480: 3465: 3453: 3434: 3422: 3410: 3398: 3383: 3366: 3354: 3335: 3323: 3288:(1): 364–373. 3268: 3242: 3230: 3218: 3206: 3204:, 2000, p. 296 3194: 3182: 3170: 3158: 3139: 3124: 3112: 3097: 3085: 3073: 3058: 3046: 3034: 3015: 3003: 3001:, 2007, p. 216 2988: 2976: 2961: 2936: 2915: 2903: 2891: 2879: 2864: 2849: 2837: 2822: 2799: 2782: 2759: 2742: 2723: 2711: 2696: 2679: 2654: 2634: 2607:(8): 730–735. 2584: 2558: 2506: 2447: 2402: 2383: 2371: 2369:, 2000, p. 342 2356: 2341: 2316: 2267: 2255: 2238: 2236:, 1993, p. 694 2223: 2204: 2182: 2180: 2177: 2174: 2173: 2160: 2147: 2142: 2111: 2102: 2089: 2081:direct current 2072: 2062: 2061: 2059: 2056: 2025: 1976: 1973: 1946: 1900: 1877: 1865: 1831: 1821: 1810: 1776: 1773: 1698: 1695: 1671:carbon dioxide 1572: 1571: 1568: 1564: 1563: 1560: 1556: 1555: 1552: 1548: 1547: 1544: 1540: 1539: 1536: 1532: 1531: 1528: 1524: 1523: 1517: 1508: 1503: 1488: 1430: 1427: 1400:solar activity 1327: 1324: 1319:spectral lines 1232:instrument of 1213: 1212: 1209: 1206: 1202: 1201: 1198: 1195: 1191: 1190: 1187: 1186:10–100 GW 1184: 1180: 1179: 1176: 1175:, 3–4 μm) 1172: 1168: 1167: 1164: 1161: 1157: 1156: 1153: 1150: 1146: 1145: 1142: 1139: 1135: 1134: 1131: 1128: 1124: 1123: 1120: 1117: 1107: 1104: 1102: 1099: 1070: 1067: 1002: 995: 988: 985: 981:kinetic energy 973: 957: 921: 918: 916: 913: 889: 882: 871: 855: 852: 839: 832: 825: 767:sulfur dioxide 750: 747: 742: 735: 727: 675: 669:solar activity 665:subsolar point 660: 653: 624:its atmosphere 611: 610:Size and shape 608: 519: 516: 479: 476: 409:sulfur dioxide 362:magnetic field 344: 343: 340: 336: 335: 332: 328: 327: 313: 309: 308: 302: 301: 298: 294: 293: 290: 286: 285: 282: 278: 277: 267: 266:Plasma sources 263: 262: 259: 252: 251: 248: 242: 235: 234: 231: 225: 218: 217: 214: 208: 201: 200: 197: 193: 192: 188: 187: 184: 180: 179: 176: 169: 168: 165: 161: 160: 153: 152: 147: 141: 140: 137: 133: 132: 129: 122: 121: 110: 108:field strength 103: 102: 92: 86: 85: 84:71,492 km 82: 78: 77: 76:Internal field 73: 72: 69: 68:Discovery date 65: 64: 59: 55: 54: 50: 49: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6628: 6617: 6614: 6612: 6609: 6607: 6604: 6602: 6599: 6598: 6596: 6579: 6576: 6574: 6571: 6569: 6566: 6564: 6561: 6560: 6559: 6556: 6554: 6551: 6549: 6546: 6544: 6541: 6540: 6538: 6534: 6528: 6525: 6523: 6520: 6518: 6515: 6513: 6510: 6508: 6505: 6503: 6500: 6498: 6495: 6493: 6490: 6489: 6487: 6483: 6477: 6474: 6472: 6469: 6465: 6462: 6461: 6460: 6457: 6455: 6452: 6450: 6447: 6446: 6444: 6440: 6434: 6433: 6429: 6427: 6424: 6422: 6419: 6417: 6416: 6412: 6406: 6403: 6401: 6398: 6396: 6393: 6391: 6388: 6386: 6383: 6377: 6374: 6371: 6370: 6368: 6364: 6358: 6357:Space weather 6355: 6353: 6352:Space climate 6350: 6348: 6345: 6343: 6340: 6338: 6335: 6333: 6330: 6328: 6325: 6323: 6320: 6318: 6315: 6313: 6310: 6308: 6305: 6304: 6302: 6300: 6296: 6290: 6287: 6285: 6282: 6280: 6277: 6275: 6272: 6270: 6267: 6265: 6264:Magnetosphere 6262: 6260: 6259:Magnetosheath 6257: 6255: 6252: 6250: 6247: 6245: 6242: 6240: 6237: 6236: 6234: 6230: 6224: 6221: 6219: 6216: 6214: 6211: 6209: 6206: 6204: 6201: 6199: 6196: 6195: 6193: 6189: 6185: 6178: 6173: 6171: 6166: 6164: 6159: 6158: 6155: 6143: 6133: 6131: 6123: 6122: 6119: 6113: 6110: 6108: 6105: 6104: 6102: 6098: 6087: 6086: 6082: 6079: 6076: 6073: 6070: 6067: 6066: 6062: 6059: 6056: 6055: 6053: 