Knowledge (XXG)

Particulate organic matter

Source 📝

1216:(originally derived for spherical, non-porous particles and laminar flow) combined with White's approximation, which suggest that sinking velocity increases linearly with excess density (the difference from the water density) and the square of particle diameter (i.e., linearly with the particle area). Building on these expectations, many studies have tried to relate sinking velocity primarily to size, which has been shown to be a useful predictor for particles generated in controlled environments (e.g., roller tanks. However, strong relationships were only observed when all particles were generated using the same water/plankton community. When particles were made by different plankton communities, size alone was a bad predictor (e.g., Diercks and Asper, 1997) strongly supporting notions that particle densities and shapes vary widely depending on the source material. 1220:
mineral particles to marine particle populations frequently leads to smaller more densely packed aggregates that sink slower because of their smaller size. Mucous-rich particles have been shown to float despite relatively large sizes, whereas oil- or plastic-containing aggregates have been shown to sink rapidly despite the presence of substances with an excess density smaller than seawater. In natural environments, particles are formed through different mechanisms, by different organisms, and under varying environmental conditions that affect aggregation (e.g., salinity, pH, minerals), ballasting (e.g., dust deposition, sediment load; van der Jagt et al., 2018) and sinking behaviour (e.g., viscosity;). A universal conversion of size-to-sinking velocity is hence impracticable.
1232:, POM drives the lower aquatic food web by providing energy in the form of carbohydrates, sugars, and other polymers that can be degraded. POM in water bodies is derived from terrestrial inputs (e.g. soil organic matter, leaf litterfall), submerged or floating aquatic vegetation, or autochthonous production of algae (living or detrital). Each source of POM has its own chemical composition that affects its lability, or accessibility to the food web. Algal-derived POM is thought to be most labile, but there is growing evidence that terrestrially-derived POM can supplement the diets of micro-organisms such as zooplankton when primary productivity is limited. 1408: 1280: 1090: 1104: 1203:
produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. The diagram illustrates a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles.
19: 1263: 1422:
represents the case of a glowing particle in the bioluminescence shunt hypothesis. Bioluminescent bacteria are represented aggregated onto the particle. Their light emission is shown as a bluish cloud around it. Blue dotted arrows represent the visual detection and the movement toward the particle of the consumer organisms. Increasing the visual detection allows a better detection by upper trophic levels, potentially leading to the fragmentation of sinking POC into suspended POC due to sloppy feeding.
994:: is usually the largest proportion of organic matter in soil, contributing 45 to 75%. Typically it adheres to soil minerals, and plays an important role structuring soil. Humus is the end product of soil organism activity, is chemically complex, and does not have recognisable characteristics of its origin. Humus is of very small unit size and has large surface area in relation to its weight. It holds nutrients, has high water holding capacity and significant 51: 1157:. Technologies to image particles have advanced greatly over the last two decades, but the quantitative translation of these immense datasets into biogeochemical properties remains a challenge. In particular, advances are needed to enable the optimal translation of imaged objects into carbon content and sinking velocities. In addition, different devices often measure different optical properties, leading to difficulties in comparing results. 1369:, doubling the size of the particle increases the sinking speed by a factor of 4. However, the highly porous nature of many marine particles means that they do not obey Stokes' Law because small changes in particle density (i.e., compactness) can have a large impact on their sinking velocities. Large sinking particles are typically of two types: (1) aggregates formed from a number of primary particles, including phytoplankton, bacteria, 1011:
10 years. Less active parts may take 15 to 100 years to turnover. Where it is still at the soil surface and relatively fresh, particulate organic matter intercepts the energy of raindrops and protects physical soil surfaces from damage. As it is decomposes, particulate organic matter provides much of the energy required by soil organisms as well as providing a steady release of nutrients into the soil environment.
628: 1041:; ultimately, depleting POM. Reduction in POM content is observed when native grasslands are converted to agricultural land. Soil temperature and moisture also affect the rate of POM decomposition. Because POM is a readily available (labile) source of soil nutrients, is a contributor to soil structure, and is highly sensitive to soil management, it is frequently used as an indicator to measure 4305: 3231: 3196: 2298: 2185: 2080: 1711: 1479: 1337:. When this biomass sinks to the deep ocean, a portion of it fuels the metabolism of the organisms living there, including deep-sea fish and benthic organisms. Zooplankton play a critical role in shaping particle flux through ingestion and fragmentation of particles, production of fast-sinking fecal material and active vertical migration. 1074: 1384:
Knowing the size, abundance, structure and composition (e.g. carbon content) of settling particles is important as these characteristics impose fundamental constraints on the biogeochemical cycling of carbon. For example, changes in climate are expected to facilitate a shift in species composition in
1148:
Optical particle measurements are emerging as an important technique for understanding the ocean carbon cycle, including contributions to estimates of their downward flux, which sequesters carbon dioxide in the deep sea. Optical instruments can be used from ships or installed on autonomous platforms,
1340:
Besides the importance of "exported" organic carbon as a food source for deep ocean organisms, the biological carbon pump provides a valuable ecosystem function: Exported organic carbon transports an estimated 5–20 Gt C each year to the deep ocean, where some of it (~0.2–0.5 Gt C) is sequestered for
1139:
in Earth's early history to the sequestration of atmospheric carbon dioxide in the deep ocean. Understanding the distribution, characteristics, dynamics, and changes over time of particulate matter in the ocean is hence fundamental in understanding and predicting the marine ecosystem, from food web
1001:
Resistant organic matter: has a high carbon content and includes charcoal, charred plant materials, graphite and coal. Turnover times are long and estimated in hundreds of years. It is not biologically active but contributes positively to soil structural properties, including water holding capacity,
1691:
Kharbush, J.J., Close, H.G., Van Mooy, B.A., Arnosti, C., Smittenberg, R.H., Le Moigne, F.A., Mollenhauer, G., Scholz-Böttcher, B., Obreht, I., Koch, B.P. and Becker, K. (2020) "Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean".
1341:
several millennia. The biological carbon pump is hence of similar magnitude to current carbon emissions from fossil fuels (~10 Gt C year−1). Any changes in its magnitude caused by a warming world may have direct implications for both deep-sea organisms and atmospheric carbon dioxide concentrations.
1219:
Packaging and porosity contribute appreciably to determining sinking velocities. On the one hand, adding ballasting materials, such as diatom frustules, to aggregates may lead to an increase in sinking velocities owing to the increase in excess density. On the other hand, the addition of ballasting
1202:
Sinking oceanic particles encompass a wide range of shape, porosity, ballast and other characteristics. The model shown in the diagram at the right attempts to capture some of the predominant features that influence the shape of the sinking flux profile (red line). The sinking of organic particles
1098:
POC includes components of living cells as well as dead material (detritus), and originates from both allochthonous and autochthonous sources. The POC pool can also exchange material with the dissolved OC (DOC) pool through aggregation and disaggregation of particles. This process and others may be
1010:
Particulate organic matter (POM) includes steadily decomposing plant litter and animal faeces, and the detritus from the activity of microorganisms. Most of it continually undergoes decomposition by microorganisms (when conditions are sufficiently moist) and usually has a turnover time of less than
1728:
Wagner, Sasha; Schubotz, Florence; Kaiser, Karl; Hallmann, Christian; Waska, Hannelore; Rossel, Pamela E.; Hansman, Roberta; Elvert, Marcus; Middelburg, Jack J.; Engel, Anja; Blattmann, Thomas M.; Catalá, Teresa S.; Lennartz, Sinikka T.; Gomez-Saez, Gonzalo V.; Pantoja-Gutiérrez, Silvio; Bao, Rui;
681:
is a closely related term often used interchangeably with POM. POC refers specifically to the mass of carbon in the particulate organic material, while POM refers to the total mass of the particulate organic matter. In addition to carbon, POM includes the mass of the other elements in the organic
1344:
The magnitude and efficiency (amount of carbon sequestered relative to primary production) of the biological carbon pump, hence ocean carbon storage, is partly determined by the amount of organic matter exported and the rate at which it is remineralized (i.e., the rate with which sinking organic
1215:
The range of recorded sinking velocities of particles in the oceans spans from negative (particles float toward the surface) to several km per day (as with salp fecal pellets) When considering the sinking velocity of an individual particle, a first approximation can be obtained from Stoke's law
1254:
concentration. Therefore, a central focus of marine organic geochemistry studies is to improve the understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what can be measured, both in terms of
985:(DOM): is the organic matter which dissolves in soil water. It comprises the relatively simple organic compounds (e.g. organic acids, sugars and amino acids) which easily decompose. It has a turnover time of less than 12 months. Exudates from plant roots (mucilages and gums) are included here. 682:
matter, such as nitrogen, oxygen and hydrogen. In this sense POC is a component of POM and there is typically about twice as much POM as POC. Many statements that can be made about POM apply equally to POC, and much of what is said in this article about POM could equally have been said of POC.
1421:
In the diagram on the right, the sinking POC is moving downward followed by a chemical plume. The plain white arrows represent the carbon flow. Panel (a) represents the classical view of a non-bioluminescent particle. The length of the plume is identified by the scale on the side. Panel (b)
834:
As shown below, non-living organic matter in soils can be grouped into four distinct categories on the basis of size, behaviour and persistence. These categories are arranged in order of decreasing ability to decompose. Each of them contribute to soil health in different ways.
1389:, influencing the proportion of biomass exported to depth. As such, any climate-induced change in the structure or function of phytoplankton communities is likely to alter the efficiency of the biological carbon pump, with feedbacks on the rate of climate change. 1357:. In general, particles in a fluid are thought to sink once their densities are higher than the ambient fluid, i.e., when excess densities are larger than zero. Larger individual phytoplankton cells can thus contribute to sedimentary fluxes. For example, large 787:, other aggregated material, and terrestrially-derived organic matter. Some studies further divide POC operationally based on its sinking rate or size, with ≥ 51 μm particles sometimes equated to the sinking fraction. Both DOC and POC play major roles in the 1130:
can be defined as both living and non-living matter of biological origin with a size of ≥0.2 μm in diameter, including anything from a small bacterium (0.2 μm in size) to blue whales (20 m in size). Organic matter plays a crucial role in regulating global
2687:
Iversen, Morten Hvitfeldt; Nowald, Nicolas; Ploug, Helle; Jackson, George A.; Fischer, Gerhard (2010). "High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects".
