Knowledge (XXG)

Jelly-falls

Source đź“ť

842:. A complication with trawling for jelly-falls is the gelatinous carcass easily falls apart and as a result, opportunistic photography, videography, and chemical analysis have been primary methods of monitoring. This means that jelly-falls are not always observed in the time period in which they exist. Because jelly-falls can be fully processed and degraded within a number of hours by scavengers and the fact that some jelly-falls will not sink below 500 m in tropical and subtropical waters, the importance and prevalence of jelly-falls may be underestimated. 102: 679: 818:, environments with jellies present will have carbon pumps be more primarily supplied with jelly-falls. This could lead to issues of habitats with established biological pumps succumbing to nonequilibrium as the presence of jellies would change the food web as well as changes to the amount of carbon deposited into the sediment. Finally, decomposition is aided by the microbial community. In a case study on the 830:, which has impacts traveling up the trophic levels. In addition, with the exclusion of scavengers, jelly-falls develop a white layer of bacteria over the decaying carcasses and emit a black residue over the surrounding area, which is from sulfide. This high level of microbial activity requires a lot of oxygen, which can lead zones around jelly-falls to become hypoxic and inhospitable to larger scavengers. 20: 743:). Several circumstances can trigger the death of gelatinous organisms which would cause them to sink. These include high levels of primary production that can clog the feeding apparatuses of the organisms, a sudden temperature change, when an old bloom runs out of food, when predators damage the bodies of the jellies, and 822:, the number of bacteria increased in the presence of jelly-falls, and the bacteria were shown to preferentially use nitrogen released from decaying jelly carcasses while mostly leaving carbon. In a study conducted by Andrew Sweetman in 2016, it was discovered using core samples of the sediment in 779:
process starts after death and can proceed in the water column as the gelatinous organisms are sinking. Decay happens faster in the tropics than in temperate and subpolar waters as a result of warmer temperatures. In the tropics, a jelly-fall may take less than 2 days to decay in warmer, surface
1371:
Tinta, Tinkara; Kogovšek, Tjaša; Turk, Valentina; Shiganova, Tamara A.; Mikaelyan, Alexander S. & Malej, Alenka (2016). "Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column — A Black Sea case study".
747:. In general, however, jelly-falls are linked to jelly-blooms and primary production, with over 75% of the jelly falls in subpolar and temperate regions occurring after spring blooms, and over 25% of the jelly-falls in the tropics occurring after 1401:"Jellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food-websJellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food-webs" 826:, the presence of jelly-falls significantly impacted the biochemical process of these benthic communities. Bacteria consume jelly carcasses rapidly, removing opportunities of acquiring sustenance for bottoming feeding 766:
to the lower ocean increases. With a possible slowing of the classic biological pump, the transport of carbon and nutrients to the deep sea through jelly-falls may become more and more important to deep ocean.
780:
water, but as many as 25 days when it is lower than 1000 m deep. However, lone gelatinous organisms may spend less time on the sea floor as one study found that jellies could be decomposed by
1340:"First assessment of flux rates of jellyfish carcasses (jelly-falls) to the benthos reveals the importance of gelatinous material for biological C-cycling in jellyfish-dominated ecosystems" 1243:
Lebrato, Mario; Pitt, Kylie A.; Sweetman, Andrew K.; Jones, Daniel O. B.; Cartes, Joan E.; Oschlies, Andreas; Condon, Robert H.; Molinero, Juan Carlos & Adler, Laetitia (2012).
906:
Lebrato, Mario; Pitt, Kylie A.; Sweetman, Andrew K.; Jones, Daniel O. B.; Cartes, Joan E.; Oschlies, Andreas; Condon, Robert H.; Molinero, Juan Carlos & Adler, Laetitia (2012).
754:
With global climates shifting towards creating warmer and more acidic oceans, conditions not favored by non-resilient species, jellies are likely to grow in population sizes.