6049: 6042: 6041: 6037: 6034: 6031: 6030: 6028: 6024: 6016: 6015: 6011: 6009: 6008: 6004: 6003: 6002: 5999: 5997: 5996: 5992: 5988: 5987: 5983: 5981: 5980: 5976: 5975: 5974: 5971: 5969: 5968: 5964: 5960: 5959: 5955: 5954: 5953: 5950: 5948: 5947: 5943: 5942: 5940: 5936: 5930: 5929: 5925: 5924: 5922: 5918: 5915: 5908: 5904: 5894: 5891: 5889: 5886: 5884: 5881: 5879: 5876: 5875: 5873: 5871: 5867: 5861: 5858: 5856: 5853: 5852: 5850: 5848: 5844: 5838: 5835: 5833: 5830: 5829: 5827: 5823: 5820: 5816: 5806: 5803: 5801: 5798: 5796: 5793: 5791: 5788: 5785: 5782: 5780: 5777: 5775: 5774:Himalia group 5772: 5771: 5769: 5765: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5740: 5738: 5736: 5732: 5726: 5723: 5721: 5718: 5716: 5713: 5711: 5708: 5707: 5705: 5701: 5698: 5696: 5692: 5687: 5677: 5674: 5672: 5669: 5667: 5664: 5662: 5661:Magnetosphere 5659: 5655: 5652: 5651: 5650: 5647: 5646: 5644: 5640: 5634: 5631: 5630: 5627: 5623: 5616: 5611: 5609: 5604: 5602: 5597: 5596: 5593: 5584: 5580: 5576: 5572: 5568: 5564: 5559: 5554: 5549: 5545: 5541: 5537: 5533: 5526: 5521: 5517: 5513: 5509: 5505: 5501: 5497: 5492: 5488: 5484: 5480: 5476: 5472: 5468: 5464: 5460: 5456: 5452: 5447: 5443: 5439: 5435: 5431: 5427: 5423: 5416: 5411: 5407: 5403: 5398: 5393: 5389: 5385: 5381: 5377: 5370: 5365: 5361: 5357: 5352: 5347: 5343: 5339: 5335: 5331: 5330: 5322: 5317: 5313: 5309: 5304: 5299: 5295: 5291: 5287: 5283: 5276: 5271: 5267: 5263: 5259: 5255: 5251: 5247: 5242: 5238: 5234: 5230: 5226: 5222: 5218: 5213: 5212: 5207: 5200: 5196: 5192: 5188: 5184: 5180: 5176: 5172: 5167: 5162: 5157: 5153: 5149: 5145: 5141: 5140: 5135: 5130: 5126: 5120: 5115: 5114: 5107: 5102: 5097: 5093: 5089: 5085: 5081: 5080: 5075: 5070: 5066: 5062: 5057: 5052: 5048: 5044: 5040: 5036: 5032: 5028: 5023: 5019: 5015: 5011: 5007: 5003: 4999: 4998: 4992: 4988: 4984: 4980: 4976: 4972: 4968: 4963: 4953:on 2012-02-15 4949: 4945: 4941: 4937: 4933: 4929: 4925: 4918: 4913: 4909: 4905: 4901: 4897: 4893: 4889: 4884: 4880: 4876: 4872: 4868: 4864: 4860: 4856: 4852: 4845: 4840: 4836: 4832: 4828: 4824: 4820: 4816: 4811: 4807: 4803: 4798: 4793: 4789: 4785: 4781: 4777: 4773: 4768: 4764: 4760: 4756: 4752: 4748: 4744: 4740: 4736: 4731: 4724: 4720: 4716: 4712: 4708: 4704: 4700: 4696: 4692: 4688: 4684: 4677: 4672: 4668: 4662: 4658: 4651: 4646: 4642: 4636: 4632: 4625: 4620: 4616: 4612: 4608: 4604: 4600: 4596: 4592: 4588: 4581: 4576: 4572: 4566: 4562: 4555: 4550: 4540:on 2016-04-30 4536: 4532: 4526: 4522: 4515: 4510: 4505: 4500: 4496: 4492: 4488: 4484: 4483: 4478: 4465: 4461: 4457: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4426:Hill, T. W.; 4424: 4417: 4413: 4409: 4405: 4401: 4397: 4393: 4386: 4381: 4374: 4370: 4366: 4362: 4358: 4354: 4350: 4349: 4341: 4336: 4331: 4326: 4322: 4318: 4314: 4310: 4306: 4301: 4297: 4293: 4289: 4285: 4281: 4277: 4271: 4267: 4263: 4259: 4255: 4251: 4247: 4242: 4235: 4231: 4227: 4223: 4219: 4215: 4211: 4210: 4202: 4197: 4193: 4189: 4185: 4181: 4176: 4175:2027.42/62861 4171: 4167: 4163: 4159: 4155: 4151: 4147: 4140: 4135: 4131: 4125: 4121: 4117: 4113: 4106: 4101: 4097: 4093: 4089: 4085: 4081: 4077: 4076: 4070: 4066: 4062: 4057: 4052: 4048: 4044: 4040: 4036: 4032: 4027: 4023: 4019: 4015: 4011: 4007: 4003: 3999: 3995: 3990: 3985: 3980: 3976: 3972: 3968: 3964: 3960: 3955: 3954: 3950:Cited sources 3949: 3941: 3937: 3932: 3927: 3922: 3917: 3913: 3909: 