1206:
Marine snow varies in shape, size and character, ranging from individual cells to pellets and aggregates, most of which is rapidly colonized and consumed by heterotrophic bacteria, contributing to the attenuation of the sinking flux with depth.
2286:
Giering, S.L., Cavan, E.L., Basedow, S.L., Briggs, N., Burd, A.B., Darroch, L.J., Guidi, L., Irrison, J.O., Iversen, M.H., Kiko, R. and Lindsay, D.J. (2020) "Sinking organic particles in the ocean—flux estimates from in situ optical devices".
1417:
The consumption of the bioluminescent POC by fish can lead to the emission of bioluminescent fecal pellets (repackaging), which can also be produced with non-bioluminescent POC if the fish gut is already charged with bioluminescent bacteria.
3159:
Henley, Sian F.; Cavan, Emma L.; Fawcett, Sarah E.; Kerr, Rodrigo; Monteiro, Thiago; Sherrell, Robert M.; Bowie, Andrew R.; Boyd, Philip W.; Barnes, David K. A.; Schloss, Irene R.; Marshall, Tanya; Flynn, Raquel; Smith, Shantelle (2020).
1352:
Sinking particles can be phytoplankton, zooplankton, detritus, fecal pellets, or a mix of these. They range in size from a few micrometers to several centimeters, with particles of a diameter of >0.5 mm being referred to as
2201:
Blanchard, J.L., Heneghan, R.F., Everett, J.D., Trebilco, R. and Richardson, A.J. (2017) "From bacteria to whales: using functional size spectra to model marine ecosystems. Trends in ecology & evolution, 32(3), pp.174-186.
3474:
Giering, S.L., Sanders, R., Lampitt, R.S., Anderson, T.R., Tamburini, C., Boutrif, M., Zubkov, M.V., Marsay, C.M., Henson, S.A., Saw, K. and Cook, K. (2014) "Reconciliation of the carbon budget in the ocean’s twilight zone".
3580:
Kiko, R., Biastoch, A., Brandt, P., Cravatte, S., Hauss, H., Hummels, R., Kriest, I., Marin, F., McDonnell, A.M., Oschlies, A. and Picheral, M. (2017) "Biological and physical influences on marine snowfall at the equator".
3529:
Steinberg, D.K., Carlson, C.A., Bates, N.R., Goldthwait, S.A., Madin, L.P. and Michaels, A.F. (2000) "Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea".
3448:
Iversen, M.H., Nowald, N., Ploug, H., Jackson, G.A. and Fischer, G. (2010) "High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects".
2488:
Iversen, M.H., Pakhomov, E.A., Hunt, B.P., Van der Jagt, H., Wolf-Gladrow, D. and Klaas, C. (2017) "Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean".
779:(DOC), which is usually operationally defined as < 0.2 μm. Typically POC is considered to contain suspended and sinking particles ≥ 0.2 μm in size, which therefore includes biomass from living microbial cells, 3765:
Ploug, H., Iversen, M.H. and Fischer, G. (2008) "Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria".
1332:
of organic carbon in the ocean. In brief, photosynthesis by microorganisms in the upper tens of meters of the water column fix inorganic carbon (any of the chemical species of dissolved carbon dioxide) into
3739:
Ploug, H., Iversen, M.H., Koski, M. and Buitenhuis, E.T. (2008) "Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite".
675:
is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 millimeters (53 μm) to 2 millimeters.
3714:
Reygondeau, G., Guidi, L., Beaugrand, G., Henson, S.A., Koubbi, P., MacKenzie, B.R., Sutton, T.T., Fioroni, M. and Maury, O. (2018) "Global biogeochemical provinces of the mesopelagic zone".
1349:
region. Especially particle size and composition are important parameters determining how fast a particle sinks, how much material it contains, and which organisms can find and utilize it.
1361:
cells and diatom chains with a diameter of >5 μm have been shown to sink at rates up to several 10 s meters per day, though this is only possible owing to the heavy ballast of a silica
2320:"Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda" 1188:
in the surface waters. The total new production in the ocean roughly equates to the sinking flux of particulate organic matter to the deep ocean, about 4 × 10 tons of carbon annually.
1037:, typically results in an increase in POM. Alternatively, repeated tillage or soil disturbance increases the rate of decomposition by exposing soil organisms to oxygen and organic 4166:
Le Quere, C.; Rodenbeck, C.; Buitenhuis, E. T.; Conway, T. J.; Langenfelds, R.; Gomez, A.; Labuschagne, C.; Ramonet, M.; Nakazawa, T.; Metzl, N.; Gillett, N.; Heimann, M. (2007).
3689:
Iversen, M. and Ploug, H. (2010) "Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates".
2244:
Heinze, C., Meyer, S., Goris, N., Anderson, L., Steinfeldt, R., Chang, N., Quéré, C.L. and Bakker, D.C. (2015) "The ocean carbon sink–impacts, vulnerabilities and challenges".
3631:
Guidi, L., Legendre, L., Reygondeau, G., Uitz, J., Stemmann, L. and Henson, S.A. (2015) "A new look at ocean carbon remineralization for estimating deepwater sequestration".
771:
is intentionally excluded from POC through the use of a pre-filter or specially designed sampling intakes that repel swimming organisms. Sub-micron particles, including most
1118:) sink at a rate predicted by Stokes law. They slow as they reach greater depths due to their shrinking volume and increasing water density and would entirely disappear at z 823:
is anything in the soil of biological origin. Carbon is its key component comprising about 58% by weight. Simple assessment of total organic matter is obtained by measuring
3606:
Henson, S.A., Sanders, R., Madsen, E., Morris, P.J., Le Moigne, F. and Quartly, G.D. (2011) "A reduced estimate of the strength of the ocean's biological carbon pump".
2166:
Omand, M.M., Govindarajan, R., He, J. and Mahadevan, A. (2020) "Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics".
685:
Particulate organic matter is sometimes called suspended organic matter, macroorganic matter, or coarse fraction organic matter. When land samples are isolated by
1823:"The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic" 1250:. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO 2125:
Six, J.; Bossuyt, H.; Degryze, S; Denef, K (2004). "A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics".
1081: 988:
Particulate organic matter (POM): is the organic matter that retains evidence of its original cellular structure, and is discussed further in the next section.
3555:
Jónasdóttir, S.H., Visser, A.W., Richardson, K. and Heath, M.R. (2015) "Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic".
715:
for plants. In water bodies, POM can contribute substantially to turbidity, limiting photic depth which can suppress primary productivity. POM also enhances
2605:"Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes" 700:, and other materials. When sieving to determine POM content, consistency is crucial because isolated size fractions will depend on the force of agitation. 1610:
Gregorich, E. G.; Beare, M. H.; McKim, U. F.; Skjemstad, J. O. (2006). "Chemical and biological characteristics of physically uncomplexed organic matter".
1057:
rich in POM can contaminate water bodies. Because POM provides a source of energy and nutrients, rapid build-up of organic matter in water can result in
138: 1905:
Volk, Tyler; Hoffert, Martin I. (2013). "Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes".
423: 96: 3319:
Volk, T. and Hoffert, M.I. (1985) "Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean‐driven atmospheric CO2 changes. In:
1018:
of POM provides energy and nutrients. Nutrients not taken up by soil organisms may be available for plant uptake. The amount of nutrients released (
2647:
Iversen, Morten H.; Robert, Maya L. (2015). "Ballasting effects of smectite on aggregate formation and export from a natural plankton community".
827:
in soil. Living organisms (including roots) contribute about 15% of the total organic matter in soil. These are critical to operation of the soil
596: 123: 659: 477: 601: 1407: 1099:
involved in the formation of the molecularly uncharacterized component (MUC), which may incorporate both autochthonous and allochthonous OC.
1110:
In the simplified model, shown in the inset, the spheres represent either solid particles or aggregates. These particles (initial radius a
1033:
Soil POM content is affected by organic inputs and the activity of soil decomposers. The addition of organic materials, such as manure or
1460:
Monroy, P., Hernández-García, E., Rossi, V. and López, C. (2017) "Modeling the dynamical sinking of biogenic particles in oceanic flow".
3212:
Basu, S. and Mackey, K.R. (2018) "Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate".
66: 2986:
Jouandet, Marie-Paule; Trull, Thomas W.; Guidi, Lionel; Picheral, Marc; Ebersbach, Friederike; Stemmann, Lars; Blain, Stéphane (2011).
2516: 2099:
Baldock JA and Skjemstad JO (1999) "Soil organic carbon/soil organic matter in soil". In KI Peverill, LA Sparrow and DJ Reuter (Eds.)
1279: 3845:
Visser, A.W. and Jackson, G.A. (2004) "Characteristics of the chemical plume behind a sinking particle in a turbulent water column".
3094:
Kankaala, Paula; Strandberg, Ursula; Kimmo K. Kahilainen; Aalto, Sanni L.; Galloway, Aaron W. E.; Taipale, Sami J. (11 August 2016).
3027:
Weidel, Brian; Solomon, Christopher T.; Pace, Michael L.; Kitchell, Jim; Carpenter, Stephen R.; Cole, Jonathan J. (1 February 2011).
3328: 2526: 2108: 1977:
Cavan, E. L.; Le Moigne, F. A. C.; Poulton, A. J.; Tarling, G. A.; Ward, P.; Daniels, C. J.; Fragoso, G. M.; Sanders, R. J. (2015).
1922: 2988:"Optical imaging of mesopelagic particles indicates deep carbon flux beneath a natural iron-fertilized bloom in the Southern Ocean" 3500:
Svensen, C., Morata, N. and Reigstad, M. (2014) "Increased degradation of copepod faecal pellets by co-acting dinoflagellates and
3029:"Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen" 1862:
Eppley, Richard W.; Peterson, Bruce J. (1979). "Particulate organic matter flux and planktonic new production in the deep ocean".
4425: 3361:
Waite, A.M., Safi, K.A., Hall, J.A. and Nodder, S.D. (2000) "Mass sedimentation of picoplankton embedded in organic aggregates".
