Knowledge (XXG)

Kundt's tube

Source đź“ť

702: 989: 441:
at resonance is not exactly equal to a multiple of the half-wavelength. Because the air at the source end of the tube, next to the speaker's diaphragm, is vibrating, it is not exactly at a node (point of zero amplitude) of the standing wave. The node actually occurs some distance beyond the end of the tube. Kundt's method allowed the actual locations of the nodes to be determined with great accuracy.
414: 25: 67: 403: 440:
A less accurate method of determining wavelength with a tube, used before Kundt, is simply to measure the length of the tube at resonance, which is approximately equal to a multiple of a half wavelength. The problem with this method is that when a tube of air is driven by a sound source, its length
262:
By filling the tube with other gases besides air, and partially evacuating it with a vacuum pump, Kundt was also able to calculate the speed of sound in different gases at different pressures. To create his vibrations, Kundt stopped the other end of the tube with a loose-fitting stopper attached to
289: 398:{\displaystyle {\frac {c_{\text{metal}}}{c_{\text{air}}}}={\frac {f\lambda _{\text{metal}}}{f\lambda _{\text{air}}}}={\frac {\lambda _{\text{metal}}}{\lambda _{\text{air}}}}={\frac {L}{d}}\,} 111:
rod. The experiment is still taught today due to its ability to demonstrate longitudinal waves in a gas (which can often be difficult to visualise). It is used today only for demonstrating
189:. The powder is caught up in the moving air and settles in little piles or lines at these nodes, because the air is still and quiet there. The distance between the piles is one half 275:, giving out a high note. Once the speed of sound in the air was known, this allowed Kundt to calculate the speed of sound in the metal of the resonator rod. The length of the rod 417:
A modern version of Kundt's tube experiment, used in a South American university physics class. Instead of a transparent tube with powder in it to reveal the nodes, this uses
239: 162:
The sound generator is turned on and the piston is adjusted until the sound from the tube suddenly gets much louder. This indicates that the tube is at
46: 33: 479:"Ueber eine neue Art Akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Shallgeschwindigkeit in festen Körpern und Gasen" 911: 283:
was equal to a half wavelength of the sound in air. So the ratio of the two was equal to the ratio of the speed of sound in the two materials:
166:. This means the length of the round-trip path of the sound waves, from one end of the tube to the other and back again, is a multiple of the 263:
the end of a metal rod projecting into the tube, clamped at its center. When it was rubbed lengthwise with a piece of leather coated with
177:. Therefore, the length of the tube is a multiple of half a wavelength. At this point, the sound waves in the tube are in the form of 638: 590: 750: 38: 871: 159:. The other end of the tube is blocked by a movable piston which can be used to adjust the length of the tube. 926: 806: 663: 631: 745: 655: 886: 784: 701: 688: 429:
of the wave the sound pressure goes to zero. The sound power from the microphones is recorded on the
272: 124: 490: 906: 816: 279:
was equal to a half wavelength of the sound in metal, and the distance between the piles of powder
214: 610: 562: 478: 1013: 992: 838: 789: 624: 246: 72: 828: 962: 794: 586: 580: 268: 136: 523: 972: 891: 855: 823: 774: 683: 498: 152: 147:
that he caused to vibrate or 'ring' by rubbing it, but modern demonstrations usually use a
967: 921: 762: 720: 128: 609:
Hortvet, J. (1902). A manual of elementary practical physics. Minneapolis: H.W. Wilson.