3905: 3901: 3897: 3889: 3886: 3881: 3877: 3873: 3869: 3862: 3859: 3846: 3842: 3836: 3833: 3829: 3824: 3821: 3808: 3804: 3800: 3794: 3791: 3787: 3782: 3779: 3774: 3768: 3763: 3762: 3753: 3750: 3745: 3739: 3735: 3728: 3725: 3721: 3716: 3713: 3709: 3704: 3701: 3697: 3692: 3690: 3686: 3682: 3677: 3674: 3670: 3665: 3662: 3658: 3653: 3651: 3647: 3643: 3638: 3635: 3631: 3626: 3624: 3620: 3616: 3611: 3609: 3605: 3601: 3596: 3593: 3589: 3584: 3581: 3577: 3572: 3569: 3556: 3552: 3545: 3543: 3541: 3539: 3535: 3531: 3526: 3524: 3520: 3516: 3511: 3508: 3504: 3499: 3496: 3492: 3487: 3485: 3481: 3477: 3472: 3470: 3466: 3462: 3457: 3454: 3450: 3445: 3443: 3441: 3439: 3435: 3431: 3426: 3423: 3419: 3414: 3411: 3407: 3402: 3399: 3395: 3390: 3388: 3384: 3380: 3375: 3373: 3371: 3367: 3363: 3358: 3355: 3351: 3346: 3344: 3342: 3340: 3336: 3332: 3327: 3324: 3319: 3315: 3311: 3307: 3303: 3299: 3295: 3291: 3287: 3283: 3279: 3272: 3269: 3257: 3253: 3246: 3243: 3239: 3234: 3231: 3227: 3222: 3219: 3215: 3210: 3207: 3203: 3198: 3195: 3191: 3186: 3183: 3179: 3174: 3171: 3167: 3162: 3159: 3155: 3150: 3148: 3146: 3144: 3140: 3136: 3131: 3129: 3125: 3121: 3116: 3113: 3109: 3104: 3102: 3098: 3094: 3089: 3086: 3082: 3077: 3074: 3070: 3065: 3063: 3059: 3055: 3050: 3047: 3043: 3038: 3035: 3031: 3026: 3024: 3022: 3020: 3016: 3012: 3007: 3004: 3000: 2995: 2993: 2989: 2985: 2980: 2977: 2973: 2968: 2966: 2962: 2958: 2953: 2951: 2949: 2947: 2945: 2943: 2941: 2937: 2933: 2928: 2926: 2924: 2922: 2920: 2916: 2912: 2907: 2904: 2900: 2895: 2892: 2888: 2883: 2880: 2876: 2871: 2869: 2865: 2861: 2856: 2854: 2850: 2846: 2841: 2838: 2834: 2829: 2827: 2823: 2819: 2814: 2812: 2810: 2808: 2806: 2804: 2800: 2796: 2791: 2789: 2787: 2783: 2779: 2774: 2772: 2770: 2768: 2766: 2764: 2760: 2756: 2751: 2749: 2747: 2743: 2739: 2734: 2732: 2730: 2728: 2724: 2720: 2715: 2712: 2708: 2703: 2701: 2697: 2693: 2688: 2686: 2684: 2680: 2676: 2671: 2669: 2667: 2665: 2663: 2661: 2659: 2655: 2650: 2649: 2644: 2638: 2635: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2595: 2588: 2585: 2573: 2569: 2562: 2559: 2554: 2550: 2545: 2540: 2536: 2532: 2528: 2524: 2517: 2510: 2507: 2502: 2498: 2493: 2488: 2483: 2478: 2474: 2470: 2466: 2462: 2458: 2451: 2448: 2442: 2437: 2433: 2429: 2425: 2421: 2414: 2406: 2403: 2399: 2394: 2392: 2390: 2388: 2384: 2380: 2375: 2372: 2368: 2363: 2361: 2357: 2353: 2348: 2346: 2342: 2338: 2333: 2331: 2329: 2327: 2325: 2323: 2321: 2317: 2313: 2308: 2306: 2304: 2302: 2300: 2298: 2296: 2294: 2292: 2290: 2288: 2286: 2284: 2282: 2280: 2278: 2276: 2274: 2272: 2268: 2264: 2259: 2256: 2252: 2247: 2245: 2243: 2239: 2235: 2230: 2228: 2224: 2220: 2215: 2213: 2211: 2209: 2205: 2201: 2196: 2194: 2192: 2190: 2188: 2184: 2178: 2170: 2164: 2161: 2157: 2151: 2148: 2141: 2137: 2133: 2129: 2125: 2121: 2115: 2112: 2106: 2103: 2099: 2093: 2090: 2086: 2082: 2076: 2073: 2067: 2064: 2057: 2055: 2053: 2049: 2044: 2042: 2037: 2030: 2024: 2019: 2017: 2012: 2010: 2009: 2004: 2000: 1999: 1989: 1981: 1974: 1972: 1970: 1966: 1962: 1957: 1954: 1953: 1945: 1941: 1940: 1935: 1931: 1930: 1924: 1922: 1918: 1914: 1910: 1906: 1899: 1895: 1893: 1887: 1885: 1884: 1876: 1872: 1864: 1860: 1855: 1853: 1849: 1845: 1841: 1837: 1830: 1825: 1820: 1816: 1809: 1805: 1797: 1793: 1786: 1781: 1774: 1772: 1770: 1766: 1762: 1757: 1754: 1750: 1746: 1742: 1738: 1733: 1731: 1727: 1723: 1719: 1711: 