2862:
Long, Marc; Moriceau, Brivaëla; Gallinari, Morgane; Lambert, Christophe; Huvet, Arnaud; Raffray, Jean; Soudant, Philippe (2015).
2071: 1089: 1979:"Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets" 1525:
Cambardella, C. A.; Elliott, E. T. (1991). "Particulate soil organic-matter changes across a grassland cultivation sequence".
4420: 1030:
entangle soil particles and release sticky, cement-like, polysaccharides into the soil; ultimately forming soil aggregates
2356:
Eppley, R.W. and Peterson, B.J. (1979) "Particulate organic matter flux and planktonic new production in the deep ocean".
1551:
Moody, C.S. and Worrall, F. (2017) "Modeling rates of DOC degradation using DOM composition and hydroclimatic variables".
1019: 3659:
Kwon, E.Y., Primeau, F. and Sarmiento, J.L. (2009) "The impact of remineralization depth on the air–sea carbon balance".
1385:
a manner that alters the elemental composition of particulate matter, cell size and the trajectory of carbon through the
526: 1132: 1103: 759:. The oceanographic community has historically used a variety of filters and pore sizes, most commonly 0.7, 0.8, or 1.0 531: 516: 196: 3285:
Turner, Jefferson T. (2015). "Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump".
586: 484: 184: 18: 1165: 591: 211: 1126:
Life and particulate organic matter in the ocean have fundamentally shaped the planet. On the most basic level,
652: 1229: 1023: 995: 982: 856: 776: 720: 566: 494: 489: 472: 317: 178: 76: 1262: 1026:. In addition to nutrient release, decomposers colonizing POM play a role in improving soil structure. Fungal 3423:
Poulsen, L.K. and Iversen, M.H. (2008) "Degradation of copepod fecal pellets: key role of protozooplankton".
3977:"Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms" 1398: 775:, which are 0.2–0.8 μm in diameter, are often not captured but should be considered part of POC rather than 576: 91: 998:, buffers pH change and can hold cations. Humus is quite slow to decompose and exists in soil for decades. 4131:
Matear, Richard J.; Hirst, Anthony C. (1999). "Climate change feedback on the future oceanic CO2 uptake".
3937:
Alldredge, Alice L.; Silver, Mary W. (1988). "Characteristics, dynamics and significance of marine snow".
1365:. Both size and density affect particle sinking velocity; for example, for sinking velocities that follow 1325: 396: 172: 133: 101: 1298: 1256: 1136: 645: 632: 581: 312: 2387:"Ascending marine particles: Significance of transparent exopolymer particles (TEP) in the upper ocean" 2901:
Passow, U.; Sweet, J.; Francis, S.; Xu, C.; Dissanayake, AL; Lin, YY; Santschi, PH; Quigg, A. (2019).
2807:"Dragon kings of the deep sea: Marine particles deviate markedly from the common number-size spectrum" 1772:
Riley, J. S.; Sanders, R.; Marsay, C.; Le Moigne, F. A. C.; Achterberg, E. P.; Poulton, A. J. (2012).
1022:) during decomposition depends on the biological and chemical characteristics of the POM, such as the 799:
is exported – mainly by gravitational settling – from the surface to the deep ocean and eventually to
4378: 4284: 4273:"Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump" 4179: 4140: 4070: 4029: 3988: 3946: 3294: 3107: 3040: 2999: 2958: 2914: 2875: 2818: 2777: 2736: 2697: 2656: 2616: 2555: 2448: 2401: 2331: 2134: 1990: 1951: 1871: 1834: 1785: 1619: 1441: 508: 410: 166: 71: 2542:
Gärdes, Astrid; Iversen, Morten H.; Grossart, Hans-Peter; Passow, Uta; Ullrich, Matthias S. (2011).
2864:"Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates" 1247: 1061:. Suspended organic materials can also serve as a potential vector for the pollution of water with 1038: 843: 820: 457: 273: 128: 1328:
describes the collection of biogeochemical processes associated with the production, sinking, and
831:. What follows refers to the remaining 85% of the soil organic matter - the non-living component. 4396: 4347: 4248: 4205: 2417: 2319: 2008: 1887: 1803: 1436: 1318: 1185: 536: 304: 288: 283: 206: 3386:
Iversen, M.H. and Poulsen, L.K. (2007) "Coprorhexy, coprophagy, and coprochaly in the copepods
4339: 4240: 4197: 3324: 3141: 3123: 3076: 3058: 2844: 2581: 2522: 2104: 1939: 1918: 1334: 1314: 1272: 772: 764: 467: 246: 81: 4386: 4331: 4292: 4232: 4187: 4148: 4111: 4078: 4037: 3996: 3954: 3917: 3884: 3854: 3829: 3804: 3775: 3749: 3723: 3698: 3668: 3640: 3615: 3590: 3564: 3539: 3513: 3484: 3458: 3432: 3407: 3370: 3345: 3302: 3259: 3221: 3183: 3173: 3131: 3115: 3066: 3048: 3007: 2966: 2922: 2883: 2834: 2826: 2785: 2744: 2705: 2664: 2624: 2571: 2563: 2498: 2466: 2456: 2409: 2365: 2339: 2288: 2253: 2228: 2203: 2175: 2142: 2039: 1998: 1959: 1910: 1879: 1842: 1793: 1752: 1742: 1701: 1627: 1560: 1538: 1534: 1508: 1469: 1346: 1329: 1150: 433: 327: 322: 4098:
Finkel, Z. V.; Beardall, J.; Flynn, K. J.; Quigg, A.; Rees, T. A. V.; Raven, J. A. (2010).
3791:
Kiørboe, T., Saiz, E. and Visser, A. (1999) "Hydrodynamic signal perception in the copepod
50: 3096:"Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency" 2103:, pages 159–170, Commonwealth Scientific and Industrial Research Organisation, Melbourne. 1731:"Soothsaying DOM: A Current Perspective on the Future of Oceanic Dissolved Organic Carbon" 1402: 1386: 1246:
The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the
1241: 804: 800: 728: 712: 561: 428: 361: 349: 278: 152: 2725:"Interactive aggregation and sedimentation of diatoms and clay-sized lithogenic material" 4382: 4288: 4183: 4144: 4074: 4033: 3992: 3950: 3298: 3111: 3044: 3003: 2962: 2918: 2879: 2822: 2781: 2740: 2701: 2660: 2620: 2559: 2452: 2437:"Diatom flotation at the onset of the spring phytoplankton bloom: An in situ experiment" 2405: 2335: 2138: 1994: 1955: 1875: 1838: 1789: 1623: 3136: 3095: 3071: 3028: 2839: 2806: 2576: 2543: 1940:"Understanding the export of biogenic particles in oceanic waters: Is there consensus?" 1431: 1366: 1062: 1058: 792: 716: 708: 704: 571: 541: 521: 462: 376: 259: 254: 115: 4018:"Diatom sinkings speeds: Improved predictions and insight from a modified Stokes' law" 3543: 2544:"Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii" 2343: 1381:, which can dominate particle flux events and sink at velocities exceeding 1,000 m d. 1053:
In poorly-managed soils, particularly on sloped ground, erosion and transport of soil
4430: 4414: 4335: 3958: 2944:"The viscosity effect on marine particle flux: A climate relevant feedback mechanism" 2386: 2315: 2028:"Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump" 1774:"The relative contribution of fast and slow sinking particles to ocean carbon export" 1757: 1294: 1290: 1177: 1173: 1154: 1034: 1015: 796: 690: 4400: 4351: 4209: 3349: 2764:
Passow, Uta; de la Rocha, Christina L.; Fairfield, Caitlin; Schmidt, Katrin (2014).
2421: 2012: 1891: 1807: 1297:
using solar energy and produce POC. POC formed in the euphotic zone is processed by
707:
and providing terrestrial material to water bodies. It is a source of food for both
4367:"Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria" 4322:
Kiørboe, Thomas (2011). "How zooplankton feed: Mechanisms, traits and trade-offs".
4252: 1370: 1197: 1042: 828: 788: 784: 354: 268: 222: 160: 42: 2887: 2668: 1255:
organic compound structural diversity and isotopic composition, and complementary
751:
Particulate organic carbon (POC) is operationally defined as all combustible, non-
3306: 2943: 1963: 1907:
The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present
4152: 2600: 2146: 1496: 1378: 1354: 1310: 1306: 1302: 1268: 824: 768: 418: 391: 386: 381: 371: 341: 227: 86: 4309: 3250:
Passow, U. and Carlson, C.A. (2012) "The biological pump in a high CO2 world".
3235: 3200: 3162:"Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications" 2863: 2502: 2302: 2207: 2189: 2179: 2084: 1715: 1483: 4391: 4366: 4271:
Tanet, Lisa; Martini, Séverine; Casalot, Laurie; Tamburini, Christian (2020).
4083: 4058: 4042: 4017: 3779: 3753: 3462: 3374: 3012: 2987: 2790: 2765: 2749: 2724: 2709: 2413: 756: 366: 3178: 3161: 3127: 3062: 2292: 2044: 2027: 1747: 1730: 1705: 1665: 4297: 4272: 4192: 4167: 4116: 4099: 3568: 3053: 2629: 2604: 1473: 752: 4343: 4244: 4201: 3702: 3321:
The carbon cycle and atmospheric CO2: natural variations Archean to present
3145: 3080: 2848: 2585: 2567: 2257: 2232: 1631: 4100:"Phytoplankton in a changing world: Cell size and elemental stoichiometry" 1149:
delivering much greater spatial and temporal coverage of particles in the
3906:"Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms" 3644: 3619: 2971: 2805:
Bochdansky, Alexander B.; Clouse, Melissa A.; Herndl, Gerhard J. (2016).
2435:
Acuña, JL; López-Alvarez, M.; Nogueira, E.; González-Taboada, F. (2010).
