Knowledge

Kőnig's theorem (graph theory)

Source 📝

176: 2077:- an assignment of a weight in to each edge, such that the sum of weights near each vertex is at most 1 (an integral matching is a special case of a fractional matching in which the weights are in {0,1}). Similarly we define a fractional vertex-cover - an assignment of a non-negative weight to each vertex, such that the sum of weights in each edge is at least 1 (an integral vertex-cover is a special case of a fractional vertex-cover in which the weights are in {0,1}). 42: 2711:, so a minimum vertex cover is complementary to a maximum independent set; finding maximum independent sets is another NP-complete problem. The equivalence between matching and covering articulated in Kőnig's theorem allows minimum vertex covers and maximum independent sets to be computed in polynomial time for bipartite graphs, despite the NP-completeness of these problems for more general graph families. 162:
of every other edge), so this is a minimum vertex cover. Similarly, there can be no larger matching, because any matched edge has to include at least one endpoint in the vertex cover, so this is a maximum matching. Kőnig's theorem states that the equality between the sizes of the matching and the cover (in this example, both numbers are six) applies more generally to any bipartite graph.
2004:
must also be matched, for if there existed an alternating path to an unmatched vertex then changing the matching by removing the matched edges from this path and adding the unmatched edges in their place would increase the size of the matching. However, no matched edge can have both of its endpoints
161:
The bipartite graph shown in the above illustration has 14 vertices; a matching with six edges is shown in blue, and a vertex cover with six vertices is shown in red. There can be no smaller vertex cover, because any vertex cover has to include at least one endpoint of each matched edge (as well as
2817:
A graph is perfect if and only if its complement is perfect, and Kőnig's theorem can be seen as equivalent to the statement that the complement of a bipartite graph is perfect. For, each color class in a coloring of the complement of a bipartite graph is of size at most 2 and the classes of size 2
2348:
is a vector of size |V| in which each element represents the weight of a vertex in the fractional cover. Here, the first line is the size of the cover, the second line represents the non-negativity of the weights, and the third line represents the requirement that the sum of weights near each edge
2814:. Any bipartite graph is perfect, because each of its subgraphs is either bipartite or independent; in a bipartite graph that is not independent the chromatic number and the size of the largest clique are both two while in an independent set the chromatic number and clique number are both one. 3183:
As in the proof of Konig's theorem, the LP duality theorem implies that the optimal values are equal (for any graph), and the fact that the graph is bipartite implies that these programs have optimal solutions in which all values are integers.
2937:
sharing a common endpoint. Now Kőnig's line coloring theorem, stating that the chromatic index equals the maximum vertex degree in any bipartite graph, can be interpreted as stating that the line graph of a bipartite graph is perfect.
2445:
to be the set of vertices in the top layer of the diagram. From left to right label the vertices in the bottom layer with the numbers 1, …, 7 and label the vertices in the top layer with the numbers 8, …, 14. The set
116:
It is obvious from the definition that any vertex-cover set must be at least as large as any matching set (since for every edge in the matching, at least one vertex is needed in the cover). In particular, the
2363:
What makes bipartite graphs special is that, in bipartite graphs, both these linear programs have optimal solutions in which all variable values are integers. This follows from the fact that in the
2696:
For graphs that are not bipartite, the minimum vertex cover may be larger than the maximum matching. Moreover, the two problems are very different in complexity: maximum matchings can be found in
1698: 2353:
of the maximum fractional matching LP. Therefore, by the LP duality theorem, both programs have the same solution. This fact is true not only in bipartite graphs but in arbitrary graphs:
2574: 2686: 2624: 979: 933: 887: 841: 756: 722: 402: 239: 1435: 1230: 1190: 2367:
of a bipartite graph, all extreme points have only integer coordinates, and the same is true for the fractional vertex-cover polytope. Therefore the above theorem implies:
1936: 1827: 1803:
is matched but not in an alternating path, then its left endpoint cannot be in an alternating path (because two matched edges can not share a vertex) and thus belongs to
635: 2941:
Since line graphs of bipartite graphs are perfect, the complements of line graphs of bipartite graphs are also perfect. A clique in the complement of the line graph of
557: 2280: 2116: 2002: 280: 514: 488: 1392: 1365: 1338: 1311: 1284: 1257: 1127: 1100: 1053: 1026: 795: 209: 3449:
in Berlin and again at the Bled'07 International Conference on Graph Theory, Harald Gropp has pointed out that the same result already appears in the language of
1533: 668: 306: 2524: 2504: 2484: 2464: 2443: 2423: 2063: 2043: 2023: 1976: 1956: 1910: 1887: 1867: 1847: 1801: 1781: 1761: 1741: 1721: 1636: 1616: 1596: 1576: 1556: 1503: 1483: 1455: 1073: 999: 688: 597: 577: 534: 462: 442: 422: 366: 346: 326: 2244:
so the third line indicates the constraint that the sum of weights near each vertex is at most 1. Similarly, the minimum fractional vertex-cover size in
3446: 1849:
is unmatched but not in an alternating path, then its left endpoint cannot be in an alternating path, for such a path could be extended by adding
2878:
vertices. Conversely, Kőnig's theorem proves the perfection of the complements of bipartite graphs, a result proven in a more explicit form by
35: 3832: 2965:. Therefore, Kőnig's theorem itself can also be interpreted as stating that the complements of line graphs of bipartite graphs are perfect. 2382:
The constructive proof described above provides an algorithm for producing a minimum vertex cover given a maximum matching. Thus, the
3911: 3892: 3866: 3654: 3624: 3576: 2386:
for finding maximum matchings in bipartite graphs may also be used to solve the vertex cover problem efficiently in these graphs.
3921: 1638:
by alternating paths (paths that alternate between edges that are in the matching and edges that are not in the matching). Let
3232:
is an assignment of a non-negative integral weight to each edge, such that the sum of weights of edges adjacent to any vertex
3783: 2708: 3566: 2961:
into subsets of edges sharing a common endpoint; the endpoints shared by each of these subsets form a vertex cover for
2383: 2506:
are 1–10–3–13–7, 1–10–3–11–5–13–7, 1–11–5–13–7, 1–11–5–10–3–13–7, and all subpaths of these starting from 1. The set
1644: 3669: 2775: 2389:
Despite the equivalence of the two problems from the point of view of exact solutions, they are not equivalent for
3926: 45:
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six.
3817:
Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross)
3450: 2787: 2397:; in contrast, approximating the minimum vertex cover of a bipartite graph requires at least logarithmic time. 759: 3619:, Wiley Series in Discrete Mathematics and Optimization, vol. 33, John Wiley & Sons, pp. 48–49, 2735:
of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its
2358:
In any graph, the largest size of a fractional matching equals the smallest size of a fractional vertex cover.