1453:
West, Elizabeth Jane; Welsh, David Thomas & Pitt, Kylie Anne (2009). "Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics".
1037:"Towards a transformative understanding of the ocean's biological pump: Priorities for future research-Report on the NSF Biology of the Biological Pump Workshop" 69:. These events are common in protected areas with high levels of primary production and water quality suitable to support cnidarian species. These areas include 803:
and fish. However, which scavengers find their way to jelly-falls is highly reliant on each ecosystem. For example, in an experiment in the Norwegian deep sea,
811:, and finally decapod shrimp. Photographs taken off the coast of Norway on natural jelly-falls also revealed caridean shrimp feeding on jelly carcasses. 762:
can become jelly hot spots with substantial blooms. As the climate changes and ocean waters warm, jelly blooms become more prolific and the transport of
189: 474: 147: 647: 174: 814:
With increased populations and blooms becoming more common, with favorable conditions and a lack of other filter feeders in the area to consume
710: 528: 1081:
Lebrato, Mario; Pahlow, Markus; Oschlies, Andreas; Pitt, Kylie A.; Jones, Daniel O. B.; Molinero, Juan Carlos & Condon, Robert H. (2011).
652: 117: 1036: 1498: 1503: 1000:
Sweetman, Andrew K. & Chapman, Annelise (2011). "First observations of jelly-falls at the seafloor in a deep-sea fjord".
1184:
Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E.; Lloris, Domingo; Mélin, Frédéric & Beni-Casadella, Laia (2013).
1141:
Purcell, J.E. (2012). "Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations".
577: 582: 567: 247: 1399:
Sweetman, Andrew; Chelsky, Ariella; Pitt, Kylie Ann; Andrade, Hector; van Oevelen, Dick & Renaud, Paul (2016).
637: 535: 241: 235: 47: 642: 262: 703: 1508: 1493: 617: 545: 540: 523: 368: 229: 127: 74: 1291:"Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs" 627: 142: 447: 223: 184: 152: 39: 696: 683: 632: 363: 1412: 1197: 1150: 1097: 1009: 965: 559: 461: 217: 122: 62: 878: 862: 838:
Researching jelly-falls relies on direct observational data such as video, photography, or benthic
759: 508: 324: 179: 1470: 1264: 1123: 927: 873: 587: 355: 339: 334: 257: 1320: 1225: 1166: 518: 297: 132: 1186:"Sinking jelly-carbon unveils potential environmental variability along a continental margin" 1462: 1430: 1420: 1381: 1351: 1310: 1302: 1256: 1245:"Jelly-falls historic and recent observations: a review to drive future research directions" 1215: 1205: 1158: 1113: 1105: 1017: 973: 919: 908:"Jelly-falls historic and recent observations: a review to drive future research directions" 823: 484: 378: 373: 101: 851: 612: 479: 412: 400: 329: 203: 66: 1162: 1416: 1201: 1154: 1101: 1013: 969: 1315: 1290: 1220: 1185: 1047: 755: 622: 592: 572: 513: 427: 310: 305: 166: 1487: 808: 776: 1474: 1289:
Sweetman, Andrew K.; Smith, Craig R.; Dale, Trine & Jones, Daniel O. B. (2014).
1268: 931: 1127: 763: 405: 319: 273: 211: 93: 51: 35: 19: 46:, sink to the seafloor and enhance carbon and nitrogen fluxes via rapidly sinking 1210: 1385: 469: 442: 432: 422: 392: 278: 137: 16:
Marine carbon cycling events whereby gelatinous zooplankton sink to the seafloor
1466: 1260: 1109: 1021: 978: 923: 868: 827: 800: 792: 744: 417: 1356: 1339: 1082: 807:
were the first scavengers to find the traps of decaying jellies, followed by
946: 856: 819: 788: 781: 748: 736: 728: 54: 1324: 1306: 1229: 1170: 61:. Jelly-falls have been implicated as a major “gelatinous pathway” for the 839: 815: 796: 732: 724: 58: 43: 1435: 1083:"Depth attenuation of organic matter export associated with jelly falls" 1118: 804: 500: 283: 70: 1425: 1400: 662: 1244: 907: 799:, have emerged as the primary consumer of jelly-falls, followed by 657: 27:
carcasses were found along an oil pipeline in West Africa in 2006.