1707: 1703: 1696: 1694: 1692: 1688: 1687:sulfuric acid 1684: 1680: 1679:carbonic acid 1676: 1672: 1669:are present, 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1639: 1634: 1630: 1628: 1624: 1620: 1616: 1607: 1603: 1601: 1597: 1593: 1589: 1584: 1580: 1569: 1566: 1565: 1561: 1558: 1557: 1553: 1550: 1549: 1545: 1542: 1541: 1537: 1534: 1533: 1529: 1526: 1525: 1521: 1518: 1515: 1514: 1507: 1502: 1498: 1494: 1487: 1483: 1479: 1474: 1464: 1460: 1458: 1454: 1450: 1444: 1440: 1436: 1428: 1426: 1424: 1420: 1415: 1412: 1408: 1403: 1401: 1397: 1393: 1389: 1384: 1382: 1378: 1374: 1364: 1360: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1325: 1323: 1320: 1316: 1310: 1308: 1304: 1303:magnetosphere 1299: 1295: 1291: 1286: 1284: 1283:Joule heating 1280: 1275: 1274:instabilities 1271: 1265: 1255: 1249: 1241: 1235: 1231: 1227: 1224: 1219: 1210: 1207: 1204: 1203: 1199: 1196: 1193: 1192: 1188: 1185: 1182: 1181: 1177: 1170: 1169: 1162: 1159: 1158: 1154: 1151: 1148: 1147: 1143: 1140: 1137: 1136: 1132: 1129: 1126: 1125: 1121: 1118: 1115: 1114: 1105: 1100: 1098: 1096: 1090: 1088: 1084: 1075: 1068: 1066: 1063: 1058: 1056: 1051: 1046: 1044: 1035: 1031: 1029: 1024: 1020: 1016: 1012: 1011:hydrodynamics 1008: 1001: 994: 986: 984: 982: 977: 972: 968: 967:auroral ovals 956: 950: 948: 943: 939: 938:Lorentz force 935: 926: 919: 914: 912: 910: 906: 902: 901:Lorentz force 898: 893: 888: 881: 877: 870: 866: 862: 853: 851: 849: 845: 838: 831: 824: 820: 815: 811: 806: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 764: 755: 748: 746: 741: 734: 726: 721: 719: 714: 712: 711:current sheet 708: 704: 695: 691: 689: 688:magnetosheath 685: 681: 674: 670: 666: 659: 652: 648: 643: 641: 637: 633: 629: 625: 621: 617: 609: 607: 603: 601: 597: 592: 588: 584: 580: 576: 572: 568: 564: 559: 557: 553: 549: 545: 541: 537: 533: 529: 525: 517: 515: 513: 509: 505: 501: 497: 496:magnetosheath 493: 484: 477: 475: 473: 469: 465: 461: 456: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 397: 395: 391: 387: 383: 379: 375: 371: 370:magnetosphere 367: 363: 359: 355: 351: 341: 337: 333: 329: 326: 322: 318: 314: 310: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 268: 264: 260: 258: 253: 247: 243: 240: 236: 230: 226: 223: 219: 213: 209: 206: 202: 198: 194: 189: 185: 181: 177: 174: 170: 167:400 km/s 166: 162: 158: 154: 148: 146: 142: 138: 134: 130: 127: 123: 119: 115: 111: 109: 104: 101: 97: 93: 91: 87: 83: 79: 74: 71:December 1973 70: 66: 63: 60: 58:Discovered by 56: 51: 47: 41: 36: 30: 19: 6558:Ring systems 6553:Lunar swirls 6506: 6430: 6413: 6284:Ring current 6279:Plasmasphere 6254:Magnetopause 6083: 6063: 6038: 6012: 6005: 5993: 5984: 5977: 5967:New Horizons 5965: 5956: 5944: 5926: 5795:Ananke group 5660: 5566: 5562: 5535: 5531: 5499: 5495: 5454: 5450: 5425: 5421: 5379: 5375: 5336:(A7): 1116. 5333: 5327: 5285: 5281: 5249: 5245: 5220: 5216: 5174: 5170: 5143: 5137: 5112: 5083: 5077: 5030: 5026: 5001: 4995: 4970: 4966: 4955:. Retrieved 4948:the original 4927: 4923: 4891: 4887: 4854: 4850: 4818: 4814: 4779: 4775: 4738: 4734: 4723:the original 4686: 4682: 4656: 4630: 4590: 4586: 4560: 4542:. Retrieved 4535:the original 4520: 4486: 4480: 4460:the original 4439: 4435: 4416:the original 4395: 4391: 4373:the original 4352: 4346: 4312: 4308: 4282:(1): 31–56. 