2003: 1978: 1847: 1822: 1798: 1773: 1564: 1374: 1362: 1054: 1027: 780: 693: 4168:"Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change" 3488: 3188: 1499:(2002) "Microbial ecology of organic aggregates in aquatic ecosystems". 4304: 4001: 3976: 3858: 3833: 3808: 3230: 3225: 3195: 2297: 2184: 2079: 1914: 1710: 1478: 1114:) produced within the sunlit euphotic zone (green region extending to z 736: 732: 724: 449: 232: 3922: 3905: 3889: 3872: 3727: 3517: 3436: 3411: 3263: 3119: 2927: 2902: 2830: 2682: 2680: 2678: 2642: 2640: 2471: 2461: 2436: 2380: 2378: 2221:
Philosophical Transactions of the Royal Society B: Biological Sciences
1512: 4236: 4059:"Size-ascent rate relationships in positively buoyant marine diatoms" 3594: 2369: 2219:
Holland, H.D. (2006) "The oxygenation of the atmosphere and oceans".
1883: 1412:
Carbon fluxes at the level of a gravitational sinking particle 
1358: 740: 697: 611: 3672: 1406: 1278: 1261: 1088: 1072: 991: 932: 760: 686: 606: 17: 4308:
Material was copied from this source, which is available under a
3234:
Material was copied from this source, which is available under a
3199:
Material was copied from this source, which is available under a
2301:
Material was copied from this source, which is available under a
2188:
Material was copied from this source, which is available under a
1714:
Material was copied from this source, which is available under a
1482:
Material was copied from this source, which is available under a
3340:
Giering, S.L. and Humphreys, M.P. (2018) "Biological Pump". In:
1284:
Mean annual POC export at 100 m across the Southern Ocean 
3873:"Microbial ecology of organic aggregates in aquatic ecosystems" 3820:
Visser, A.W. (2001) "Hydromechanical signals in the plankton".
4223:
Azam, Farooq; Long, Richard A. (2001). "Sea snow microcosms".
2942:
Taucher, J.; Bach, L. T.; Riebesell, U.; Oschlies, A. (2014).
1073: 2083:
Text was copied from this source, which is available under a
1821:
Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B. (2011).
3871:
Simon, M.; Grossart, HP; Schweitzer, B.; Ploug, H. (2002).
1588:(11th ed.). Upper Saddle River, NJ: Prentice-Hall Inc. 3975:
Waite, A.; Fisher, A.; Thompson, PA; Harrison, PJ (1997).
2491:
Deep Sea Research Part II: Topical Studies in Oceanography
2324:
Deep Sea Research Part II: Topical Studies in Oceanography
3532:
Deep Sea Research Part I: Oceanographic Research Papers
3451:
Deep Sea Research Part I: Oceanographic Research Papers
2690:
Deep Sea Research Part I: Oceanographic Research Papers
4310:
Creative Commons Attribution 4.0 International License
3236:
Creative Commons Attribution 4.0 International License
3201:
Creative Commons Attribution 4.0 International License
2303:
Creative Commons Attribution 4.0 International License
2190:
Creative Commons Attribution 4.0 International License
2085:
Creative Commons Attribution 4.0 International License
1716:
Creative Commons Attribution 4.0 International License
1484:
Creative Commons Attribution 3.0 International License
743:
application, alter the POM content of soil and water.
2766:"Aggregation as a function of and mineral particles" 1153:of the ocean than traditional techniques, such as 1909:. Geophysical Monograph Series. pp. 99–110. 1002:cation exchange capacity and thermal properties. 880: particulate organic matter  859:         855:         689:or filtration, this fraction includes partially 3557:Proceedings of the National Academy of Sciences 3033:Proceedings of the National Academy of Sciences 1553:Journal of Geophysical Research: Biogeosciences 3685: 3683: 3681: 2484: 2482: 2282: 2280: 2278: 2276: 2274: 2272: 2270: 2268: 2266: 2095: 2093: 1687: 1685: 1683: 1681: 1679: 4057:Moore, J. Keith; Villareal, Tracy A. (1996). 3280: 3278: 3276: 3274: 3272: 3246: 3244: 2903:"Incorporation of oil into diatom aggregates" 1305:and their consumers into organic aggregates ( 653: 8: 4365:Kiørboe, Thomas; Jackson, George A. (2001). 4266: 4264: 4262: 3970: 3968: 3344:, W. White (Ed.) Cham: Springer, pages 1–6. 2162: 2160: 2158: 2156: 1495:Simon, M., Grossart, H., Schweitzer, B. and 4133:Tellus B: Chemical and Physical Meteorology 3655: 3653: 1403:Biological pump § Bioluminescent shunt 24:Size and classification of marine particles 4016:Miklasz, Kevin A.; Denny, Mark W. (2010). 3323:, pages 99–110, University of California. 2385:Azetsu-Scott, Kumiko; Passow, Uta (2004). 1140:dynamics to global biogeochemical cycles. 703:POM is readily decomposable, serving many 660: 646: 33: 4390: 4296: 4191: 4115: 4082: 4041: 4000: 3921: 3888: 3187: 3177: 3135: 3070: 3052: 3011: 2970: 2926: 2838: 2789: 2748: 2628: 2575: 2470: 2460: 2043: 2002: 1846: 1797: 1756: 1746: 1102: 791:, but POC is the major pathway by which 2101:Soil analysis: an interpretation manual 1612:Soil Science Society of America Journal 1579: 1577: 1575: 1573: 1539:10.2136/sssaj1992.03615995005600030017x 1527:Soil Science Society of America Journal 1453: 1345:matter is reworked and respired in the 1095:Marine particulate organic carbon (POC) 597:Territorialisation of carbon governance 41: 2120: 2118: 2116: 2067: 2065: 2063: 2061: 2059: 2057: 2055: 1660: 1658: 1656: 1605: 1603: 1601: 1599: 1597: 1595: 1078:Ocean particulate organic matter (POM) 2318:; Ralph, Nate; Ross, Edith H (2001). 1670:Soil quality for environmental health 1647:Soil Sampling and Methods of Analysis 1065:, toxic metals or organic compounds. 803:, and is thus a key component of the 602:Total Carbon Column Observing Network 7: 1377:and zooplankton and debris, and (2) 952:resistant organic matter 884: 851: 838: 763:glass or quartz fiber filters. The 711:and aquatic organisms and provides 2026:Le Moigne, Frédéric A. C. (2019). 1586:The nature and properties of soils 1584:Brady, N. C.; Weil, R. R. (2007). 1224:Role in the lower aquatic food web 1192:Model of sinking oceanic particles 1108:Model of sinking oceanic particles 857:dissolved organic matter 755:carbon that can be collected on a 14: 1462:Nonlinear Processes in Geophysics 1309:), which is then exported to the 4336:10.1111/j.1469-185X.2010.00148.x 4303: 3229: 3194: 2296: 2183: 2078: 1938:Boyd, P.W.; Trull, T.W. (2007). 1709: 1477: 679:Particulate organic carbon (POC) 673:Particulate organic matter (POM) 627: 626: 49: 28:Adapted from Simon et al., 2002. 3350:10.1007/978-3-319-39193-9_154-1 1393:Bioluminescent shunt hypothesis 1289:As illustrated in the diagram, 783:material including dead cells, 3981:Marine Ecology Progress Series 3847:Marine Ecology Progress Series 3822:Marine Ecology Progress Series 3797:Marine Ecology Progress Series 3506:Marine Ecology Progress Series 3425:Marine Ecology Progress Series 3400:Marine Ecology Progress Series 3252:Marine Ecology Progress Series 2907:Marine Ecology Progress Series 2441:Marine Ecology Progress Series 562:Climate reconstruction proxies 1: 3544:10.1016/S0967-0637(99)00052-7 2888:10.1016/j.marchem.2015.04.003 2669:10.1016/j.marchem.2015.04.009 2344:10.1016/S0967-0645(00)00150-8 844:Soil organic matter 723:, aeration and resistance to 4104:Journal of Plankton Research 3959:10.1016/0079-6611(88)90053-5 3633:Global Biogeochemical Cycles 3608:Geophysical Research Letters 3342:Encyclopedia of Geochemistry 3307:10.1016/j.pocean.2014.08.005 2951:Global Biogeochemical Cycles 1983:Geophysical Research Letters 1964:10.1016/j.pocean.2006.10.007 1827:Global Biogeochemical Cycles 1778:Global Biogeochemical Cycles 1666:"Particulate Organic Matter" 1133:marine biogeochemical cycles 532:Carbonate compensation depth 197:Particulate inorganic carbon 4153:10.3402/tellusb.v51i3.16472 3166:Frontiers in Marine Science 2723:Hamm, Christian E. (2002). 