18: 787:
Decomposition of jelly-falls is largely aided by these kinds of
740: 723:
Jelly-falls are primarily made up of the decaying corpses of
995: 993: 991: 989: 784:
in the Norwegian deep sea in under two and a half hours.
1295:
Proceedings of the Royal Society B: Biological Sciences
1002:
Deep Sea Research Part I: Oceanographic Research Papers
1284: 1282: 1280: 1278: 1076: 1074: 1072: 1070: 1068: 901: 899: 897: 895: 893: 1448: 1446: 1374:Journal of Experimental Marine Biology and Ecology 1338:Sweetman, Andrew & Chapman, Annaleise (2015). 704: 8: 73:and several studies have been conducted in 945:Lebrato, M. & Jones, D. O. B. (2009). 711: 697: 84: 1434: 1424: 1355: 1314: 1219: 1209: 1117: 977: 951:carcasses off Ivory Coast (West Africa)" 1044:OCB: Ocean Carbon & Biogeochemistry 889: 648:Territorialisation of carbon governance 92: 65:of labile biogenic carbon through the 653:Total Carbon Column Observing Network 7: 1163:10.1146/annurev-marine-120709-142751 50:. These events provide nutrition to 14: 678: 677: 100: 1143:Annual Review of Marine Science 613:Climate reconstruction proxies 1: 1211:10.1371/journal.pone.0082070 583:Carbonate compensation depth 248:Particulate inorganic carbon 1386:10.1016/j.jembe.2015.10.018 1344:Frontiers in Marine Science 1525: 1405:Limnology and Oceanography 1090:Limnology and Oceanography 958:Limnology and Oceanography 947:"Mass deposition event of 638:Carbon capture and storage 242:Particulate organic carbon 236:Dissolved inorganic carbon 48:particulate organic matter 1467:10.1007/s10750-008-9586-7 1261:10.1007/s10750-012-1046-8 1110:10.4319/lo.2011.56.5.1917 1022:10.1016/j.dsr.2011.08.006 979:10.4319/lo.2009.54.4.1197 924:10.1007/s10750-012-1046-8 643:Carbon cycle re-balancing 1357:10.3389/fmars.2015.00047 618:Carbon-to-nitrogen ratio 578:Carbonate–silicate cycle 546:Carbon dioxide clathrate 541:Clathrate gun hypothesis 369:Net ecosystem production 230:Dissolved organic carbon 1499:Biological oceanography 628:Deep Carbon Observatory 88:Part of a series on the 1307:10.1098/rspb.2014.2210 448:Continental shelf pump 224:Total inorganic carbon 190:Satellite measurements 40:gelatinous zooplankton 28: 1504:Chemical oceanography 633:Global Carbon Project 364:Ecosystem respiration 23:A mass deposition of 22: 462:Carbon sequestration 218:Total organic carbon 1417:2016LimOc..61.1449S 1202:2013PLoSO...882070L 1155:2012ARMS....4..209P 1102:2011LimOc..56.1917L 1014:2011DSRI...58.1206S 970:2009LimOc..54.1197L 949:Pyrosoma atlanticum 863:Pyrosoma atlanticum 834:Research challenges 509:Atmospheric methane 475:Soil carbon storage 325:Reverse Krebs cycle 180:Ocean acidification 25:Pyrosoma atlanticum 1301:(1796): 20142210. 