4279: 4275: 4249: 4245: 4234:the original 4213: 4207: 4149: 4145: 4111: 4079: 4073: 4038: 4034: 3997: 3993: 3966: 3962: 3903: 3899: 3888: 3871: 3867: 3861: 3849:. Retrieved 3845:the original 3835: 3823: 3811:. Retrieved 3807:the original 3793: 3781: 3760: 3752: 3733: 3727: 3715: 3703: 3683:, 2000, p. 1 3676: 3664: 3644:, 1998, p. 1 3637: 3595: 3583: 3571: 3559:. Retrieved 3555:the original 3510: 3498: 3456: 3425: 3413: 3406:Santos-Costa 3401: 3357: 3326: 3285: 3281: 3271: 3259:. Retrieved 3255: 3245: 3233: 3221: 3209: 3197: 3185: 3173: 3161: 3115: 3088: 3076: 3049: 3037: 3006: 2979: 2906: 2894: 2882: 2840: 2714: 2646: 2637: 2604: 2600: 2587: 2575:. Retrieved 2571: 2561: 2526: 2522: 2509: 2464: 2460: 2450: 2423: 2419: 2405: 2374: 2258: 2169:magnetometer 2163: 2150: 2139: 2135: 2131: 2123: 2119: 2114: 2105: 2092: 2075: 2066: 2045: 2035: 2034: 2028: 2021: 2013: 2007: 2003:magnetometer 1997: 1994: 1958: 1950: 1943: 1939:New Horizons 1937: 1933: 1927: 1925: 1916: 1897: 1891: 1888: 1881: 1874: 1862: 1856: 1828: 1826: 1818: 1807: 1801: 1795: 1784: 1758: 1734: 1715: 1709: 1635: 1631: 1612: 1576: 1500: 1485: 1469: 1446: 1416: 1404: 1396:radio pulsar 1385: 1369: 1329: 1311: 1287: 1277:10–100  1266: 1262: 1258:(animation). 1200:~50 GW 1197:2–10 TW 1189:0.3 GW 1178:4–8 TW 1163:~40 TW 1152:~100 GW 1091: 1087:Dungey cycle 1080: 1059: 1050:reconnection 1047: 1040: 999: 992: 990: 978: 970: 954: 951: 931: 897:ring current 894: 892:on average. 886: 879: 868: 857: 836: 829: 822: 807: 794: 760: 739: 732: 724: 722: 718:plasma sheet 715: 700: 672: 657: 650: 647:magnetopause 644: 613: 604: 565:(4.170  560: 521: 500:magnetopause 489: 457: 439:, including 433:radio pulsar 398: 388:, while its 374:Solar System 349: 347: 292:2000 cm 276:, ionosphere 245: 228: 227:50–100  222:Magnetopause 211: 116:(4.170  29: 6464:Unwin Radar 6390:Double Star 6327:Heliosphere 6317:Solar flare 5907:Exploration 5860:Trojan camp 5800:Carme group 5033:: 821–828. 3851:February 7, 3813:October 13, 3310:2268/217988 2492:2268/211119 2096:The Jovian 1848:polarimeter 1751:emitted by 1583:ionospheres 1567:Earth (Avg) 1559:Earth (Max) 1352:hectometric 1344:frequencies 1338:to tens of 1332:radio waves 1208:1–4 GW 1141:~10 GW 1095:synchrotron 854:Magnetodisk 771:dissociated 703:magnetotail 504:magnetotail 453:soft X-rays 449:ultraviolet 378:heliosphere 334:100 TW 331:Total power 239:Magnetotail 186:0.4 cm 112:417.0  106:Equatorial 6595:Categories 6512:Ganymedian 6385:Cluster II 6366:Satellites 6342:Heliopause 6299:Solar wind 6249:Ionosphere 6223:Polar wind 6218:Jet stream 5986:Pioneer 11 5979:Pioneer 10 5855:Greek camp 5649:Atmosphere 4957:2009-03-25 4544:2009-03-31 3931:2381/40230 2179:References 2098:ionosphere 1905:gyroscopes 1894:spacecraft 1815:Pioneer 11 1804:Pioneer 10 1769:Pioneer 10 1745:decimetric 1718:decametric 1706:Pioneer 10 1667:carbonates 1643:radiolysis 1627:spacecraft 1588:solar wind 1473:Pioneer 11 1457:radiolysis 1433:See also: 1423:collimated 1411:decimetric 1356:decametric 1348:kilometric 1130:~1 GW 1028:turbulence 1023:flux tubes 749:Role of Io 616:solar wind 552:quadrupole 532:outer core 508:solar wind 425:solar wind 394:Pioneer 10 354:solar wind 274:solar wind 261:O, S and H 159:parameters 157:Solar wind 62:Pioneer 10 6548:Gas torus 6543:Flux tube 6527:Neptunian 6517:Saturnian 6471:SuperDARN 6372:Full list 6244:Bow shock 6213:Geosphere 6112:Mythology 6078:Tianwen-4 6058:Laplace-P 6014:Voyager 2 6007:Voyager 1 5818:Astronomy 5767:Irregular 5642:Geography 5392:CiteSeerX 5346:CiteSeerX 5065:109235313 4879:250897924 4763:119906560 4442:(32): 6. 