2147:10.1016/j.still.2004.03.008 2032:Frontiers in Marine Science 1735:Frontiers in Marine Science 1694:Frontiers in Marine Science 863:relatively simple molecules 4447: 4371:Limnology and Oceanography 4063:Limnology and Oceanography 4022:Limnology and Oceanography 3768:Limnology and Oceanography 3742:Limnology and Oceanography 3363:Limnology and Oceanography 2992:Limnology and Oceanography 2770:Limnology and Oceanography 2729:Limnology and Oceanography 2503:10.1016/j.dsr2.2016.12.004 2394:Limnology and Oceanography 2208:10.1016/j.tree.2016.12.003 2180:10.1038/s41598-020-60424-5 2075:Victorian Resources Online 1396: 1293:fix carbon dioxide in the 1239: 1236:The biological carbon pump 1195: 1128:particulate organic matter 865:from decomposing materials 587:Carbon capture and storage 191:Particulate organic carbon 185:Dissolved inorganic carbon 4392:10.4319/lo.2001.46.6.1309 4084:10.4319/lo.1996.41.7.1514 4043:10.4319/lo.2010.55.6.2513 3910:Aquatic Microbial Ecology 3877:Aquatic Microbial Ecology 3780:10.4319/lo.2008.53.5.1878 3754:10.4319/lo.2008.53.2.0469 3463:10.1016/j.dsr.2010.03.007 3375:10.4319/lo.2000.45.1.0087 3013:10.4319/lo.2011.56.3.1130 2791:10.4319/lo.2014.59.2.0532 2750:10.4319/lo.2002.47.6.1790 2710:10.1016/j.dsr.2010.03.007 2414:10.4319/lo.2004.49.3.0741 2127:Soil and Tillage Research 2077:. Updated 23 March 2020. 1758:21.11116/0000-0006-6F5D-7 1501:Aquatic microbial ecology 1379:zooplankton fecal pellets 1321:by zooplankton and fish. 1166:Marine primary production 954: 936: 906: 889: 882: 861: 849: 592:Carbon cycle re-balancing 3939:Progress in Oceanography 3287:Progress in Oceanography 3179:10.3389/fmars.2020.00581 2515:White, Frank M. (2006). 2293:10.3389/fmars.2019.00834 2072:Soil: Forms and Function 2045:10.3389/fmars.2019.00634 1944:Progress in Oceanography 1748:10.3389/fmars.2020.00341 1706:10.3389/fmars.2020.00518 1230:dissolved organic matter 1161:Ocean primary production 996:cation exchange capacity 983:Dissolved organic matter 777:dissolved organic carbon 567:Carbon-to-nitrogen ratio 527:Carbonate–silicate cycle 495:Carbon dioxide clathrate 490:Clathrate gun hypothesis 318:Net ecosystem production 179:Dissolved organic carbon 4426:Environmental chemistry 4298:10.5194/bg-17-3757-2020 4193:10.1126/science.1136188 3716:Journal of Biogeography 3569:10.1073/pnas.1512110112 3392:Pseudocalanus elongatus 3054:10.1073/pnas.1012807108 2630:10.5194/bg-10-4073-2013 1474:10.5194/npg-24-293-2017 1399:Bioluminescent bacteria 1313:(200–1000 m depth) and 1257:molecular omics studies 1176:nutrient inputs to the 577:Deep Carbon Observatory 37:Part of a series on the 3703:10.5194/bg-7-2613-2010 2568:10.1038/ismej.2010.145 2258:10.5194/esd-6-327-2015 2233:10.1098/rstb.2006.1838 1645:Carter, M. R. (1993). 1632:10.2136/sssaj2005.0116 1414: 1326:biological carbon pump 1286: 1276: 1182:regenerated production 1123: 1100: 1086: 811:Terrestrial ecosystems 397:Continental shelf pump 173:Total inorganic carbon 139:Satellite measurements 31: 4421:Chemical oceanography 4117:10.1093/plankt/fbp098 3388:Calanus helgolandicus 2246:Earth System Dynamics 1729:Galy, Valier (2020). 1410: 1299:marine microorganisms 1282: 1265: 1137:Great Oxidation Event 1135:and events, from the 1106: 1092: 1076: 1049:Freshwater ecosystems 719:leading to increased 582:Global Carbon Project 313:Ecosystem respiration 21: 3645:10.1002/2014GB005063 3620:10.1029/2011GL046735 2972:10.1002/2013GB004728 2004:10.1002/2014GL062744 1848:10.1029/2010GB003868 1799:10.1029/2011GB004085 1565:10.1002/2016JG003493 1442:Total organic carbon 1168:can be divided into 1006:Role of POM in soils 867:(< 0.45 microns) 696:and plant material, 411:Carbon sequestration 167:Total organic carbon 4383:2001LimOc..46.1309K 4289:2020BGeo...17.3757T 4184:2007Sci...316.1735L 4178:(5832): 1735–1738. 4145:1999TellB..51..722M 4075:1996LimOc..41.1514M 4034:2010LimOc..55.2513M 3993:1997MEPS..157...97W 3951:1988PrOce..20...41A 3904:Turner, JT (2002). 3563:(39): 12122–12126. 3502:Centropages hamatus 3489:10.1038/nature13123 3299:2015PrOce.130..205T 3112:2016NatSR...630897T 3045:2011PNAS..108.1975C 3004:2011LimOc..56.1130J 2963:2014GBioC..28..415T 2919:2019MEPS..612...65P 2880:2015MarCh.175...39L 2823:2016NatSR...622633B 2782:2014LimOc..59..532P 2741:2002LimOc..47.1790H 2702:2010DSRI...57..771I 2661:2015MarCh.175...18I 2621:2013BGeo...10.4073I 2560:2011ISMEJ...5..436G 2453:2010MEPS..400..115A 2406:2004LimOc..49..741A 2336:2001DSRII..48.1471C 2139:2004STilR..79....7S 1995:2015GeoRL..42..821C 1956:2007PrOce..72..276B 1876:1979Natur.282..677E 1839:2011GBioC..25.3009L 1790:2012GBioC..26.1026R 1624:2006SSASJ..70..975G 1248:marine carbon cycle 1082:imaged by satellite 938:amorphous colloidal 910:(2 mm – 54 micron) 891:litter of plant and 821:Soil organic matter 816:Soil organic matter 731:practices, such as 458:Atmospheric methane 424:Soil carbon storage 274:Reverse Krebs cycle 129:Ocean acidification 4324:Biological Reviews 4002:10.3354/meps157097 3859:10.3354/meps283055 3834:10.3354/meps222001 3809:10.3354/meps179097 3226:10.3390/su10030869 3100:Scientific Reports 2811:Scientific Reports 2518:Viscous Fluid Flow 2330:(8–9): 1471–1505. 2168:Scientific Reports 1915:10.1029/gm032p0099 1437:Particulate matter 1415: 1319:vertical migration 1315:bathypelagic zones 1287: 1277: 1186:nutrient recycling 1124: 1101: 1087: 974:(non‑living) 958:related compounds 942:(< 53 microns) 846:    773:marine prokaryotes 721:water infiltration 537:Great Calcite Belt 485:Aerobic production 305:Carbon respiration 247:Metabolic pathways 207:Primary production 32: 4283:(14): 3757–3778. 4231:(6863): 495–498. 3923:10.3354/ame027057 3890:10.3354/ame028175 3728:10.1111/jbi.13149 3661:Nature Geoscience 3583:Nature Geoscience 3518:10.3354/meps10976 3483:(7493): 480–483. 3437:10.3354/meps07611 3412:10.3354/meps07095 3264:10.3354/meps09985 3120:10.1038/srep30897 2928:10.3354/meps12881 2831:10.1038/srep22633 2462:10.3354/meps08405 2364:(5740): 677–680. 2227:(1470): 903–915. 1870:(5740): 677–680. 1513:10.3354/ame028175 1273:ocean carbon pump 1069:Marine ecosystems 979: 978: 975: 967: 966: 927: 919: 918: 875: 670: 669: 468:Methane emissions 124:In the atmosphere 29: 4438: 4405: 4404: 4394: 4377:(6): 1309–1318. 4362: 4356: 4355: 4319: 4313: 4307: 4302: 4300: 4268: 4257: 4256: 4237:10.1038/35107174 4220: 4214: 4213: 4195: 4163: 4157: 4156: 4128: 4122: 4121: 4119: 4095: 4089: 4088: 4086: 4069:(7): 1514–1520. 4054: 4048: 4047: 4045: 4028:(6): 2513–2525. 4013: 4007: 4006: 4004: 3972: 3963: 3962: 3934: 3928: 3927: 3925: 3901: 3895: 3894: 3892: 3868: 3862: 3843: 3837: 3818: 3812: 3789: 3783: 3774:(5): 1878–1886. 3763: 3757: 3737: 3731: 3712: 3706: 3687: 3676: 3657: 3648: 3639:(7): 1044–1059. 3629: 3623: 3604: 3598: 3595:10.1038/ngeo3042 3578: 3572: 3553: 3547: 3527: 3521: 3498: 3492: 3472: 3466: 3446: 3440: 3421: 3415: 3384: 3378: 3359: 3353: 3338: 3332: 3317: 3311: 3310: 3282: 3267: 3248: 3239: 3233: 3210: 3204: 3198: 3193: 3191: 3181: 3156: 3150: 3149: 3139: 3091: 3085: 3084: 3074: 3056: 3039:(5): 1975–1980. 3024: 3018: 3017: 3015: 2998:(3): 1130–1140. 