3698:
Göös, Mika; Suomela, Jukka (2014), "No sublogarithmic-time approximation scheme for bipartite vertex cover",
3916: 3283: 2529: 2390: 106: 3020:
is a multiset of vertices ("multiset" means that each vertex may appear several times), in which each edge
3606: 3586: 2858:| colors, which by the perfection of complements of bipartite graphs corresponds to an independent set in 2629: 2579: 938: 892: 3850: 3812: 3778: 101:
in a graph is a set of vertices that includes at least one endpoint of every edge, and a vertex cover is
3516: 2811: 2774:
Kőnig's theorem is equivalent to many other min-max theorems in graph theory and combinatorics, such as
2736: 2394: 2779: 846: 800: 244:
The following proof provides a way of constructing a minimum vertex cover from a maximum matching. Let
3243:. Egerváry's theorem can be extended, using a similar argument, to graphs that have both edge-weights 2783: 1400: 1195: 1135: 691: 148: 118: 74: 175: 3610: 3590: 2759: 2754:, Kőnig attributed the idea of studying matchings in bipartite graphs to his father, mathematician 2350: 2074: 17: 3032: 2988: 2981: 2372:
In any bipartite graph, the largest size of a matching equals the smallest size of a vertex cover.
1915: 1806: 731: 697: 377: 214: 82: 31: 27:
Theorem showing that maximum matching and minimum vertex cover are equivalent for bipartite graphs
3854: 3733: 3707: 2763: 602: 2885:
One can also connect Kőnig's line coloring theorem to a different class of perfect graphs, the
3888: 3862: 3828: 3761: 3744: 3650: 3620: 3572: 3433: 2720: 2364: 539: 62: 3614: 2393:. Bipartite maximum matchings can be approximated arbitrarily accurately in constant time by 2247: 2083: 1981: 247: 3820: 3792: 3717: 3678: 2807: 2803: 2728: 2237: 493: 467: 144: 122: 70: 3876: 3842: 3804: 3729: 3690: 1370: 1343: 1316: 1289: 1262: 1235: 1105: 1078: 1031: 1004: 768: 182: 3872: 3838: 3800: 3725: 3686: 3602: 2732: 2697: 140: 126: 78: 1508: 643: 285: 2216:| zeros, so the second line indicates the constraint that the weights are non-negative. 129:, the minimum vertex cover set and the maximum matching set have in fact the same size. 3643: 3638: 3454: 2974: 2755: 2509: 2489: 2469: 2449: 2428: 2408: 2119: 2048: 2028: 2008: 1961: 1941: 1895: 1872: 1852: 1832: 1786: 1766: 1746: 1726: 1706: 1621: 1601: 1581: 1561: 1541: 1488: 1468: 1440: 1058: 984: 673: 582: 562: 519: 447: 427: 407: 351: 331: 311: 86: 2192:| in which each element represents the weight of an edge in the fractional matching. 41: 3905: 3796: 2799: 2724: 2073:
To explain this proof, we first have to extend the notion of a matching to that of a
3737: 3819:, Lecture Notes in Mathematics, vol. 411, Berlin: Springer, pp. 111–126, 3664: 2762:, but his theorem is sometimes spelled (incorrectly) in German characters, with an 372: 98: 54: 109:
in a graph is a set of edges no two of which share an endpoint, and a matching is
3634: 2701: 725: 50: 3721: 2886: 3747:(1916), "Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére", 2826:, and as we have already described an independent set in a bipartite graph 2723:. Kőnig had announced in 1914 and published in 1916 the results that every 2349:
must be at least 1. Now, the minimum fractional cover LP is exactly the
3824: 3682: 3408:, p 319, and for the connection to vertex cover see p. 342. 1505:
from being a matching in the first place), so if a vertex cover with
1232:
is a vertex cover, as any edge that is not incident to vertices from
3013:
is the sum of weights of the edges participating in the matching. A
3887:, Progress in Computer Science and Applied Logic Series, Springer, 2747:
attribute Kőnig's theorem itself to a later paper of Kőnig (1931).
1743:
either belongs to an alternating path (and has a right endpoint in
3712: 3490: 3341: 3256:
In any edge-weighted vertex-weighted bipartite graph, the maximum
1340:, which would contradict the fact that there are no edges between 174: 40: 3044:
weight of a matching equals the smallest number of vertices in a
2425:
to be the set of vertices in the bottom layer of the diagram and
3861:, Annals of Discrete Mathematics, vol. 29, North-Holland, 3781:(1972), "Normal hypergraphs and the perfect graph conjecture", 3545: 3543: 2203:| ones, so the first line indicates the size of the matching. 1465:
No vertex in a vertex cover can cover more than one edge of
981:. Then the minimum cut is composed only of edges going from 2719:
Kőnig's theorem is named after the Hungarian mathematician
1978:, the set of unmatched left vertices. And every vertex in 1535:
vertices can be constructed, it must be a minimum cover.
2949:. And a coloring in the complement of the line graph of 2846:
vertices corresponds to a coloring of the complement of
2818:
form a matching, a clique in the complement of a graph
1912:
is an endpoint of a matched edge. For, every vertex in