4022:122318569 3561:5 January 3318:135188023 3256:space.com 2875:Wolverton 2629:182074098 2052:Tianwen-4 1959:In 2003, 1926:When the 1913:safe mode 1871:Voyager 2 1859:Voyager 1 1840:electrons 1737:microwave 1728:(10  1697:Discovery 1600:bow shock 1497:eccentric 1340:megahertz 1336:kilohertz 1101:Emissions 1055:plasmoids 810:diffusion 680:bow shock 640:full moon 492:bow shock 478:Structure 460:radiation 210:~82  205:Bow shock 199:Intrinsic 178:1 nT 53:Discovery 6130:Category 6051:Proposed 5913:missions 5790:Valetudo 5779:Themisto 5758:Callisto 5753:Ganymede 5735:Galilean 5720:Amalthea 5715:Adrastea 5487:21032193 5479:17932282 5312:11875561 5199:85508751 4806:55587210 4719:10278419 4711:17932281 4615:17740545 4430:(1995). 4184:11875560 4065:11875557 3940:28546207 3828:Troutman 3786:Fieseler 3681:Hibbitts 3642:Williams 3630:Kivelson 3615:Kivelson 3588:Kivelson 3576:Kivelson 3449:Kivelson 3202:Bhardwaj 3190:Bhardwaj 3178:Bhardwaj 3154:Bhardwaj 3120:Bhardwaj 2899:Kivelson 2553:28546206 2501:28546207 2398:Kivelson 2367:Bhardwaj 2026:—  1917:Galileo' 1691:Oxidants 1675:methanol 1655:hydrogen 1623:Callisto 1619:Ganymede 1596:subsonic 1551:Callisto 1543:Ganymede 1493:inclined 1294:Ganymede 1122:Io spot 1116:Emission 953:40  915:Dynamics 731:40  556:octupole 441:infrared 312:Spectrum 224:distance 207:distance 175:strength 6606:Jupiter 6578:Neptune 6563:Jupiter 6522:Uranian 6502:Martian 6492:Hermian 6395:Geotail 6107:Fiction 6100:Related 6065:Shensuo 5995:Ulysses 5958:Galileo 5920:Current 5911:orbital 5870:Impacts 5847:Trojans 5825:General 5622:Jupiter 5571:Bibcode 5540:Bibcode 5504:Bibcode 5459:Bibcode 5451:Science 5430:Bibcode 5384:Bibcode 5338:Bibcode 5290:Bibcode 5254:Bibcode 5225:Bibcode 5179:Bibcode 5148:Bibcode 5088:Bibcode 5035:Bibcode 5006:Bibcode 4975:Bibcode 4932:Bibcode 4896:Bibcode 4859:Bibcode 4823:Bibcode 4784:Bibcode 4743:Bibcode 4691:Bibcode 4683:Science 4595:Bibcode 4491:Bibcode 4444:Bibcode 4400:Bibcode 4357:Bibcode 4317:Bibcode 4315:: 329. 4284:Bibcode 4254:Bibcode 4218:Bibcode 4192:4431282 4154:Bibcode 4116:Bibcode 4084:Bibcode 4043:Bibcode 4002:Bibcode 3971:Bibcode 3908:Bibcode 3900:Science 3876:Bibcode 3734:Jupiter 3696:Johnson 3669:Johnson 3476:Johnson 3461:Johnson 3290:Bibcode 3261:June 4, 3093:Nichols 3069:Nichols 3054:Russell 3042:Khurana 2984:Russell 2887:Russell 2860:Khurana 2845:Russell 2833:Khurana 2818:Khurana 2738:Khurana 2692:Russell 2609:Bibcode 2577:June 4, 2531:Bibcode 2523:Science 2469:Bibcode 2461:Science 2428:Bibcode 2379:Khurana 2337:Khurana 2312:Khurana 2219:Khurana 1934:Galileo 1929:Cassini 1892:Galileo 1883:Ulysses 1852:Voyager 1844:protons 1796:Galileo 1785:Ulysses 1710:in situ 1570:0.0007 1453:sputter 1254:aurorae 1226:aurorae 1119:Jupiter 1106:Aurorae 1083:protons 909:amperes 775:ionized 656:(where 587:Pioneer 583:rotates 445:visible 429:aurorae 358:Jupiter 317:near-IR 315:radio, 183:Density 6573:Uranus 6568:Saturn 6507:Jovian 6449:EISCAT 6421:THEMIS 6409:(2015) 6407:  6380:(2016) 6378:  6203:Aurora 6088:(2030) 6080:(2029) 6074:(2026) 6068:(2024) 6060:(2023) 6043:(2024) 6026:Future 5748:Europa 5485:  5477:  5394:  5348:  5310:  5282:Nature 5197:  5121:  5063:  4877:  4804:  4761:  4717:  4709:  4663:  4637:  4613:  4567:  