2983: 2977: 2976: 2974: 2948: 2939: 2933: 2932: 2930: 2898: 2892: 2891: 2868:Marine Chemistry 2859: 2853: 2852: 2842: 2802: 2796: 2795: 2793: 2761: 2755: 2754: 2752: 2735:(6): 1790–1795. 2720: 2714: 2713: 2684: 2673: 2672: 2649:Marine Chemistry 2644: 2635: 2634: 2632: 2615:(6): 4073–4085. 2599:Iversen, M. H.; 2596: 2590: 2589: 2579: 2548:The ISME Journal 2539: 2533: 2532: 2512: 2506: 2486: 2477: 2476: 2474: 2464: 2432: 2426: 2425: 2391: 2382: 2373: 2370:10.1038/282677a0 2354: 2348: 2347: 2316:Conte, Maureen H 2312: 2306: 2300: 2284: 2261: 2242: 2236: 2217: 2211: 2199: 2193: 2187: 2164: 2151: 2150: 2122: 2111: 2097: 2088: 2082: 2069: 2050: 2049: 2047: 2023: 2017: 2016: 2006: 1974: 1968: 1967: 1935: 1929: 1928: 1902: 1896: 1895: 1884:10.1038/282677a0 1859: 1853: 1852: 1850: 1818: 1812: 1811: 1801: 1769: 1763: 1762: 1760: 1750: 1725: 1719: 1713: 1689: 1674: 1673: 1662: 1651: 1650: 1642: 1636: 1635: 1607: 1590: 1589: 1581: 1568: 1559:(5): 1175–1191. 1549: 1543: 1542: 1522: 1516: 1493: 1487: 1481: 1458: 1347:mesopelagic zone 1330:remineralization 1267:Central role of 1211:Sinking velocity 1151:mesopelagic zone 973: 925: 893:herbivore origin 885: 873: 852: 839: 662: 655: 648: 635: 630: 629: 434:pelagic sediment 328:Soil respiration 323:Photorespiration 53: 34: 27: 4446: 4445: 4441: 4440: 4439: 4437: 4436: 4435: 4411: 4410: 4409: 4408: 4364: 4363: 4359: 4321: 4320: 4316: 4270: 4269: 4260: 4222: 4221: 4217: 4165: 4164: 4160: 4130: 4129: 4125: 4097: 4096: 4092: 4056: 4055: 4051: 4015: 4014: 4010: 3974: 3973: 3966: 3936: 3935: 3931: 3903: 3902: 3898: 3870: 3869: 3865: 3844: 3840: 3819: 3815: 3790: 3786: 3764: 3760: 3738: 3734: 3713: 3709: 3688: 3679: 3673:10.1038/ngeo612 3658: 3651: 3630: 3626: 3605: 3601: 3589:(11): 852–858. 3579: 3575: 3554: 3550: 3528: 3524: 3499: 3495: 3473: 3469: 3447: 3443: 3422: 3418: 3396:Oithona similis 3385: 3381: 3360: 3356: 3339: 3335: 3318: 3314: 3284: 3283: 3270: 3249: 3242: 3211: 3207: 3158: 3157: 3153: 3093: 3092: 3088: 3026: 3025: 3021: 2985: 2984: 2980: 2946: 2941: 2940: 2936: 2900: 2899: 2895: 2861: 2860: 2856: 2804: 2803: 2799: 2763: 2762: 2758: 2722: 2721: 2717: 2686: 2685: 2676: 2646: 2645: 2638: 2598: 2597: 2593: 2541: 2540: 2536: 2529: 2521:. McGraw-Hill. 2514: 2513: 2509: 2487: 2480: 2434: 2433: 2429: 2389: 2384: 2383: 2376: 2355: 2351: 2314: 2313: 2309: 2285: 2264: 2243: 2239: 2218: 2214: 2200: 2196: 2165: 2154: 2124: 2123: 2114: 2098: 2091: 2070: 2053: 2025: 2024: 2020: 1976: 1975: 1971: 1937: 1936: 1932: 1925: 1904: 1903: 1899: 1861: 1860: 1856: 1820: 1819: 1815: 1771: 1770: 1766: 1727: 1726: 1722: 1690: 1677: 1664: 1663: 1654: 1644: 1643: 1639: 1609: 1608: 1593: 1583: 1582: 1571: 1550: 1546: 1524: 1523: 1519: 1494: 1490: 1459: 1455: 1450: 1428: 1413: 1405: 1395: 1317:by sinking and 1285: 1275: 1253: 1244: 1242:Biological pump 1238: 1226: 1213: 1200: 1194: 1163: 1146: 1121: 1117: 1113: 1109: 1097: 1085: 1079: 1071: 1051: 1008: 980: 968: 957: 941: 939: 920: 909: 894: 892: 866: 864: 818: 813: 805:biological pump 749: 729:Soil management 666: 625: 618: 617: 616: 556: 548: 547: 546: 511: 501: 500: 499: 452: 442: 441: 440: 429:Marine sediment 413: 403: 402: 401: 362:Solubility pump 350:Biological pump 344: 334: 333: 332: 307: 297: 296: 295: 279:Carbon fixation 264: 249: 239: 238: 237: 218: 202: 155: 153:Forms of carbon 145: 144: 143: 118: 108: 107: 106: 61: 30: 26: 12: 11: 5: 4444: 4442: 4434: 4433: 4428: 4423: 4413: 4412: 4407: 4406: 4357: 4330:(2): 311–339. 4314: 4277:Biogeosciences 4258: 4215: 4158: 4139:(3): 722–733. 4123: 4090: 4049: 4008: 3964: 3929: 3896: 3863: 3838: 3813: 3784: 3758: 3748:(2): 469–476. 3732: 3722:(2): 500–514. 3707: 3691:Biogeosciences 3677: 3667:(9): 630–635. 3649: 3624: 3599: 3573: 3548: 3538:(1): 137–158. 3522: 3493: 3467: 3457:(6): 771–784. 3441: 3416: 3379: 3354: 3333: 3312: 3268: 3240: 3214:Sustainability 3205: 3151: 3086: 3019: 2978: 2957:(4): 415–422. 2934: 2893: 2854: 2797: 2776:(2): 532–547. 2756: 2715: 2696:(6): 771–784. 2674: 2636: 2609:Biogeosciences 2591: 2554:(3): 436–445. 2534: 2527: 2507: 2478: 2427: 2400:(3): 741–748. 2374: 2349: 2307: 2262: 2252:(1): 327–358. 2237: 2212: 2194: 2152: 2112: 2089: 2051: 2018: 1989:(3): 821–830. 1969: 1950:(4): 276–312. 1930: 1923: 1897: 1854: 1813: 1764: 1720: 1675: 1652: 1637: 1618:(3): 975–985. 1591: 1569: 1544: 1533:(3): 777–783. 1517: 1488: 1468:(2): 293–305. 1452: 1451: 1449: 1446: 1445: 1444: 1439: 1434: 1432:Microbial loop 1427: 1424: 1411: 1394: 1391: 1283: 1266: 1251: 1240:Main article: 1237: 1234: 1225: 1222: 1212: 1209: 1193: 1190: 1170:new production 1162: 1159: 1155:sediment traps 1145: 1142: 1119: 1115: 1111: 1107: 1093: 1077: 1070: 1067: 1063:fecal bacteria 1059:eutrophication 1050: 1047: 1007: 1004: 977: 976: 970: 969: 965: 964: 961: 960: 953: 949: 948: 945: 944: 935: 929: 928: 922: 921: 917: 916: 913: 912: 905: 902: 901: 898: 897: 888: 883: 881: 877: 876: 870: 869: 860: 850: 848: 837: 825:organic carbon 817: 814: 812: 809: 793:organic carbon 748: 745: 717:soil structure 709:soil organisms 705:soil functions 668: 667: 665: 664: 657: 650: 642: 639: 638: 637: 636: 620: 619: 615: 614: 609: 604: 599: 594: 589: 584: 579: 574: 572:Deep biosphere 569: 564: 558: 557: 554: 553: 550: 549: 545: 544: 542:Redfield ratio 539: 534: 529: 524: 522:Nutrient cycle 519: 513: 512: 509:Biogeochemical 507: 506: 503: 502: 498: 497: 492: 487: 482: 481: 480: 475: 465: 463:Methanogenesis 460: 454: 453: 448: 447: 444: 443: 439: 438: 437: 436: 426: 421: 415: 414: 409: 408: 405: 404: 400: 399: 394: 389: 384: 379: 377:Microbial loop 374: 369: 364: 359: 358: 357: 346: 345: 340: 339: 336: 335: 331: 330: 325: 320: 315: 309: 308: 303: 302: 299: 298: 294: 293: 292: 291: 286: 276: 271: 265: 263: 262: 260:Chemosynthesis 257: 255:Photosynthesis 251: 250: 245: 244: 241: 240: 236: 235: 230: 225: 219: 217: 216: 215: 214: 203: 201: 200: 194: 188: 182: 176: 170: 164: 157: 156: 151: 150: 147: 146: 142: 141: 136: 131: 126: 120: 119: 116:Carbon dioxide 114: 113: 110: 109: 105: 104: 99: 94: 89: 84: 79: 74: 69: 63: 62: 59: 58: 55: 54: 46: 45: 39: 38: 22: 13: 10: 9: 6: 4: 3: 2: 4443: 4432: 4429: 4427: 4424: 4422: 4419: 4418: 4416: 4402: 4398: 4393: 4388: 4384: 4380: 4376: 4372: 4368: 4361: 4358: 4353: 4349: 4345: 4341: 4337: 4333: 4329: 4325: 4318: 4315: 4311: 4306: 4299: 4294: 4290: 4286: 4282: 4278: 4274: 4267: 4265: 4263: 4259: 4254: 4250: 4246: 4242: 4238: 4234: 4230: 4226: 4219: 4216: 4211: 4207: 4203: 4199: 4194: 4189: 4185: 4181: 4177: 4173: 4169: 4162: 4159: 4154: 4150: 4146: 4142: 4138: 4134: 4127: 4124: 4118: 4113: 4109: 4105: 4101: 4094: 4091: 4085: 4080: 4076: 4072: 4068: 4064: 4060: 4053: 4050: 4044: 4039: 4035: 4031: 4027: 4023: 4019: 4012: 4009: 4003: 3998: 3994: 3990: 3986: 3982: 3978: 3971: 3969: 3965: 3960: 3956: 3952: 3948: 3944: 3940: 3933: 3930: 3924: 3919: 3915: 3911: 3907: 3900: 3897: 3891: 3886: 3882: 3878: 3874: 3867: 3864: 3860: 3856: 3852: 3848: 3842: 3839: 3835: 3831: 3827: 3823: 3817: 3814: 3810: 3806: 3802: 3798: 3794: 3793:Acartia tonsa 3788: 3785: 3781: 3777: 3773: 3769: 3762: 3759: 3755: 3751: 3747: 3743: 3736: 3733: 3729: 3725: 3721: 3717: 3711: 3708: 3704: 3700: 3697:: 2613–2624. 