556: 494: 916: 901: 848: 430: 251: 186: 100: 1007: 881: 843: 811: 766: 728: 678: 673: 552: 450: 178: 112: 185:
of vibrations of air is zero at equally spaced intervals along the tube, called the
876: 96: 204:
of the sound is known, multiplying it by the wavelength gives the speed of sound
896: 708: 459:, demonstrates the relationship between standing sound waves and sound pressure. 456: 148: 528:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
957: 947: 733: 418: 196:/2 of the sound. By measuring the distance between the piles, the wavelength 190: 174: 167: 92: 502: 738: 668: 647: 182: 163: 156: 144: 140: 413: 24: 833: 801: 426: 127:
horizontal pipe which contains a small amount of a fine powder such as
779: 139:. At one end of the tube is a source of sound at a single frequency (a 66: 244:
The detailed motion of the powder is actually due to an effect called
530:. Vol. 35, no. 4. UK: Taylor & Francis. pp. 41–48 425:
is moved back and forth. When the microphone's position is at the
952: 412: 264: 108: 942: 132: 620: 104: 18: 616: 561:(3rd ed.). London: Charles Griffin & Co. pp.  292: 250:
caused by the interaction of the sound wave with the
217: 200:
of the sound in air can be found. If the frequency
935: 864: 761: 719: 654: 397: 233: 453:, another standing wave visualization technique. 585:. UK: Cambridge University Press. p. 287. 95:apparatus invented in 1866 by German physicist 632: 8: 70:Drawing from Kundt's original 1866 paper in 639: 625: 617: 546: 544: 489:(4). Leipzig: J. C. Poggendorff: 497–523. 394: 384: 373: 363: 357: 345: 330: 320: 309: 299: 293: 291: 230: 216: 65: 49:of all important aspects of the article. 469: 80:and the powder patterns created by it 45:Please consider expanding the lead to 76:, showing the Kundt's tube apparatus 7: 522:Kundt, August (January–June 1868). 254:of air at the surface of the tube. 14: 421:mounted in the tube. The piston 16:Experimental acoustical apparatus 988: 987: 700: 23: 37:may be too short to adequately 47:provide an accessible overview 1: 582:Fluid Dynamics for Physicists 234:{\displaystyle c=\lambda f\,} 558:A Textbook of Physics: Sound 143:). Kundt used a metal rod 99:for the measurement of the 1030: 983: 695: 503:10.1002/andp.18662030402 664:Architectural acoustics 567:Kundt's tube resonance. 115:and acoustical forces. 751:Fletcher–Munson curves 746:Equal-loudness contour 656:Acoustical engineering 551:Poynting, John Henry; 524:"Acoustic Experiments" 437: 399: 235: 85: 887:Hermann von Helmholtz 785:Fundamental frequency 689:Sympathetic resonance 579:Faber, T. E. (1995). 416: 400: 273:fundamental frequency 236: 69: 290: 215: 78:(fig.6 & 7, top) 907:Werner Meyer-Eppler 817:Missing fundamental 495:1866AnP...203..497K 409:Reason for accuracy 267:, the rod vibrated 258:Further experiments 91:is an experimental 790:Frequency spectrum 483:Annalen der Physik 477:Kundt, A. (1866). 438: 395: 247:acoustic streaming 231: 86: 73:Annalen der Physik 1001: 1000: 963:Musical acoustics 795:harmonic spectrum 392: 379: 376: 366: 352: 348: 333: 315: 312: 302: 64: 63: 1021: 991: 990: 892:Carleen Hutchins 824:Combination tone 711: 704: 684:String vibration 641: 634: 627: 618: 597: 596: 576: 570: 569: 548: 539: 538: 536: 535: 519: 513: 512: 510: 509: 474: 404: 402: 401: 396: 393: 385: 380: 378: 377: 374: 368: 367: 364: 358: 353: 351: 350: 349: 346: 336: 335: 334: 331: 321: 316: 314: 313: 310: 304: 303: 300: 294: 240: 238: 237: 232: 153:signal generator 82:(fig.1, 2, 3, 4) 59: 56: 50: 27: 19: 1029: 1028: 1024: 1023: 1022: 1020: 1019: 1018: 1004: 1003: 1002: 997: 979: 931: 922:D. Van Holliday 860: 829:Mersenne's laws 763:Audio frequency 757: 721:Psychoacoustics 715: 714: 707: 693: 650: 645: 606: 604:Further reading 601: 600: 593: 578: 577: 