3530: 3528: 2632: 2582: 2532: 2512: 2492: 2472: 2452: 2431: 2411: 2250: 2086: 2051: 2031: 2011: 1984: 1964: 1944: 1918: 1898: 1875: 1855: 1835: 1809: 1789: 1769: 1749: 1729: 1709: 1647: 1624: 1604: 1584: 1564: 1544: 1511: 1491: 1471: 1443: 1403: 1373: 1346: 1319: 1292: 1265: 1238: 1198: 1138: 1108: 1081: 1061: 1034: 1007: 987: 941: 895: 849: 803: 771: 734: 700: 676: 646: 605: 585: 565: 542: 522: 496: 470: 450: 430: 410: 380: 354: 334: 314: 288: 250: 217: 185: 3059:
weight of a fractional matching is given by the LP:
2707:
The complement of a vertex cover in any graph is an
81:. It was discovered independently, also in 1931, by 3118:And the minimum number of vertices in a fractional 2870:| vertices, which corresponds to a vertex cover of 1132:Therefore, the size of the minimum cut is equal to 3642: 3040:In any edge-weighted bipartite graph, the maximum 2680: 2618: 2568: 2518: 2498: 2478: 2458: 2437: 2417: 2274: 2110: 2057: 2037: 2017: 1996: 1970: 1950: 1930: 1904: 1881: 1861: 1841: 1821: 1795: 1775: 1755: 1735: 1715: 1692: 1630: 1610: 1590: 1570: 1550: 1527: 1497: 1477: 1449: 1429: 1386: 1359: 1332: 1305: 1278: 1251: 1224: 1184: 1121: 1094: 1067: 1047: 1020: 993: 973: 927: 881: 835: 789: 750: 716: 682: 662: 629: 591: 571: 551: 528: 508: 482: 456: 436: 416: 396: 360: 340: 320: 300: 274: 233: 203: 3885:An Introduction to Data Structures and Algorithms 3670:Acta Mathematica Academiae Scientiarum Hungaricae 2905:, and an edge for each pair of adjacent edges in 3466: 2980: 2782:. Since bipartite matching is a special case of 2751: 2080:The maximum fractional matching size in a graph 1693:{\displaystyle K=(A\setminus Z)\cup (B\cap Z).} 105:if no other vertex cover has fewer vertices. A 3667:(1958), "Maximum-minimum Sätze über Graphen", 3192:One can consider a graph in which each vertex 2526:is therefore {1,3,5,7,10,11,13}, resulting in 3571:, Oxford University Press, pp. 203–207, 3549: 3478: 3392: 2957:is bipartite, is a partition of the edges of 2700:for any graph, while minimum vertex cover is 1485:(because the edge half-overlap would prevent 424:in such way that there are edges of capacity 8: 3815:(1974), "Minimax theorems for hypergraphs", 3353: 2991:(1931) considered graphs in which each edge 2675: 2639: 2613: 2595: 2563: 2545: 2486:is {1}. The alternating paths starting from 2405:In the graph shown in the introduction take 1286:must be incident to a pair of vertices from 3565:Biggs, E. K.; Lloyd; Wilson, R. J. (1976), 3417: 30:For the theorem about infinite graphs, see 3749:Matematikai és Természettudományi Értesítő 3592:Matchings and the max-flow min-cut theorem 3380: 3376: 3374: 3365: 3337: 3333: 3331: 3322: 3310: 2744: 2045:is a vertex cover of cardinality equal to 1598:be the set of vertices that are either in 3711: 2631: 2581: 2531: 2511: 2491: 2471: 2451: 2430: 2410: 2249: 2085: 2050: 2030: 2010: 1983: 1963: 1943: 1917: 1897: 1874: 1854: 1834: 1808: 1788: 1768: 1748: 1728: 1708: 1646: 1623: 1603: 1583: 1563: 1543: 1520: 1512: 1510: 1490: 1470: 1442: 1421: 1408: 1402: 1378: 1372: 1351: 1345: 1324: 1318: 1297: 1291: 1270: 1264: 1243: 1237: 1216: 1203: 1197: 1177: 1171: 1162: 1154: 1148: 1139: 1137: 1129:would make the size of the cut infinite. 1113: 1107: 1086: 1080: 1060: 1039: 1033: 1012: 1006: 986: 959: 946: 940: 913: 900: 894: 873: 860: 848: 827: 814: 802: 770: 739: 733: 705: 699: 675: 655: 647: 645: 604: 584: 564: 541: 521: 495: 469: 449: 429: 409: 385: 379: 353: 333: 313: 287: 249: 222: 216: 184: 125:set. Kőnig's theorem states that, in any 3447:International Congress of Mathematicians 1461:Constructive proof without flow concepts 69:), describes an equivalence between the 3294: 2536: 1922: 1813: 1660: 3534: 3520: 3503: 3429: 3405: 2879: 2569:{\displaystyle L\setminus Z=\{2,4,6\}} 2069:Proof using linear programming duality 2065:, and must be a minimum vertex cover. 3124:vertex-cover is given by the dual LP: 2830:is a complement of a vertex cover in 113:if no other matching has more edges. 66: 7: 2786:, the theorem also results from the 2681:{\displaystyle K=\{2,4,6,10,11,13\}} 2619:{\displaystyle R\cap Z=\{10,11,13\}} 2282:is the solution of the following LP: 1558:be the set of unmatched vertices in 974:{\displaystyle A_{T},B_{T}\subset T} 928:{\displaystyle A_{S},B_{S}\subset S} 2984:'s theorem for edge-weighted graphs 2973:Konig's theorem can be extended to 2933:) are exactly the sets of edges in 2758:. In Hungarian, Kőnig's name has a 2739:– the latter statement is known as 724:, which, in turn, is the size of a 308:be the two parts of the vertex set 147:equals the number of vertices in a 18:König's theorem (graph theory) 3445:In a poster displayed at the 1998 3203:. The weight vector is denoted by 3196:has a non-negative integer weight 3188:Theorem for vertex-weighted graphs 3002:. The weight vector is denoted by 2995:has a non-negative integer weight 740: 706: 546: 386: 223: 25: 2118:is the solution of the following 882:{\displaystyle B=B_{S}\cup B_{T}} 836:{\displaystyle A=A_{S}\cup A_{T}} 3467:Biggs, Lloyd & Wilson (1976) 3340:, Theorem 5.3, p. 74; 3214:of a vertex-cover is the sum of 2917:) equals the chromatic index of 2909:. Thus, the chromatic number