3696: 3692: 3686: 3684: 3682: 3678: 3674: 3670: 3666: 3662: 3656: 3654: 3650: 3646: 3642: 3638: 3634: 3628: 3625: 3621: 3617: 3613: 3609: 3603: 3600: 3596: 3592: 3588: 3584: 3577: 3574: 3570: 3566: 3562: 3558: 3552: 3549: 3545: 3541: 3537: 3533: 3526: 3523: 3519: 3515: 3511: 3507: 3503: 3497: 3494: 3490: 3486: 3482: 3478: 3471: 3468: 3464: 3460: 3456: 3452: 3445: 3442: 3438: 3434: 3430: 3426: 3420: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3389: 3383: 3380: 3376: 3372: 3368: 3364: 3358: 3355: 3351: 3347: 3343: 3337: 3334: 3330: 3329:9780875900605 3326: 3322: 3316: 3313: 3308: 3304: 3300: 3296: 3292: 3288: 3281: 3279: 3277: 3275: 3273: 3269: 3265: 3261: 3257: 3253: 3247: 3245: 3241: 3237: 3232: 3227: 3223: 3219: 3215: 3209: 3206: 3202: 3197: 3190: 3185: 3180: 3175: 3171: 3167: 3163: 3155: 3152: 3147: 3143: 3138: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3105: 3101: 3097: 3090: 3087: 3082: 3078: 3073: 3068: 3064: 3060: 3055: 3050: 3046: 3042: 3038: 3034: 3030: 3023: 3020: 3014: 3009: 3005: 3001: 2997: 2993: 2989: 2982: 2979: 2973: 2968: 2964: 2960: 2956: 2952: 2945: 2938: 2935: 2929: 2924: 2920: 2916: 2912: 2908: 2904: 2897: 2894: 2889: 2885: 2881: 2877: 2873: 2869: 2865: 2858: 2855: 2850: 2846: 2841: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2801: 2798: 2792: 2787: 2783: 2779: 2775: 2771: 2767: 2760: 2757: 2751: 2746: 2742: 2738: 2734: 2730: 2726: 2719: 2716: 2711: 2707: 2703: 2699: 2695: 2691: 2683: 2681: 2679: 2675: 2670: 2666: 2662: 2658: 2654: 2650: 2643: 2641: 2637: 2631: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2595: 2592: 2587: 2583: 2578: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2538: 2535: 2530: 2528:9780071244930 2524: 2520: 2519: 2511: 2508: 2504: 2500: 2496: 2492: 2485: 2483: 2479: 2473: 2468: 2463: 2458: 2454: 2450: 2446: 2442: 2438: 2431: 2428: 2423: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2388: 2381: 2379: 2375: 2371: 2367: 2363: 2359: 2353: 2350: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2311: 2308: 2304: 2299: 2294: 2290: 2283: 2281: 2279: 2277: 2275: 2273: 2271: 2269: 2267: 2263: 2259: 2255: 2251: 2247: 2241: 2238: 2234: 2230: 2226: 2222: 2216: 2213: 2209: 2205: 2198: 2195: 2191: 2186: 2181: 2177: 2173: 2169: 2163: 2161: 2159: 2157: 2153: 2148: 2144: 2140: 2136: 2132: 2128: 2121: 2119: 2117: 2113: 2110: 2109:9780643063761 2106: 2102: 2096: 2094: 2090: 2086: 2081: 2076: 2073: 2068: 2066: 2064: 2062: 2060: 2058: 2056: 2052: 2046: 2041: 2037: 2033: 2029: 2022: 2019: 2014: 2010: 2005: 2000: 1996: 1992: 1988: 1984: 1980: 1973: 1970: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1934: 1931: 1926: 1924:9781118664322 1920: 1916: 1912: 1908: 1901: 1898: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1858: 1855: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1817: 1814: 1809: 1805: 1800: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1765: 1759: 1754: 1749: 1744: 1740: 1736: 1732: 1724: 1721: 1717: 1712: 1707: 1703: 1699: 1695: 1688: 1686: 1684: 1682: 1680: 1676: 1671: 1667: 1661: 1659: 1657: 1653: 1648: 1641: 1638: 1633: 1629: 1625: 1621: 1617: 1613: 1606: 1604: 1602: 1600: 1598: 1596: 1592: 1587: 1580: 1578: 1576: 1574: 1570: 1566: 1562: 1558: 1554: 1548: 1545: 1540: 1536: 1532: 1528: 1521: 1518: 1514: 1510: 1506: 1502: 1498: 1492: 1489: 1485: 1480: 1475: 1471: 1467: 1463: 1457: 1454: 1447: 1443: 1440: 1438: 1435: 1433: 1430: 1429: 1425: 1423: 1419: 1409: 1404: 1400: 1392: 1390: 1388: 1382: 1380: 1376: 1372: 1371:fecal pellets 1368: 1364: 1360: 1356: 1350: 1348: 1342: 1338: 1336: 1331: 1327: 1322: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1295:euphotic zone 1292: 1291:phytoplankton 1281: 1274: 1270: 1264: 1260: 1258: 1249: 1243: 1235: 1233: 1231: 1223: 1221: 1217: 1210: 1208: 1204: 1199: 1191: 1189: 1187: 1183: 1179: 1178:euphotic zone 1175: 1174:allochthonous 1171: 1167: 1160: 1158: 1156: 1152: 1144:Measuring POM 1143: 1141: 1138: 1134: 1129: 1105: 1096: 1091: 1083: 1075: 1068: 1066: 1064: 1060: 1056: 1048: 1046: 1044: 1040: 1036: 1035:crop residues 1031: 1029: 1025: 1021: 1017: 1016:decomposition 1012: 1005: 1003: 999: 997: 993: 989: 986: 984: 972: 971: 963: 962: 959: 956:charcoals and 951: 950: 947: 946: 943: 934: 931: 930: 924: 923: 915: 914: 911: 904: 903: 900: 899: 896: 887: 886: 879: 878: 872: 871: 868: 858: 854: 853: 847: 845: 841: 840: 836: 832: 830: 826: 822: 815: 810: 808: 806: 802: 798: 797:phytoplankton 794: 790: 786: 785:fecal pellets 782: 778: 774: 770: 766: 762: 758: 754: 746: 744: 742: 738: 734: 730: 726: 722: 718: 714: 710: 706: 701: 699: 695: 692: 688: 683: 680: 676: 674: 663: 658: 656: 651: 649: 644: 643: 641: 640: 634: 624: 623: 622: 621: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 559: 552: 551: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 517:Marine cycles 515: 514: 510: 505: 504: 496: 493: 491: 488: 486: 483: 479: 476: 474: 471: 470: 469: 466: 464: 461: 459: 456: 455: 451: 446: 445: 435: 432: 431: 430: 427: 425: 422: 420: 417: 416: 412: 407: 406: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 356: 353: 352: 351: 348: 347: 343: 338: 337: 329: 326: 324: 321: 319: 316: 314: 311: 310: 306: 301: 300: 290: 287: 285: 282: 281: 280: 277: 275: 272: 270: 267: 266: 261: 258: 256: 253: 252: 248: 243: 242: 234: 231: 229: 226: 224: 221: 220: 213: 210: 209: 208: 205: 204: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 158: 154: 149: 148: 140: 137: 135: 132: 130: 127: 125: 122: 121: 117: 112: 111: 103: 100: 98: 97:Boreal forest 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 64: 57: 56: 52: 48: 47: 44: 40: 36: 35: 25: 20: 16: 4374: 4370: 4360: 4327: 4323: 4317: 4280: 4276: 4228: 4224: 4218: 4175: 4171: 4161: 4136: 4132: 4126: 4107: 4103: 4093: 4066: 4062: 4052: 4025: 4021: 4011: 3984: 3980: 3945:(1): 41–82. 3942: 3938: 3932: 3913: 3909: 3899: 3880: 3876: 3866: 3850: 3846: 3841: 3825: 3821: 3816: 3800: 3796: 3792: 3787: 3771: 3767: 3761: 3745: 3741: 3735: 3719: 3715: 3710: 3694: 3690: 3664: 3660: 3636: 3632: 3627: 3611: 3607: 3602: 3586: 3582: 3576: 3560: 3556: 3551: 3535: 3531: 3525: 3509: 3505: 3501: 3496: 3480: 3476: 3470: 3454: 3450: 3444: 3428: 3424: 3419: 3403: 3399: 3395: 3391: 3387: 3382: 3369:(1): 87–97. 3366: 3362: 3357: 3341: 3336: 3320: 3315: 3290: 3286: 3255: 3251: 3217: 3213: 3208: 3189:11336/128446 3169: 3165: 3154: 3103: 3099: 3089: 3036: 3032: 3022: 2995: 2991: 2981: 2954: 2950: 2937: 2910: 2906: 2896: 2871: 2867: 2857: 2814: 2810: 2800: 2773: 2769: 2759: 2732: 2728: 2718: 2693: 2689: 2652: 2648: 2612: 2608: 2594: 2551: 2547: 2537: 2517: 2510: 2494: 2490: 2444: 2440: 2430: 2397: 2393: 2361: 2357: 2352: 2327: 2323: 2310: 2249: 2245: 2240: 2224: 2220: 2215: 2197: 2171: 2167: 2130: 2126: 2100: 2074: 2035: 2031: 2021: 1986: 1982: 1972: 1947: 1943: 1933: 1906: 1900: 1867: 1863: 1857: 1830: 1826: 1816: 1781: 1777: 1767: 1738: 1734: 1723: 1697: 1693: 1669: 1649:. CRC Press. 1646: 1640: 1615: 1611: 1585: 1556: 1552: 1547: 1530: 1526: 1520: 1504: 1500: 1491: 1465: 1461: 1456: 1420: 1416: 1383: 1351: 1343: 1339: 1323: 1301:(microbes), 1288: 1245: 1227: 1218: 1214: 1205: 1201: 1198:Martin curve 1181: 1169: 1164: 1147: 1127: 1125: 1094: 1052: 1043:soil quality 1032: 1013: 1009: 1000: 990: 987: 981: 955: 937: 907: 895:(< 2 mm) 890: 862: 842: 833: 829:carbon cycle 819: 795:produced by 789:carbon cycle 750: 702: 684: 678: 677: 672: 671: 355:Martin curve 342:Carbon pumps 269:Calvin cycle 223:Black carbon 190: 161:Total carbon 102:Geochemistry 43:Carbon cycle 23: 15: 4110:: 119–137. 3883:: 175–211. 3293:: 205–248. 3258:: 249–271. 