1053:on 27 October 2016 874:Deep sea community 588:Great Calcite Belt 536:Aerobic production 356:Carbon respiration 298:Metabolic pathways 258:Primary production 29: 1426:10.1002/lno.10310 1008:(12): 1206–1211. 721: 720: 519:Methane emissions 175:In the atmosphere 1516: 1479: 1478: 1450: 1441: 1440: 1438: 1428: 1411:(4): 1449–1461. 1396: 1390: 1389: 1368: 1362: 1361: 1359: 1335: 1329: 1328: 1318: 1286: 1273: 1272: 1240: 1234: 1233: 1223: 1213: 1181: 1175: 1174: 1138: 1132: 1131: 1121: 1096:(5): 1917–1928. 1087: 1078: 1063: 1062: 1060: 1058: 1052: 1046:. Archived from 1041: 1032: 1026: 1025: 997: 984: 983: 981: 964:(4): 1197–1209. 955: 942: 936: 935: 903: 824:Norwegian fjords 749:upwelling events 713: 706: 699: 686: 681: 680: 485:pelagic sediment 379:Soil respiration 374:Photorespiration 104: 85: 75:fjords of Norway 1524: 1523: 1519: 1518: 1517: 1515: 1514: 1513: 1509:Biogeochemistry 1494:Aquatic ecology 1484: 1483: 1482: 1452: 1451: 1444: 1398: 1397: 1393: 1370: 1369: 1365: 1337: 1336: 1332: 1288: 1287: 1276: 1242: 1241: 1237: 1183: 1182: 1178: 1140: 1139: 1135: 1085: 1080: 1079: 1066: 1056: 1054: 1050: 1039: 1034: 1033: 1029: 999: 998: 987: 953: 944: 943: 939: 905: 904: 891: 887: 852:Biological pump 848: 836: 773: 717: 676: 669: 668: 667: 607: 599: 598: 597: 562: 552: 551: 550: 503: 493: 492: 491: 480:Marine sediment 464: 454: 453: 452: 413:Solubility pump 401:Biological pump 395: 385: 384: 383: 358: 348: 347: 346: 330:Carbon fixation 315: 300: 290: 289: 288: 269: 253: 206: 204:Forms of carbon 196: 195: 194: 169: 159: 158: 157: 112: 83: 67:biological pump 38:events whereby 17: 12: 11: 5: 1522: 1520: 1512: 1511: 1506: 1501: 1496: 1486: 1485: 1481: 1480: 1461:(1): 151–160. 1442: 1391: 1363: 1330: 1274: 1255:(1): 227–245. 1235: 1196:(12): e82070. 1176: 1133: 1064: 1035:Burd, Adrian. 1027: 985: 937: 918:(1): 227–245. 888: 886: 883: 882: 881: 876: 871: 866: 859: 854: 847: 844: 835: 832: 809:squat lobsters 791:. In general, 772: 769: 719: 718: 716: 715: 708: 701: 693: 690: 689: 688: 687: 671: 670: 666: 665: 660: 655: 650: 645: 640: 635: 630: 625: 623:Deep biosphere 620: 615: 609: 608: 605: 604: 601: 600: 596: 595: 593:Redfield ratio 590: 585: 580: 575: 573:Nutrient cycle 570: 564: 563: 560:Biogeochemical 558: 557: 554: 553: 549: 548: 543: 538: 533: 532: 531: 526: 516: 514:Methanogenesis 511: 505: 504: 499: 498: 495: 494: 490: 489: 488: 487: 477: 472: 466: 465: 460: 459: 456: 455: 451: 450: 445: 440: 435: 430: 428:Microbial loop 425: 420: 415: 410: 409: 408: 397: 396: 391: 390: 387: 386: 382: 381: 376: 371: 366: 360: 359: 354: 353: 350: 349: 345: 344: 343: 342: 337: 327: 322: 316: 314: 313: 311:Chemosynthesis 308: 306:Photosynthesis 302: 301: 296: 295: 292: 291: 287: 286: 281: 276: 270: 268: 267: 266: 265: 254: 252: 251: 245: 239: 233: 227: 221: 215: 208: 207: 202: 201: 198: 197: 193: 192: 187: 182: 177: 171: 170: 167:Carbon