4527:  4473:and SO 4348:Icarus 4209:Icarus 4190:  4182:  4146:Nature 4126:  4063:  4035:Nature 4020:  3938:  3830:, 2003 3788:, 2002 3769:  3740:  3722:, 1959 3710:, 1955 3657:Cooper 3600:Cooper 3408:, 2001 3381:, 1995 3331:Palier 3316:  3228:, 2002 3226:Clarke 3166:Cowley 3135:Palier 3108:Elsner 2986:, 2008 2972:Cowley 2932:Cowley 2719:Russel 2675:Russel 2627:  2551:  2499:  2354:, 2002 2352:Bolton 2234:Russel 2202:, 1974 1726:teslas 1651:oxygen 1638:sodium 1615:Europa 1535:Europa 1441:, and 1388:pulsar 1290:Europa 1230:NIRCam 963:16 ± 1 791:oxygen 787:sulfur 707:Saturn 636:corona 628:plasma 548:dipole 540:nickel 528:dynamo 421:plasma 366:Saturn 306:Aurora 241:length 126:Dipole 6497:Lunar 6459:SHARE 6454:HAARP 6415:Polar 6400:IMAGE 6376:Arase 6085:SMARA 5786:group 5784:Carpo 5725:Thebe 5710:Metis 5703:Inner 5695:Moons 5666:Rings 5528:(PDF) 5483:S2CID 5418:(PDF) 5372:(PDF) 5324:(PDF) 5278:(PDF) 5195:S2CID 5061:S2CID 4951:(PDF) 4920:(PDF) 4875:S2CID 4847:(PDF) 4802:S2CID 4759:S2CID 4726:(PDF) 4715:S2CID 4679:(PDF) 4653:(PDF) 4627:(PDF) 4611:S2CID 4583:(PDF) 4557:(PDF) 4538:(PDF) 4517:(PDF) 4419:(PDF) 4388:(PDF) 4376:(PDF) 4343:(PDF) 4237:(PDF) 4204:(PDF) 4188:S2CID 4142:(PDF) 4108:(PDF) 4018:S2CID 3720:Drake 3530:Burns 3515:Burns 3503:Burns 3491:Burns 3430:Krupp 3418:Zarka 3394:Zarka 3362:Zarka 3350:Zarka 3314:S2CID 3238:Blanc 3081:Krupp 3030:Krupp 3011:Krupp 2999:Krupp 2957:Blanc 2911:Blanc 2795:Krupp 2778:Krupp 2755:Krupp 2707:Krupp 2625:S2CID 2597:(PDF) 2519:(PDF) 2416:(PDF) 2263:Blanc 2251:Zarka 2200:Smith 2058:Notes 2014:The 2008:Waves 1838:from 1730:gauss 1659:ozone 1592:Venus 1562:0.07 1554:0.01 1530:3600 1522:/day 1315:cusps 1171:IR (H 524:Earth 468:moons 413:torus 325:X-ray 255:Main 164:Speed 139:~159° 6432:Wind 5938:Past 5928:Juno 5475:PMID 5308:PMID 5119:ISBN 4707:PMID 4661:ISBN 4635:ISBN 4565:ISBN 4525:ISBN 4180:PMID 4124:ISBN 4061:PMID 3936:PMID 3872:2008 3853:2017 3815:2008 3767:ISBN 3738:ISBN 3563:2014 3379:Hill 3263:2019 2579:2019 2549:PMID 2497:PMID 2036:Juno 1998:Juno 1995:The 1961:NASA 1952:Juno 1889:The 1836:rads 1685:and 1677:and 1661:and 1653:and 1621:and 1579:nbar 1538:540 1516:Moon 1495:and 1482:ions 1292:and 812:and 789:and 684:wake 682:, a 591:Juno 538:and 536:iron 451:and 348:The 323:and 257:ions 196:Type 131:~10° 128:tilt 6405:MMS 5579:doi 5548:doi 5512:doi 5467:doi 5455:318 5438:doi 5402:doi 5356:doi 5334:107 5298:doi 5286:415 5262:doi 5233:doi 5187:doi 5175:116 5156:doi 5144:103 5096:doi 5084:103 5051:hdl 5043:doi 5031:654 5014:doi 4983:doi 4940:doi 4904:doi 4867:doi 4831:doi 4792:doi 4751:doi 4739:116 4699:doi 4687:318 4603:doi 4591:116 4499:doi 4487:105 4452:doi 4408:doi 4365:doi 4353:178 4325:doi 4292:doi 4262:doi 4226:doi 4214:139 4170:hdl 4162:doi 4150:415 4092:doi 4051:doi 4039:415 4010:doi 3998:116 3979:doi 3926:hdl 3916:doi 3904:356 3306:hdl 3298:doi 3286:123 2617:doi 2539:doi 2527:356 2487:hdl 2477:doi 2465:356 2436:doi 2126:(a 1741:GHz 1732:). 1722:MHz 1520:rem 1009:in 844:keV 777:by 632:Sun 620:Sun 360:'s 356:by 173:IMF 6597:: 5743:Io 5577:. 5567:49 5565:. 5546:. 5536:28 5534:. 5530:. 5510:. 5500:49 5498:. 5481:. 5473:. 5465:. 5453:. 5436:. 5426:51 5424:. 5420:. 5400:. 5390:. 5380:36 5378:. 5374:. 5354:. 5344:. 5332:. 5326:. 5306:. 5296:. 5284:. 5280:. 5260:. 5250:49 5248:. 5231:. 5219:. 5193:. 5185:. 5173:. 5154:. 5142:. 5136:. 5094:. 5082:. 5076:. 