of 2901:) has a vertex for each edge of 2752:Biggs, Lloyd & Wilson (1976) 1763:), or it has a left endpoint in 121:set is at least as large as the 36:König's theorem (disambiguation) 3284:Kőnig's property in hypergraphs 2810:equals the size of the largest 2794:Connections with perfect graphs 1538:To construct such a cover, let 1430:{\displaystyle A_{T}\cup B_{S}} 1225:{\displaystyle A_{T}\cup B_{S}} 1185:{\displaystyle |A_{T}|+|B_{S}|} 3764:(1931), "Gráfok és mátrixok", 3645:Graph Theory with Applications 3434:Exercise 261, p. 342 2731:, and more generally that the 2626:and the minimum vertex cover 2269: 2257: 2105: 2093: 1892:Additionally, every vertex in 1684: 1672: 1666: 1654: 1521: 1513: 1178: 1163: 1155: 1140: 784: 772: 656: 648: 618: 606: 269: 257: 198: 186: 1: 3264:-matching equals the minimum 2925:is bipartite, the cliques in 2741:Kőnig's line coloring theorem 1437:is a minimum vertex cover of 282:be a bipartite graph and let 3797:10.1016/0012-365X(72)90006-4 3766:Matematikai és Fizikai Lapok 3481:, Theorem 1.4.17, pp. 37ff.. 2365:fractional matching polytope 1931:{\displaystyle A\setminus Z} 1822:{\displaystyle A\setminus Z} 751:{\displaystyle G'_{\infty }} 717:{\displaystyle G'_{\infty }} 397:{\displaystyle G'_{\infty }} 234:{\displaystyle G'_{\infty }} 85:in the more general case of 3550:Lovász & Plummer (1986) 3479:Lovász & Plummer (1986) 3393:Lovász & Plummer (1986) 2893:is a graph, the line graph 2466:of unmatched vertices from 670:of the maximum matching in 143:, the number of edges in a 3943: 3616:Combinatorial Optimization 3605:; Cunningham, William H.; 3502:"Trivially", according to 1578:(possibly empty), and let 630:{\displaystyle (a,b)\in E} 348:is a maximum matching for 29: 3722:10.1007/s00446-013-0194-z 3418:Göös & Suomela (2014) 3268:-weight of vertices in a 2822:is an independent set in 3912:Theorems in graph theory 3404:For this algorithm, see 3381:Bondy & Murty (1976) 3368:, Lemma 5.3, p. 74. 3366:Bondy & Murty (1976) 3338:Bondy & Murty (1976) 3323:Bondy & Murty (1976) 3311:Bondy & Murty (1976) 3024:is adjacent to at least 2889:of bipartite graphs. If 2788:max-flow min-cut theorem 2745:Bondy & Murty (1976) 2391:approximation algorithms 760:max-flow min-cut theorem 552:{\displaystyle +\infty } 133:Statement of the theorem 73:problem and the minimum 3922:Matching (graph theory) 3607:Pulleyblank, William R. 2776:Hall's marriage theorem 2384:Hopcroft–Karp algorithm 2275:{\displaystyle G=(V,E)} 2111:{\displaystyle G=(V,E)} 1997:{\displaystyle B\cap Z} 275:{\displaystyle G=(V,E)} 3883:Storer, J. A. (2001), 3568:Graph Theory 1736–1936 3453:in the 1894 thesis of 3275: 3181: 3116: 3051: 2945:is just a matching in 2798:A graph is said to be 2727:bipartite graph has a 2682: 2620: 2570: 2520: 2500: 2480: 2460: 2439: 2419: 2395:distributed algorithms 2375: 2361: 2342: 2276: 2182: 2112: 2059: 2039: 2019: 1998: 1972: 1952: 1932: 1906: 1889:forms a vertex cover. 1883: 1863: 1843: 1823: 1797: 1777: 1757: 1737: 1717: 1694: 1632: 1612: 1592: 1572: 1552: 1529: 1499: 1479: 1451: 1431: 1388: 1361: 1334: 1307: 1280: 1253: 1226: 1186: 1123: 1096: 1069: 1049: 1022: 995: 975: 929: 883: 837: 797:be a minimum cut. Let 791: 758:, as follows from the 752: 718: 684: 664: 631: 593: 573: 553: 530: 510: 509:{\displaystyle b\in B} 490:and from every vertex 484: 483:{\displaystyle a\in A} 458: 438: 418: 398: 362: 342: 322: 302: 276: 241: 235: 205: 154: 46: 34:. For other uses, see 3700:Distributed Computing 3517:perfect graph theorem 3253: 3126: 3061: 3037: 2838:in a bipartite graph 2834:. Thus, any matching 2683: 2621: 2571: 2521: 2501: 2481: 2461: 2440: 2420: 2369: 2355: 2284: 2277: 2188:is a vector of size | 2124: 2113: 2060: 2040: 2020: 1999: 1973: 1953: 1933: 1907: 1884: 1864: 1844: 1824: 1798: 1778: 1758: 1738: 1718: 1695: 1633: 1613: 1593: 1573: 1553: 1530: 1500: 1480: 1452: 1432: 1389: 1387:{\displaystyle B_{T}} 1362: 1360:{\displaystyle A_{S}} 1335: 1333:{\displaystyle B_{T}} 1308: 1306:{\displaystyle A_{S}} 1281: 1279:{\displaystyle B_{S}} 1254: 1252:{\displaystyle A_{T}} 1227: 1192:. On the other hand, 1187: 1124: 1122:{\displaystyle B_{T}} 1097: 1095:{\displaystyle A_{S}} 1070: 1050: 1048:{\displaystyle B_{S}} 1023: 1021:{\displaystyle A_{T}} 996: 976: 930: 884: 838: 792: 790:{\displaystyle (S,T)} 753: 719: 685: 665: 632: 594: 574: 554: 531: 511: 485: 459: 439: 419: 399: 363: 343: 323: 303: 277: 236: 206: 204:{\displaystyle (S,T)} 178: 136: 44: 3784:Discrete Mathematics 3611:Schrijver, Alexander 3587:Cesa-Bianchi, Nicolò 3011:weight of a matching 2692:Non-bipartite graphs 2630: 2580: 2530: 2510: 2490: 2470: 2450: 2429: 2409: 2248: 2084: 2049: 2029: 2009: 1982: 1962: 1942: 1916: 1896: 1873: 1853: 1833: 1829:. Alternatively, if 1807: 1787: 1767: 1747: 1727: 1707: 1645: 1622: 1618:or are connected to 1602: 1582: 1562: 1542: 1509: 1489: 1469: 1441: 1401: 1371: 1344: 1317: 1290: 1263: 1236: 1196: 1136: 1106: 1079: 1059: 1032: 1005: 985: 939: 893: 847: 801: 769: 732: 698: 674: 644: 603: 583: 563: 540: 