dioxide 165: 164: 161: 160: 156: 155: 150: 145: 140: 135: 130: 125: 120: 114: 113: 110: 109: 106: 105: 97: 96: 90: 89: 82: 79: 36:carbon cycling 15: 13: 10: 9: 6: 4: 3: 2: 1521: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1491: 1489: 1476: 1472: 1468: 1464: 1460: 1456: 1455:Hydrobiologia 1449: 1447: 1443: 1437: 1432: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1392: 1387: 1383: 1379: 1375: 1367: 1364: 1358: 1353: 1349: 1345: 1341: 1334: 1331: 1326: 1322: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1283: 1281: 1279: 1275: 1270: 1266: 1262: 1258: 1254: 1250: 1249:Hydrobiologia 1246: 1239: 1236: 1231: 1227: 1222: 1217: 1212: 1207: 1203: 1199: 1195: 1191: 1187: 1180: 1177: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1134: 1129: 1125: 1120: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1077: 1075: 1073: 1071: 1069: 1065: 1049: 1045: 1038: 1031: 1028: 1023: 1019: 1015: 1011: 1007: 1003: 996: 994: 992: 990: 986: 980: 975: 971: 967: 963: 959: 952: 950: 941: 938: 933: 929: 925: 921: 917: 913: 912:Hydrobiologia 909: 902: 900: 898: 896: 894: 890: 884: 880: 877: 875: 872: 870: 867: 865: 864: 860: 858: 855: 853: 850: 849: 845: 843: 841: 833: 831: 829: 825: 821: 817: 812: 810: 806: 802: 798: 794: 790: 785: 783: 778: 777:decomposition 771:Decomposition 770: 768: 765: 761: 757: 752: 750: 746: 742: 738: 734: 730: 726: 714: 709: 707: 702: 700: 695: 694: 692: 691: 685: 675: 674: 673: 672: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 610: 603: 602: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 569: 568:Marine cycles 566: 565: 561: 556: 555: 547: 544: 542: 539: 537: 534: 530: 527: 525: 522: 521: 520: 517: 515: 512: 510: 507: 506: 502: 497: 496: 486: 483: 482: 481: 478: 476: 473: 471: 468: 467: 463: 458: 457: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 407: 404: 403: 402: 399: 398: 394: 389: 388: 380: 377: 375: 372: 370: 367: 365: 362: 361: 357: 352: 351: 341: 338: 336: 333: 332: 331: 328: 326: 323: 321: 318: 317: 312: 309: 307: 304: 303: 299: 294: 293: 285: 282: 280: 277: 275: 272: 271: 264: 261: 260: 259: 256: 255: 249: 246: 243: 240: 237: 234: 231: 228: 225: 222: 219: 216: 213: 210: 209: 205: 200: 199: 191: 188: 186: 183: 181: 178: 176: 173: 172: 168: 163: 162: 154: 151: 149: 148:Boreal forest 146: 144: 141: 139: 136: 134: 131: 129: 126: 124: 121: 119: 116: 115: 108: 107: 103: 99: 98: 95: 91: 87: 86: 80: 78: 76: 72: 68: 64: 63:sequestration 60: 56: 53: 49: 45: 41: 37: 33: 26: 21: 1458: 1454: 1436:10072/142821 1408: 1404: 1394: 1377: 1373: 1366: 1347: 1343: 1333: 1298: 1294: 1252: 1248: 1238: 1193: 1189: 1179: 1146: 1142: 1136: 1093: 1089: 1055:. Retrieved 1048:the original 1043: 1030: 1005: 1001: 961: 957: 948: 940: 915: 911: 861: 837: 813: 786: 774: 764:jelly-carbon 753: 722: 437: 406:Martin curve 393:Carbon pumps 320:Calvin cycle 274:Black carbon 212:Total carbon 153:Geochemistry 94:Carbon cycle 42:, primarily 31: 30: 24: 1149:: 209–235. 