5059:. 5049:. 5041:. 5029:. 5012:. 5002:79 5000:. 4981:. 4971:49 4969:. 4938:. 4928:41 4926:. 4922:. 4902:. 4892:49 4890:. 4873:. 4865:. 4855:56 4853:. 4849:. 4829:. 4819:49 4817:. 4800:. 4790:. 4780:24 4778:. 4774:. 4757:. 4749:. 4737:. 4713:. 4705:. 4697:. 4685:. 4681:. 4609:. 4601:. 4589:. 4585:. 4497:. 4485:. 4479:. 4450:. 4438:. 4434:. 4406:. 4396:49 4394:. 4390:. 4363:. 4351:. 4345:. 4323:. 4313:64 4311:. 4307:. 4290:. 4280:51 4278:. 4260:. 4250:49 4248:. 4224:. 4212:. 4206:. 4186:. 4178:. 4168:. 4160:. 4148:. 4144:. 4122:. 4090:. 4080:60 4078:. 4059:. 4049:. 4037:. 4033:. 4016:. 4008:. 3996:. 3977:. 3967:38 3965:. 3961:. 3934:. 3924:. 3914:. 3902:. 3898:. 3870:. 3801:. 3688:^ 3649:^ 3622:^ 3607:^ 3537:^ 3522:^ 3483:^ 3468:^ 3437:^ 3386:^ 3369:^ 3338:^ 3312:. 3304:. 3296:. 3284:. 3280:. 3254:. 3142:^ 3127:^ 3100:^ 3061:^ 3018:^ 2991:^ 2964:^ 2939:^ 2918:^ 2867:^ 2852:^ 2825:^ 2802:^ 2785:^ 2762:^ 2745:^ 2726:^ 2699:^ 2682:^ 2657:^ 2645:. 2623:. 2615:. 2603:. 2599:. 2570:. 2547:. 2537:. 2525:. 2521:. 2495:. 2485:. 2475:. 2463:. 2459:. 2434:. 2424:45 2422:. 2418:. 2386:^ 2359:^ 2344:^ 2319:^ 2270:^ 2241:^ 2226:^ 2207:^ 2186:^ 2011:. 1936:. 1923:. 1824:. 1761:Io 1689:. 1673:, 1629:. 1617:, 1546:8 1527:Io 1437:, 1402:. 1279:TW 1211:? 1144:? 1133:? 1030:. 1019:Io 911:. 803:eV 763:Io 690:. 602:. 563:μT 554:, 514:. 502:, 498:, 494:, 455:. 447:, 443:, 405:Io 321:UV 319:, 272:, 270:Io 114:μT 6176:e 6169:t 6162:v 5909:, 5614:e 5607:t 5600:v 5585:. 5581:: 5573:: 5556:. 5550:: 5542:: 5518:. 5514:: 5506:: 5489:. 5469:: 5461:: 5444:. 5440:: 5432:: 5408:. 5404:: 5386:: 5362:. 5358:: 5340:: 5314:. 5300:: 5292:: 5268:. 5264:: 5256:: 5239:. 5235:: 5227:: 5221:7 5201:. 5189:: 5181:: 5164:. 5158:: 5150:: 5127:. 5104:. 5098:: 5090:: 5067:. 5053:: 5045:: 5037:: 5020:. 5016:: 5008:: 4989:. 4985:: 4977:: 4960:. 4942:: 4934:: 4910:. 4906:: 4898:: 4881:. 4869:: 4861:: 4837:. 4833:: 4825:: 4808:. 4794:: 4786:: 4765:. 4753:: 4745:: 4701:: 4693:: 4669:. 4643:. 4617:. 4605:: 4597:: 4573:. 4547:. 4507:. 4501:: 4493:: 4475:2 4471:2 4454:: 4446:: 4440:8 4410:: 4402:: 4367:: 4359:: 4333:. 4327:: 4319:: 4298:. 4294:: 4286:: 4268:. 4264:: 4256:: 4228:: 4220:: 4194:. 4172:: 4164:: 4156:: 4132:. 4118:: 4098:. 4094:: 4086:: 4067:. 4053:: 4045:: 4024:. 4012:: 4004:: 3987:. 3981:: 3973:: 3942:. 3928:: 3918:: 3910:: 3882:. 3878:: 3855:. 3817:. 3775:. 3746:. 3565:. 3320:. 3308:: 3300:: 3292:: 3265:. 2651:. 2631:. 2619:: 2611:: 2605:3 2581:. 2555:. 2541:: 2533:: 2503:. 2489:: 2479:: 2471:: 2444:. 2438:: 2430:: 2143:J 2140:R 2136:n 2134:: 2132:m 2124:n 2122:: 2120:m 2087:. 2039:( 1947:J 1944:R 1901:J 1898:R 1878:J 1875:R 1866:J 1863:R 1832:J 1829:R 1822:J 1819:R 1811:J 1808:R 1504:J 1501:R 1489:J 1486:R 1173:3 1003:J 1000:R 996:J 993:R 974:J 971:R 958:J 955:R 890:J 887:R 883:J 880:R 872:J 869:R 840:J 837:R 833:J 830:R 826:J 823:R 743:J 740:R 736:J 733:R 728:J 725:R 676:J 673:R 661:J 658:R 654:J 651:R 579:m 577:· 575:T 567:G 249:J 246:R 232:J 229:R 215:J 212:R 120:) 118:G 100:m 98:· 96:T 20:)

Index

Jupiter's magnetosphere

Hubble Space Telescope
Pioneer 10
Magnetic moment
T
m
field strength
μT
G
Dipole
Rotation period
Solar wind
IMF
Bow shock
Magnetopause
Magnetotail
ions
Io
solar wind
Aurora
near-IR
UV
X-ray
solar wind
Jupiter
magnetic field
Saturn
magnetosphere
Solar System

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.