520: 494: 468: 448: 428: 408: 378: 352: 332: 312: 286: 248: 215: 211:in the flow network 183: 149:minimum vertex cover 119:minimum vertex cover 75:vertex cover problem 3354:Cesa-Bianchi (2020) 3247:and vertex-weights 2760:double acute accent 2351:dual linear program 2075:fractional matching 1938:is matched because 1528:{\displaystyle |M|} 1075:, as any edge from 747: 713: 663:{\displaystyle |M|} 393: 301:{\displaystyle A,B} 230: 3825:10.1007/BFb0066186 3683:10.1007/BF02020271 3589:(April 11, 2020), 3491:Cook et al. (2011) 3342:Cook et al. (2011) 2780:Dilworth's theorem 2678: 2616: 2566: 2516: 2496: 2476: 2456: 2435: 2415: 2272: 2108: 2055: 2035: 2015: 1994: 1968: 1948: 1928: 1902: 1879: 1859: 1839: 1819: 1793: 1773: 1753: 1733: 1713: 1690: 1628: 1608: 1588: 1568: 1548: 1525: 1495: 1475: 1447: 1427: 1384: 1357: 1330: 1303: 1276: 1249: 1222: 1182: 1119: 1092: 1065: 1045: 1018: 991: 971: 925: 879: 833: 787: 748: 735: 714: 701: 680: 660: 627: 589: 569: 549: 536:, and of capacity 526: 506: 480: 454: 434: 414: 394: 381: 358: 338: 318: 298: 272: 242: 231: 218: 201: 171:Constructive proof 47: 3834:978-3-540-06846-4 3649:, North Holland, 3383:, pp. 74–75. 2969:Weighted variants 2519:{\displaystyle Z} 2499:{\displaystyle U} 2479:{\displaystyle L} 2459:{\displaystyle U} 2438:{\displaystyle R} 2418:{\displaystyle L} 2058:{\displaystyle M} 2038:{\displaystyle K} 2018:{\displaystyle K} 1971:{\displaystyle U} 1958:is a superset of 1951:{\displaystyle Z} 1905:{\displaystyle K} 1882:{\displaystyle K} 1862:{\displaystyle e} 1842:{\displaystyle e} 1796:{\displaystyle e} 1776:{\displaystyle K} 1756:{\displaystyle K} 1736:{\displaystyle E} 1716:{\displaystyle e} 1631:{\displaystyle U} 1611:{\displaystyle U} 1591:{\displaystyle Z} 1571:{\displaystyle A} 1551:{\displaystyle U} 1498:{\displaystyle M} 1478:{\displaystyle M} 1450:{\displaystyle G} 1068:{\displaystyle t} 994:{\displaystyle s} 690:is the size of a 683:{\displaystyle G} 592:{\displaystyle b} 572:{\displaystyle a} 529:{\displaystyle t} 457:{\displaystyle s} 437:{\displaystyle 1} 417:{\displaystyle G} 361:{\displaystyle G} 341:{\displaystyle M} 321:{\displaystyle V} 16:(Redirected from 3934: 3927:Bipartite graphs 3897: 3879: 3845: 3807: 3773: 3756: 3740: 3715: 3693: 3677:(3–4): 395–434, 3659: 3648: 3629: 3603:Cook, William J. 3598: 3597: 3581: 3553: 3547: 3538: 3532: 3523: 3513: 3507: 3500: 3494: 3488: 3482: 3476: 3470: 3464: 3458: 3443: 3437: 3427: 3421: 3415: 3409: 3402: 3396: 3390: 3384: 3378: 3369: 3363: 3357: 3351: 3345: 3335: 3326: 3320: 3314: 3309:respectively by 3307:minimum covering 3299: 3225:in the cover. A 3145:Subject to: 3077:Subject to: 3035:'s theorem says: 2808:chromatic number 2804:induced subgraph 2770:Related theorems 2729:perfect matching 2687: 2685: 2684: 2679: 2625: 2623: 2622: 2617: 2575: 2573: 2572: 2567: 2525: 2523: 2522: 2517: 2505: 2503: 2502: 2497: 2485: 2483: 2482: 2477: 2465: 2463: 2462: 2457: 2444: 2442: 2441: 2436: 2424: 2422: 2421: 2416: 2303:Subject to: 2281: 2279: 2278: 2273: 2238:incidence matrix 2223:is a vector of | 2212:is a vector of | 2199:is a vector of | 2143:Subject to: 2117: 2115: 2114: 2109: 2064: 2062: 2061: 2056: 2044: 2042: 2041: 2036: 2024: 2022: 2021: 2016: 2003: 2001: 2000: 1995: 1977: 1975: 1974: 1969: 1957: 1955: 1954: 1949: 1937: 1935: 1934: 1929: 1911: 1909: 1908: 1903: 1888: 1886: 1885: 1880: 1868: 1866: 1865: 1860: 1848: 1846: 1845: 1840: 1828: 1826: 1825: 1820: 1802: 1800: 1799: 1794: 1782: 1780: 1779: 1774: 1762: 1760: 1759: 1754: 1742: 1740: 1739: 1734: 1722: 1720: 1719: 1714: 1699: 1697: 1696: 1691: 1637: 1635: 1634: 1629: 1617: 1615: 1614: 1609: 1597: 1595: 1594: 1589: 1577: 1575: 1574: 1569: 1557: 1555: 1554: 1549: 1534: 1532: 1531: 1526: 1524: 1516: 1504: 1502: 1501: 1496: 1484: 1482: 1481: 1476: 1456: 1454: 1453: 1448: 1436: 1434: 1433: 1428: 1426: 1425: 1413: 1412: 1393: 1391: 1390: 1385: 1383: 1382: 1366: 1364: 1363: 1358: 1356: 1355: 1339: 1337: 1336: 1331: 1329: 1328: 1312: 1310: 1309: 1304: 1302: 1301: 1285: 1283: 1282: 1277: 1275: 1274: 1258: 1256: 1255: 1250: 1248: 1247: 1231: 1229: 1228: 1223: 1221: 1220: 1208: 1207: 1191: 1189: 1188: 1183: 1181: 1176: 1175: 1166: 1158: 1153: 1152: 1143: 1128: 1126: 1125: 1120: 1118: 1117: 1101: 1099: 1098: 1093: 1091: 1090: 1074: 1072: 1071: 1066: 1054: 1052: 1051: 1046: 1044: 1043: 1027: 1025: 1024: 1019: 1017: 1016: 1000: 998: 997: 992: 980: 978: 977: 972: 964: 963: 951: 950: 934: 932: 931: 926: 918: 917: 905: 904: 888: 886: 885: 880: 878: 877: 865: 864: 842: 840: 839: 834: 832: 831: 819: 818: 796: 794: 793: 788: 757: 755: 754: 749: 743: 723: 721: 720: 715: 709: 689: 687: 686: 681: 669: 667: 666: 661: 659: 651: 636: 634: 633: 628: 598: 596: 595: 590: 578: 576: 575: 570: 558: 556: 555: 550: 535: 533: 532: 527: 515: 513: 512: 507: 489: 487: 486: 481: 464:to every vertex 463: 461: 460: 455: 444:from the source 443: 441: 440: 435: 423: 421: 420: 415: 403: 401: 400: 395: 389: 367: 365: 364: 359: 347: 345: 344: 339: 328:. Suppose that 327: 325: 324: 319: 307: 305: 