1119:10072/43275 801:crustaceans 793:echinoderms 470:Carbon sink 433:Viral shunt 423:Marine snow 279:Blue carbon 133:Deep carbon 128:Atmospheric 118:Terrestrial 34:are marine 32:Jelly-falls 1488:Categories 1057:30 October 885:References 869:Whale fall 828:macrofauna 795:, such as 789:scavengers 782:scavengers 760:dead zones 758:areas and 745:parasitism 733:Pyrosomida 443:Whale pump 438:Jelly pump 418:Lipid pump 143:Permafrost 111:By regions 81:Initiation 44:cnidarians 1380:: 19–30. 879:Dead zone 857:Jellyfish 820:Black Sea 797:sea stars 756:Eutrophic 737:Doliolida 729:Thaliacea 71:estuaries 55:megafauna 1475:46695384 1325:25320167 1269:15428213 1230:24367499 1190:PLOS ONE 1171:22457974 932:15428213 846:See also 816:plankton 725:Cnidaria 684:Category 59:bacteria 1413:Bibcode 1316:4213659 1221:3867349 1198:Bibcode 1151:Bibcode 1128:3693276 1098:Bibcode 1010:Bibcode 966:Bibcode 805:hagfish 741:Salpida 529:Wetland 501:Methane 284:Kerogen 185:Removal 52:benthic 1473:  1323:  1313:  1267:  1228:  1218:  1169:  1126:  930:  840:trawls 739:, and 682:  663:CO2SYS 524:Arctic 263:marine 123:Marine 1471:S2CID 1265:S2CID 1124:S2CID 1086:(PDF) 1051:(PDF) 1040:(PDF) 954:(PDF) 928:S2CID 658:C4MIP 606:Other 250:(PIC) 244:(POC) 238:(DIC) 232:(DOC) 226:(TIC) 220:(TOC) 1321:PMID 1226:PMID 1167:PMID 1059:2016 775:The 727:and 214:(TC) 138:Soil 57:and 1463:doi 1459:616 1431:hdl 1421:doi 1382:doi 1378:475 1352:doi 1311:PMC 1303:doi 1299:281 1257:doi 1253:690 1216:PMC 1206:doi 1159:doi 1114:hdl 1106:doi 1018:doi 974:doi 920:doi 916:690 1490:: 1469:. 1457:. 1445:^ 1429:. 1419:. 1409:61 1407:. 1403:. 1376:. 1350:. 1346:. 1342:. 1319:. 1309:. 1297:. 1293:. 1277:^ 1263:. 1251:. 1247:. 1224:. 1214:. 1204:. 1192:. 1188:. 1165:. 1157:. 1145:. 1122:. 1112:. 1104:. 1094:56 1092:. 1088:. 1067:^ 1042:. 1016:. 1006:58 1004:. 988:^ 972:. 962:54 960:. 956:. 926:. 914:. 910:. 892:^ 751:. 735:, 340:C4 335:C3 77:. 1477:. 1465:: 1439:. 1433:: 1423:: 1415:: 1388:. 1384:: 1360:. 1354:: 1348:2 1327:. 1305:: 1271:. 1259:: 1232:. 1208:: 1200:: 1194:8 1173:. 1161:: 1153:: 1147:4 1130:. 1116:: 1108:: 1100:: 1061:. 1024:. 1020:: 1012:: 982:. 976:: 968:: 934:. 922:: 731:( 712:e 705:t 698:v

Index


carbon cycling
gelatinous zooplankton
cnidarians
particulate organic matter
benthic
megafauna
bacteria
sequestration
biological pump
estuaries
fjords of Norway
Carbon cycle

Terrestrial
Marine
Atmospheric
Deep carbon
Soil
Permafrost
Boreal forest
Geochemistry
Carbon dioxide
In the atmosphere
Ocean acidification
Removal
Satellite measurements
Forms of carbon
Total carbon
Total organic carbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