2497:: 116–125. 2447:: 115–125. 2174:(1): 1–16. 2133:(1): 7–31. 1507:: 175–211. 1367:Stokes' Law 1355:marine snow 1311:mesopelagic 1307:marine snow 1303:zooplankton 1269:marine snow 1228:Along with 1020:mineralized 769:zooplankton 419:Carbon sink 382:Viral shunt 372:Marine snow 228:Blue carbon 82:Deep carbon 77:Atmospheric 67:Terrestrial 4415:Categories 3987:: 97–108. 3916:: 57–102. 3803:: 97–111. 3220:(3): 869. 2472:10651/7011 1833:(3): n/a. 1784:(1): n/a. 1448:References 1397:See also: 1196:See also: 1039:substrates 767:of living 691:decomposed 392:Whale pump 387:Jelly pump 367:Lipid pump 92:Permafrost 60:By regions 3853:: 55–71. 3512:: 61–70. 3406:: 79–89. 3128:2045-2322 3106:: 30897. 3063:0027-8424 2913:: 65–86. 2874:: 39–46. 2817:: 22633. 2655:: 18–27. 2601:Ploug, H. 1497:Ploug, H. 1024:C:N ratio 940:particles 801:sediments 753:carbonate 713:nutrients 4401:86713938 4352:25218654 4344:20682007 4245:11734832 4210:34642281 4202:17510327 3828:: 1–24. 3431:: 1–13. 3146:27510848 3081:21245299 2849:26940454 2603:(2013). 2586:20827289 2422:32205017 2013:53508151 1892:42385900 1808:41836211 1426:See also 1387:food web 1375:protozoa 1363:frustule 1055:sediment 1028:mycelium 908:detritus 781:detrital 747:Overview 694:detritus 633:Category 4379:Bibcode 4285:Bibcode 4253:5091015 4180:Bibcode 4172:Science 4141:Bibcode 4071:Bibcode 4030:Bibcode 3989:Bibcode 3947:Bibcode 3295:Bibcode 3137:4980614 3108:Bibcode 3072:3033307 3041:Bibcode 3000:Bibcode 2959:Bibcode 2915:Bibcode 2876:Bibcode 2840:4778057 2819:Bibcode 2778:Bibcode 2737:Bibcode 2698:Bibcode 2657:Bibcode 2617:Bibcode 2577:3105730 2556:Bibcode 2449:Bibcode 2402:Bibcode 2332:Bibcode 2135:Bibcode 1991:Bibcode 1952:Bibcode 1872:Bibcode 1835:Bibcode 1786:Bibcode 1700:: 518. 1672:. NRCS. 1620:Bibcode 1373:, live 1335:biomass 1271:in the 1084:in 2011 765:biomass 737:compost 733:tillage 725:erosion 687:sieving 478:Wetland 450:Methane 233:Kerogen 134:Removal 4399:  4350:  4342:  4251:  4243:  4225:Nature 4208:  4200:  3477:Nature 3394:, and 3327:  3144:  3134:  3126:  3079:  3069:  3061:  2847:  2837:  2584:  2574:  2525:  2420:  2358:Nature 2107:  2011:  1921:  1890:  1864:Nature 1806:  1359:diatom 1180:, and 757:filter 741:manure 698:pollen 631:  612:CO2SYS 473:Arctic 212:marine 72:Marine 4397:S2CID 4348:S2CID 4249:S2CID 4206:S2CID 3614:(4). 2947:(PDF) 2418:S2CID 2390:(PDF) 2009:S2CID 1888:S2CID 1804:S2CID 1184:from 1172:from 992:Humus 933:humus 926:(POM) 874:(DOM) 607:C4MIP 555:Other 199:(PIC) 193:(POC) 187:(DIC) 181:(DOC) 175:(TIC) 169:(TOC) 4431:Soil 4340:PMID 4241:PMID 4198:PMID 3325:ISBN 3142:PMID 3124:ISSN 3077:PMID 3059:ISSN 2845:PMID 2582:PMID 2523:ISBN 2105:ISBN 1919:ISBN 1401:and 1324:The 1014:The 735:and 163:(TC) 87:Soil 4387:doi 4332:doi 4293:doi 4233:doi 4229:414 4188:doi 4176:316 4149:doi 4112:doi 4079:doi 4038:doi 3997:doi 3985:157 3955:doi 3918:doi 3885:doi 3855:doi 3851:283 3830:doi 3826:222 3805:doi 3801:179 3795:". 3776:doi 3750:doi 3724:doi 3699:doi 3669:doi 3641:doi 3616:doi 3591:doi 3565:doi 3561:112 3540:doi 3514:doi 3510:516 3504:". 3485:doi 3481:507 3459:doi 3433:doi 3429:367 3408:doi 3404:350 3398:". 3371:doi 3346:doi 3303:doi 3291:130 3260:doi 3256:470 3222:doi 3184:hdl 3174:doi 3132:PMC 3116:doi 3067:PMC 3049:doi 3037:108 3008:doi 2967:doi 2923:doi 2911:612 2884:doi 2872:175 2835:PMC 2827:doi 2786:doi 2745:doi 2706:doi 2665:doi 2653:175 2625:doi 2572:PMC 2564:doi 2499:doi 2495:138 2467:hdl 2457:doi 2445:400 2410:doi 2366:doi 2362:282 2340:doi 2289:doi 2254:doi 2229:doi 2225:361 2204:doi 2176:doi 2143:doi 2040:doi 1999:doi 1960:doi 1911:doi 1880:doi 1868:282 1843:doi 1794:doi 1753:hdl 1743:doi 1702:doi 1628:doi 1561:doi 1557:122 1535:doi 1509:doi 1470:doi 1120:dis 1080:as 4417:: 4395:. 4385:. 4375:46 4373:. 4369:. 4346:. 4338:. 4328:86 4326:. 4291:. 4281:17 4279:. 4275:. 4261:^ 4247:. 4239:. 4227:. 4204:. 4196:. 4186:. 4174:. 4170:. 4147:. 4137:51 4135:. 4108:32 4106:. 4102:. 4077:. 4067:41 4065:. 4061:. 4036:. 4026:55 4024:. 4020:. 3995:. 3983:. 3979:. 3967:^ 3953:. 3943:20 3941:. 3914:27 3912:. 3908:. 3881:28 3879:. 3875:. 3849:, 3824:, 3799:, 3772:53 3770:, 3746:53 3744:, 3720:45 3718:, 3693:, 3680:^ 3663:, 3652:^ 3637:29 3635:, 3612:38 3610:, 3587:10 3585:, 3559:, 3536:47 3534:, 3508:, 3479:, 3455:57 3453:, 3427:, 3402:, 3390:, 3367:45 3365:, 3301:. 3289:. 3271:^ 3254:, 3243:^ 3228:. 3218:10 3216:, 3182:. 3172:. 3168:. 3164:. 3140:. 3130:. 3122:. 3114:. 3102:. 3098:. 3075:. 3065:. 3057:. 3047:. 3035:. 3031:. 3006:. 2996:56 2994:. 2990:. 2965:. 2955:28 2953:. 2949:. 2921:. 2909:. 2905:. 2882:. 2870:. 2866:. 2843:. 2833:. 2825:. 2813:. 2809:. 2784:. 2774:59 2772:. 2768:. 2743:. 2733:47 2731:. 2727:. 2704:. 2694:57 2692:. 2677:^ 2663:. 2651:. 2639:^ 2623:. 2613:10 2611:. 2607:. 2580:. 2570:. 2562:. 2550:. 2546:. 2493:, 2481:^ 2465:. 2455:. 2443:. 2439:. 2416:. 2408:. 2398:49 2396:. 2392:. 2377:^ 2360:, 2338:. 2328:48 2326:. 2322:. 2295:. 2265:^ 2248:, 2223:, 2182:. 2172:10 2170:, 2155:^ 2141:. 2131:79 2129:. 2115:^ 2092:^ 2054:^ 2038:. 2034:. 2030:. 2007:. 1997:. 1987:42 1985:. 1981:. 1958:. 1948:72 1946:. 1942:. 1917:. 1886:. 1878:. 1866:. 1841:. 1831:25 1829:. 1825:. 1802:. 1792:. 1782:26 1780:. 1776:. 1751:. 1741:. 1737:. 1733:. 1708:. 1696:, 1678:^ 1668:. 1655:^ 1626:. 1616:70 1614:. 1594:^ 1572:^ 1555:, 1531:56 1529:. 1505:28 1503:, 1476:. 1466:24 1464:, 1259:. 1116:eu 1045:. 807:. 761:μm 727:. 289:C4 284:C3 4403:. 4389:: 4381:: 4354:. 4334:: 4312:. 4301:. 4295:: 4287:: 4255:. 4235:: 4212:. 4190:: 4182:: 4155:. 4151:: 4143:: 4120:. 4114:: 4087:. 4081:: 4073:: 4046:. 4040:: 4032:: 4005:. 3999:: 3991:: 3961:. 3957:: 3949:: 3926:. 3920:: 3893:. 3887:: 3861:. 3857:: 3836:. 3832:: 3811:. 3807:: 3782:. 3778:: 3756:. 3752:: 3730:. 3726:: 3705:. 3701:: 3695:7 3675:. 3671:: 3665:2 3647:. 3643:: 3622:. 3618:: 3597:. 3593:: 3571:. 3567:: 3546:. 3542:: 3520:. 3516:: 3491:. 3487:: 3465:. 3461:: 3439:. 3435:: 3414:. 3410:: 3377:. 3373:: 3352:. 3348:: 3331:. 3309:. 3305:: 3297:: 3266:. 3262:: 3238:. 3224:: 3203:. 3192:. 3186:: 3176:: 3170:7 3148:. 3118:: 3110:: 3104:6 3083:. 3051:: 3043:: 3016:. 3010:: 3002:: 2975:. 2969:: 2961:: 2931:. 2925:: 2917:: 2890:. 2886:: 2878:: 2851:. 2829:: 2821:: 2815:6 2794:. 2788:: 2780:: 2753:. 2747:: 2739:: 2712:. 2708:: 2700:: 2671:. 2667:: 2659:: 2633:. 2627:: 2619:: 2588:. 2566:: 2558:: 2552:5 2531:. 2505:. 2501:: 2475:. 2469:: 2459:: 2451:: 2424:. 2412:: 2404:: 2372:. 2368:: 2346:. 2342:: 2334:: 2305:. 2291:: 2260:. 2256:: 2250:6 2235:. 2231:: 2210:. 2206:: 2192:. 2178:: 2149:. 2145:: 2137:: 2087:. 2048:. 2042:: 2036:6 2015:. 2001:: 1993:: 1966:. 1962:: 1954:: 1927:. 1913:: 1894:. 1882:: 1874:: 1851:. 1845:: 1837:: 1810:. 1796:: 1788:: 1761:. 1755:: 1745:: 1739:7 1718:. 1704:: 1698:7 1634:. 1630:: 1622:: 1567:. 1563:: 1541:. 1537:: 1515:. 1511:: 1486:. 1472:: 1252:2 1122:. 1112:0 739:/ 661:e 654:t 647:v

Index


Carbon cycle

Terrestrial
Marine
Atmospheric
Deep carbon
Soil
Permafrost
Boreal forest
Geochemistry
Carbon dioxide
In the atmosphere
Ocean acidification
Removal
Satellite measurements
Forms of carbon
Total carbon
Total organic carbon
Total inorganic carbon
Dissolved organic carbon
Dissolved inorganic carbon
Particulate organic carbon
Particulate inorganic carbon
Primary production
marine
Black carbon
Blue carbon
Kerogen
Metabolic pathways

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.