304: 299: 281: 279: 278: 273: 240: 238: 237: 232: 226: 210: 208: 207: 202: 145:maximum matching 123:maximum matching 79:bipartite graphs 71:maximum matching 21: 3942: 3941: 3937: 3936: 3935: 3933: 3932: 3931: 3902: 3901: 3895: 3882: 3869: 3859:Matching Theory 3849: 3835: 3811: 3777: 3760: 3743: 3697: 3663: 3657: 3639:Murty, U. S. R. 3633: 3627: 3601: 3595: 3585: 3579: 3564: 3561: 3556: 3548: 3541: 3533: 3526: 3514: 3510: 3501: 3497: 3489: 3485: 3477: 3473: 3465: 3461: 3444: 3440: 3428: 3424: 3416: 3412: 3403: 3399: 3391: 3387: 3379: 3372: 3364: 3360: 3352: 3348: 3336: 3329: 3321: 3317: 3300: 3296: 3292: 3280: 3241: 3219: 3201: 3190: 3168: 3156: 3136: 3112: 3100: 3088: 3029: 3000: 2986: 2975:weighted graphs 2971: 2796: 2772: 2733:chromatic index 2717: 2709:independent set 2698:polynomial time 2694: 2628: 2627: 2578: 2577: 2528: 2527: 2508: 2507: 2488: 2487: 2468: 2467: 2448: 2447: 2427: 2426: 2407: 2406: 2403: 2380: 2338: 2326: 2314: 2294: 2246: 2245: 2235: 2222: 2210: 2198: 2178: 2166: 2154: 2134: 2082: 2081: 2071: 2047: 2046: 2027: 2026: 2007: 2006: 1980: 1979: 1960: 1959: 1940: 1939: 1914: 1913: 1894: 1893: 1871: 1870: 1851: 1850: 1831: 1830: 1805: 1804: 1785: 1784: 1765: 1764: 1745: 1744: 1725: 1724: 1705: 1704: 1643: 1642: 1620: 1619: 1600: 1599: 1580: 1579: 1560: 1559: 1540: 1539: 1507: 1506: 1487: 1486: 1467: 1466: 1463: 1439: 1438: 1417: 1404: 1399: 1398: 1374: 1369: 1368: 1347: 1342: 1341: 1320: 1315: 1314: 1293: 1288: 1287: 1266: 1261: 1260: 1239: 1234: 1233: 1212: 1199: 1194: 1193: 1167: 1144: 1134: 1133: 1109: 1104: 1103: 1082: 1077: 1076: 1057: 1056: 1035: 1030: 1029: 1008: 1003: 1002: 983: 982: 955: 942: 937: 936: 909: 896: 891: 890: 869: 856: 845: 844: 823: 810: 799: 798: 767: 766: 730: 729: 728:in the network 696: 695: 672: 671: 642: 641: 601: 600: 581: 580: 561: 560: 538: 537: 518: 517: 492: 491: 466: 465: 446: 445: 426: 425: 406: 405: 376: 375: 350: 349: 330: 329: 310: 309: 284: 283: 246: 245: 213: 212: 181: 180: 173: 168: 159: 141:bipartite graph 135: 127:bipartite graph 95: 87:weighted graphs 63:Dénes Kőnig 59:Kőnig's theorem 39: 28: 23: 22: 15: 12: 11: 5: 3940: 3938: 3930: 3929: 3924: 3919: 3917:Perfect graphs 3914: 3904: 3903: 3900: 3899: 3893: 3880: 3867: 3855:Plummer, M. D. 3851:Lovász, László 3847: 3833: 3813:Lovász, László 3809: 3791:(3): 253–267, 3779:Lovász, László 3775: 3758: 3741: 3706:(6): 435–443, 3695: 3661: 3655: 3631: 3625: 3599: 3583: 3577: 3560: 3557: 3555: 3554: 3552:, p. 271. 3539: 3524: 3508: 3495: 3483: 3471: 3459: 3455:Ernst Steinitz 3451:configurations 3438: 3422: 3410: 3397: 3395:, p. 270. 3385: 3370: 3358: 3346: 3327: 3315: 3293: 3291: 3288: 3287: 3286: 3279: 3276: 3239: 3217: 3199: 3189: 3186: 3164: 3154: 3132: 3128:Minimize 3110: 3096: 3086: 3063:Maximize 3027: 2998: 2985: 2979: 2970: 2967: 2795: 2792: 2771: 2768: 2737:maximum degree 2716: 2713: 2693: 2690: 2677: 2674: 2671: 2668: 2665: 2662: 2659: 2656: 2653: 2650: 2647: 2644: 2641: 2638: 2635: 2615: 2612: 2609: 2606: 2603: 2600: 2597: 2594: 2591: 2588: 2585: 2565: 2562: 2559: 2556: 2553: 2550: 2547: 2544: 2541: 2538: 2535: 2515: 2495: 2475: 2455: 2434: 2414: 2402: 2399: 2379: 2376: 2336: 2322: 2312: 2290: 2286:Minimize 2271: 2268: 2265: 2262: 2259: 2256: 2253: 2231: 2220: 2208: 2196: 2176: 2162: 2152: 2130: 2126:Maximize 2120:linear program 2107: 2104: 2101: 2098: 2095: 2092: 2089: 2070: 2067: 2054: 2034: 2014: 1993: 1990: 1987: 1967: 1947: 1927: 1924: 1921: 1901: 1878: 1858: 1838: 1818: 1815: 1812: 1792: 1772: 1752: 1732: 1712: 1701: 1700: 1689: 1686: 1683: 1680: 1677: 1674: 1671: 1668: 1665: 1662: 1659: 1656: 1653: 1650: 1627: 1607: 1587: 1567: 1547: 1523: 1519: 1515: 1494: 1474: 1462: 1459: 1446: 1424: 1420: 1416: 1411: 1407: 1381: 1377: 1354: 1350: 1327: 1323: 1300: 1296: 1273: 1269: 1246: 1242: 1219: 1215: 1211: 1206: 1202: 1180: 1174: 1170: 1165: 1161: 1157: 1151: 1147: 1142: 1116: 1112: 1089: 1085: 1064: 1042: 1038: 1015: 1011: 990: 970: 967: 962: 958: 954: 949: 945: 924: 921: 916: 912: 908: 903: 899: 876: 872: 868: 863: 859: 855: 852: 830: 826: 822: 817: 813: 809: 806: 786: 783: 780: 777: 774: 746: 742: 738: 712: 708: 704: 679: 658: 654: 650: 626: 623: 620: 617: 614: 611: 608: 588: 568: 548: 545: 525: 505: 502: 499: 479: 476: 473: 453: 433: 413: 392: 388: 384: 371:Construct the 357: 337: 317: 297: 294: 291: 271: 268: 265: 262: 259: 256: 253: 229: 225: 221: 200: 197: 194: 191: 188: 172: 169: 167: 164: 158: 155: 134: 131: 94: 91: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3939: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3909: 3907: 3896: 3894:9780817642532 3890: 3886: 3881: 3878: 3874: 3870: 3868:0-444-87916-1 3864: 3860: 3856: 3852: 3848: 3844: 3840: 3836: 3830: 3826: 3822: 3818: 3814: 3810: 3806: 3802: 3798: 3794: 3790: 3786: 3785: 3780: 3776: 3771: 3767: 3763: 3759: 3754: 3750: 3746: 3742: 3739: 3735: 3731: 3727: 3723: 3719: 3714: 3709: 3705: 3701: 3696: 3692: 3688: 3684: 3680: 3676: 3672: 3671: 3666: 3665:Gallai, Tibor 3662: 3658: 3656:0-444-19451-7 3652: 3647: 3646: 3640: 3636: 3632: 3628: 3626:9781118031391 3622: 3618: 3617: 3612: 3608: 3604: 3600: 3594: 3593: 3588: 3584: 3580: 3578:0-19-853916-9 3574: 3570: 3569: 3563: 3562: 3558: 3551: 3546: 3544: 3540: 3536: 3535:Lovász (1974) 3531: 3529: 3525: 3522: 3521:Lovász (1972) 3518: 3512: 3509: 3505: 3504:Lovász (1974) 3499: 3496: 3492: 3487: 3484: 3480: 3475: 3472: 3468: 3463: 3460: 3456: 3452: 3448: 3442: 3439: 3435: 3431: 3430:Storer (2001) 3426: 3423: 3419: 3414: 3411: 3407: 3406:Storer (2001) 3401: 3398: 3394: 3389: 3386: 3382: 3377: 3375: 3371: 3367: 3362: 3359: 3355: 3350: 3347: 3343: 3339: 3334: 3332: 3328: 3325:, p. 70. 3324: 3319: 3316: 3313:, p. 73. 3312: 3308: 3304: 3298: 3295: 3289: 3285: 3282: 3281: 3277: 3274: 3273: 3272:vertex-cover. 3271: 3267: 3263: 3259: 3252: 3250: 3246: 3242: 3235: 3231: 3229: 3224: 3220: 3213: 3211: 3206: 3202: 3195: 3187: 3185: 3180: 3179: 3177: 3172: 3167: 3163: 3158: 3157: 3152: 3148: 3143: 3142: 3139: 3135: 3131: 3125: 3123: 3122: 3115: 3114: 3109: 3104: 3099: 3095: 3090: 3089: 3084: 3080: 3075: 3074: 3071: 3068: 3067: 3060: 3058: 3057: 3050: 3049: 3048:vertex-cover. 3047: 3043: 3036: 3034: 3030: 3023: 3019: 3017: 3012: 3009: 3005: 3001: 2994: 2990: 2989:Jenő Egerváry 2983: 2978: 2976: 2968: 2966: 2964: 2960: 2956: 2952: 2948: 2944: 2939: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2883: 2881: 2880:Gallai (1958) 2877: 2873: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2815: 2813: 2809: 2805: 2802:if, in every 2801: 2793: 2791: 2789: 2785: 2781: 2777: 2769: 2767: 2765: 2761: 2757: 2753: 2750:According to 2748: 2746: 2742: 2738: 2734: 2730: 2726: 2722: 2714: 2712: 2710: 2705: 2703: 2699: 2691: 2689: 2672: 2669: 2666: 2663: 2660: 2657: 2654: 2651: 2648: 2645: 2642: 2636: 2633: 2610: 2607: 2604: 2601: 2598: 2592: 2589: 2586: 2583: 2560: 2557: 2554: 2551: 2548: 2542: 2539: 2533: 2513: 2493: 2473: 2453: 2432: 2412: 2400: 2398: 2396: 2392: 2387: 2385: 2377: 2374: 2373: 2368: 2366: 2360: 2359: 2354: 2352: 2347: 2341: 2340: 2335: 2330: 2325: 2321: 2316: 2315: 2310: 2306: 2301: 2300: 2297: 2293: 2289: 2283: 2266: 2263: 2260: 2254: 2251: 2243: 2239: 2234: 2230: 2226: 2219: 2215: 2211: 2206: 2202: 2195: 2191: 2187: 2181: 2180: 2175: 2170: 2165: 2161: 2156: 2155: 2150: 2146: 2141: 2140: 2137: 2133: 2129: 2123: 2121: 2102: 2099: 2096: 2090: 2087: 2078: 2076: 2068: 2066: 2052: 2032: 2012: 1991: 1988: 1985: 1965: 1945: 1925: 1919: 1899: 1890: 1876: 1869:to it. Thus, 1856: 1836: 1816: 1810: 1790: 1770: 1750: 1730: 1710: 1687: 1681: 1678: 1675: 1669: 1663: 1657: 1651: 1648: 1641: 1640: 1639: 1625: 1605: 1585: 1565: 1545: 1536: 1517: 1492: 1472: 1460: 1458: 1444: 1422: 1418: 1414: 1409: 1405: 1395: 1379: 1375: 1352: 1348: 1325: 1321: 1298: 1294: 1271: 1267: 1244: 1240: 1217: 1213: 1209: 1204: 1200: 1172: 1168: 1159: 1149: 1145: 1130: 1114: 1110: 1087: 1083: 1062: 1040: 1036: 1013: 1009: 988: 968: 965: 960: 956: 952: 947: 943: 922: 919: 914: 910: 906: 901: 897: 874: 870: 866: 861: 857: 853: 850: 828: 824: 820: 815: 811: 807: 804: 781: 778: 775: 763: 761: 744: 736: 727: 710: 702: 693: 677: 652: 638: 624: 621: 615: 612: 609: 586: 566: 543: 523: 503: 500: 497: 477: 474: 471: 451: 431: 411: 404:derived from 390: 382: 374: 369: 355: 335: 315: 295: 292: 289: 266: 263: 260: 254: 251: 227: 219: 195: 192: 189: 177: 170: 165: 163: 156: 153: 152: 150: 146: 142: 132: 130: 128: 124: 120: 114: 112: 108: 104: 100: 92: 90: 88: 84: 83:Jenő Egerváry 80: 76: 72: 68: 64: 60: 56: 52: 43: 37: 33: 32:Kőnig's lemma 19: 3884: 3858: 3816: 3788: 3782: 3769: 3765: 3762:Kőnig, Dénes 3752: 3748: 3745:Kőnig, Dénes 3703: 3699: 3674: 3668: 3644: 3635:Bondy, J. A. 3615: 3591: 3567: 3515:This is the 3511: 3498: 3486: 3474: 3462: 3441: 3425: 3413: 3400: 3388: 3361: 3349: 3318: 3306: 3302: 3297: 3269: 3265: 3261: 3260:weight of a 3257: 3255: 3254: 3248: 3244: 3237: 3233: 3227: 3226: 3222: 3215: 3209: 3208: 3204: 3197: 3193: 3191: 3182: 3175: 3174: 3170: 3165: 3161: 3160:__________ 3159: 3153: 3150: 3146: 3144: 3140: 3137: 3133: 3129: 3127: 3120: 3119: 3117: 3107: 3105: 3102: 3097: 3093: 3092:__________ 3091: 3085: 3082: 3078: 3076: 3072: 3069: 3065: 3064: 3062: 3055: 3054: 3053:The maximum 3052: 3045: 3041: 3039: 3038: 3025: 3021: 3018:vertex-cover 3015: 3014: 3010: 3007: 3003: 2996: 2992: 2987: 2972: 2962: 2958: 2954: 2950: 2946: 2942: 2940: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2884: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2816: 2797: 2784:maximum flow 2773: 2749: 2740: 2718: 2706: 2695: 2404: 2388: 2381: 2371: 2370: 2362: 2357: 2356: 2345: 2343: 2333: 2332: 2328: 2323: 2319: 2318:__________ 2317: 2311: 2308: 2304: 2302: 2298: 2295: 2291: 2287: 2285: 2241: 2232: 2228: 2224: 2217: 2213: 2207: 2204: 2200: 2193: 2189: 2185: 2183: 2173: 2171: 2168: 2163: 2159: 2158:__________ 2157: 2151: 2148: 2144: 2142: 2138: 2135: 2131: 2127: 2125: 2079: 2072: 1891: 1702: 1537: 1464: 1396: 1131: 889:, such that 764: 692:maximum flow 639: 516:to the sink 373:flow network 370: 243: 179:Minimum cut 160: 138: 137: 115: 110: 102: 99:vertex cover 96: 61:, proved by 58: 55:graph theory 51:mathematical 48: 3236:is at most 2887:line graphs 2756:Gyula Kőnig 2743:. However, 2721:Dénes Kőnig 2702:NP-complete 2227:| ones and 1703:Every edge 726:minimum cut 3906:Categories 3559:References 3031:vertices. 1783:. For, if 3772:: 116–119 3755:: 104–119 3713:1205.4605 3301:Called a 3230:-matching 2587:∩ 2537:∖ 2378:Algorithm 1989:∩ 1923:∖ 1814:∖ 1679:∩ 1670:∪ 1661:∖ 1415:∪ 1210:∪ 966:⊂ 920:⊂ 867:∪ 821:∪ 741:∞ 707:∞ 640:The size 622:∈ 547:∞ 501:∈ 475:∈ 387:∞ 224:∞ 3857:(1986), 3738:13513566 3641:(1976), 3613:(2011), 3303:covering 3278:See also 3221:for all 3033:Egerváry 2982:Egerváry 2025:. Thus, 1028:or from 745:′ 711:′ 599:for any 391:′ 228:′ 107:matching 53:area of 3877:0859549 3843:0406862 3805:0302480 3730:3280546 3691:0124238 3212:-weight 2953:, when 2800:perfect 2725:regular 2715:History 2401:Example 2236:is the 157:Example 139:In any 111:maximum 103:minimum 93:Setting 65: ( 49:In the 3891:  3875:  3865:  3841:  3831:  3803:  3736:  3728:  3689:  3653:  3623:  3575:  3305:and a 3207:. The 3006:. The 2921:. If 2812:clique 2806:, the 2764:umlaut 2344:where 2184:where 1397:Thus, 166:Proofs 3734:S2CID 3708:arXiv 3596:(PDF) 3290:Notes 2874:with 2862:with 2850:with 2842:with 559:from 3889:ISBN 3863:ISBN 3829:ISBN 3651:ISBN 3621:ISBN 3573:ISBN 2778:and 1367:and 1313:and 1259:and 935:and 843:and 765:Let 67:1931 3821:doi 3793:doi 3718:doi 3679:doi 3519:of 3432:, 3173:≥ 3106:≤ 2331:≥ 2240:of 2172:≤ 2005:in 1723:in 1102:to 1055:to 1001:to 694:in 579:to 77:in 3908:: 3873:MR 3871:, 3853:; 3839:MR 3837:, 3827:, 3801:MR 3799:, 3787:, 3770:38 3768:, 3753:34 3751:, 3732:, 3726:MR 3724:, 3716:, 3704:27 3702:, 3687:MR 3685:, 3673:, 3637:; 3609:; 3542:^ 3527:^ 3373:^ 3330:^ 3270:w- 3258:w- 3251:: 3169:· 3149:≥ 3121:w- 3101:· 3081:≥ 3056:w- 3046:w- 3042:w- 3016:w- 3008:w- 2977:. 2882:. 2866:-| 2854:-| 2790:. 2766:. 2704:. 2688:. 2673:13 2667:11 2661:10 2611:13 2605:11 2599:10 2576:, 2327:· 2307:≥ 2242:G, 2167:· 2147:≥ 1457:. 1394:. 762:. 637:. 368:. 97:A 89:. 57:, 3898:. 3846:. 3823:: 3808:. 3795:: 3789:2 3774:. 3757:. 3720:: 3710:: 3694:. 3681:: 3675:9 3660:. 3630:. 3582:. 3537:. 3506:. 3493:. 3469:. 3457:. 3436:. 3420:. 3356:. 3344:. 3266:b 3262:b 3249:b 3245:w 3240:v 3238:b 3234:v 3228:b 3223:v 3218:v 3216:b 3210:b 3205:b 3200:v 3198:b 3194:v 3178:. 3176:w 3171:y 3166:G 3162:A 3155:V 3151:0 3147:y 3141:y 3138:· 3134:V 3130:1 3113:. 3111:V 3108:1 3103:x 3098:G 3094:A 3087:E 3083:0 3079:x 3073:x 3070:· 3066:w 3028:e 3026:w 3022:e 3004:w 2999:e 2997:w 2993:e 2963:G 2959:G 2955:G 2951:G 2947:G 2943:G 2935:G 2931:G 2929:( 2927:L 2923:G 2919:G 2915:G 2913:( 2911:L 2907:G 2903:G 2899:G 2897:( 2895:L 2891:G 2876:M 2872:G 2868:M 2864:n 2860:G 2856:M 2852:n 2848:G 2844:n 2840:G 2836:M 2832:G 2828:G 2824:G 2820:G 2676:} 2670:, 2664:, 2658:, 2655:6 2652:, 2649:4 2646:, 2643:2 2640:{ 2637:= 2634:K 2614:} 2608:, 2602:, 2596:{ 2593:= 2590:Z 2584:R 2564:} 2561:6 2558:, 2555:4 2552:, 2549:2 2546:{ 2543:= 2540:Z 2534:L 2514:Z 2494:U 2474:L 2454:U 2433:R 2413:L 2346:y 2339:. 2337:E 2334:1 2329:y 2324:G 2320:A 2313:V 2309:0 2305:y 2299:y 2296:· 2292:V 2288:1 2270:) 2267:E 2264:, 2261:V 2258:( 2255:= 2252:G 2233:G 2229:A 2225:V 2221:V 2218:1 2214:E 2209:E 2205:0 2201:E 2197:E 2194:1 2190:E 2186:x 2179:. 2177:V 2174:1 2169:x 2164:G 2160:A 2153:E 2149:0 2145:x 2139:x 2136:· 2132:E 2128:1 2122:: 2106:) 2103:E 2100:, 2097:V 2094:( 2091:= 2088:G 2053:M 2033:K 2013:K 1992:Z 1986:B 1966:U 1946:Z 1926:Z 1920:A 1900:K 1877:K 1857:e 1837:e 1817:Z 1811:A 1791:e 1771:K 1751:K 1731:E 1711:e 1688:. 1685:) 1682:Z 1676:B 1673:( 1667:) 1664:Z 1658:A 1655:( 1652:= 1649:K 1626:U 1606:U 1586:Z 1566:A 1546:U 1522:| 1518:M 1514:| 1493:M 1473:M 1445:G 1423:S 1419:B 1410:T 1406:A 1380:T 1376:B 1353:S 1349:A 1326:T 1322:B 1299:S 1295:A 1272:S 1268:B 1245:T 1241:A 1218:S 1214:B 1205:T 1201:A 1179:| 1173:S 1169:B 1164:| 1160:+ 1156:| 1150:T 1146:A 1141:| 1115:T 1111:B 1088:S 1084:A 1063:t 1041:S 1037:B 1014:T 1010:A 989:s 969:T 961:T 957:B 953:, 948:T 944:A 923:S 915:S 911:B 907:, 902:S 898:A 875:T 871:B 862:S 858:B 854:= 851:B 829:T 825:A 816:S 812:A 808:= 805:A 785:) 782:T 779:, 776:S 773:( 737:G 703:G 678:G 657:| 653:M 649:| 625:E 619:) 616:b 613:, 610:a 607:( 587:b 567:a 544:+ 524:t 504:B 498:b 478:A 472:a 452:s 432:1 412:G 383:G 356:G 336:M 316:V 296:B 293:, 290:A 270:) 267:E 264:, 261:V 258:( 255:= 252:G 220:G 199:) 196:T 193:, 190:S 187:( 151:. 38:. 20:)

Index

König's theorem (graph theory)
Kőnig's lemma
König's theorem (disambiguation)

mathematical
graph theory
Dénes Kőnig
1931
maximum matching
vertex cover problem
bipartite graphs
Jenő Egerváry
weighted graphs
vertex cover
matching
minimum vertex cover
maximum matching
bipartite graph
bipartite graph
maximum matching
minimum vertex cover

flow network
maximum flow
minimum cut
max-flow min-cut theorem
fractional matching
linear program
incidence matrix
dual linear program

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.