573: 550: 549: 542: 533: 531: 521: 520: 516: 507: 505: 476: 475: 471: 466: 447: 411: 369: 359: 341: 337: 326: 322: 305: 295: 288: 287: 260: 213: 212: 121: 60: 54: 51: 44: 32:This article's 28: 17: 12: 11: 5: 1027: 1025: 1017: 1016: 1006: 1005: 999: 998: 996: 995: 984: 981: 980: 978: 977: 976: 975: 970: 960: 955: 950: 945: 939: 937: 936:Related topics 933: 932: 930: 929: 924: 919: 917:Joseph Sauveur 914: 909: 904: 902:Marin Mersenne 899: 894: 889: 884: 879: 874: 868: 866: 862: 861: 859: 858: 853: 852: 851: 841: 836: 831: 826: 821: 820: 819: 814: 809: 799: 798: 797: 787: 782: 777: 771: 769: 759: 758: 756: 755: 754: 753: 743: 742: 741: 736: 725: 723: 717: 716: 713: 712: 705: 697: 696: 694: 692: 691: 686: 681: 676: 671: 666: 660: 658: 652: 651: 646: 644: 643: 636: 629: 621: 615: 614: 605: 602: 599: 598: 591: 571: 553:Thomson, J. J. 540: 514: 468: 467: 465: 462: 461: 460: 454: 451:Chladni plates 446: 443: 431:chart recorder 423:(right center) 410: 407: 406: 405: 391: 388: 383: 372: 362: 356: 344: 340: 329: 325: 319: 308: 298: 269:longitudinally 259: 256: 252:boundary layer 242: 241: 229: 226: 223: 220: 179:standing waves 151:attached to a 123:The tube is a 120: 117: 113:standing waves 101:speed of sound 62: 61: 41:the key points 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1026: 1015: 1012: 1011: 1009: 994: 986: 985: 982: 974: 971: 969: 966: 965: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 940: 938: 934: 928: 925: 923: 920: 918: 915: 913: 912:Lord Rayleigh 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 882:Ernst Chladni 880: 878: 875: 873: 870: 869: 867: 863: 857: 854: 850: 847: 846: 845: 844:Standing wave 842: 840: 837: 835: 832: 830: 827: 825: 822: 818: 815: 813: 812:Inharmonicity 810: 808: 805: 804: 803: 800: 796: 793: 792: 791: 788: 786: 783: 781: 778: 776: 773: 772: 770: 768: 764: 760: 752: 749: 748: 747: 744: 740: 737: 735: 732: 731: 730: 727: 726: 724: 722: 718: 710: 706: 703: 699: 698: 690: 687: 685: 682: 680: 679:Soundproofing 677: 675: 674:Reverberation 672: 670: 667: 665: 662: 661: 659: 657: 653: 649: 642: 637: 635: 630: 628: 623: 622: 619: 612: 608: 607: 603: 594: 592:0-521-42969-2 588: 584: 583: 575: 572: 568: 564: 560: 559: 554: 547: 545: 541: 529: 525: 518: 515: 504: 500: 496: 492: 488: 485:(in German). 484: 480: 473: 470: 463: 458: 455: 452: 449: 448: 444: 442: 435: 434:(center rear) 432: 428: 424: 420: 415: 408: 389: 386: 381: 370: 360: 354: 342: 338: 327: 323: 317: 306: 296: 286: 285: 284: 282: 278: 274: 270: 266: 257: 255: 253: 249: 248: 227: 224: 221: 218: 211: 210: 209: 207: 203: 199: 195: 192: 188: 184: 180: 176: 172: 169: 165: 160: 158: 154: 150: 146: 142: 138: 134: 130: 126: 118: 116: 114: 110: 106: 102: 98: 94: 90: 83: 79: 75: 74: 68: 58: 48: 42: 40: 35: 30: 26: 21: 20: 927:Thomas Young 877:Jens Blauert 865:Acousticians 581: 574: 566: 557: 532:. Retrieved 527: 517: 506:. Retrieved 486: 482: 472: 439: 433: 422: 280: 276: 261: 245: 243: 208:in the air: 205: 201: 197: 193: 170: 161: 155:producing a 122: 119:How it works 97:August Kundt 89:Kundt's tube 88: 87: 81: 77: 71: 52: 36: 34:lead section 897:Franz Melde 872:John Backus 856:Subharmonic 709:Spectrogram 457:Rubens tube 419:microphones 175:sound waves 149:loudspeaker 125:transparent 958:Ultrasound 948:Infrasound 734:Bark scale 534:2009-06-25 508:2009-06-25 464:References 191:wavelength 181:, and the 168:wavelength 137:lycopodium 93:acoustical 1014:Acoustics 839:Resonance 739:Mel scale 669:Monochord 648:Acoustics 611:Page 119+ 371:λ 361:λ 343:λ 328:λ 225:λ 183:amplitude 164:resonance 157:sine wave 145:resonator 141:pure tone 39:summarize 1008:Category 993:Category 834:Overtone 802:Harmonic 555:(1903). 445:See also 55:May 2014 780:Formant 491:Bibcode 271:at its 173:of the 973:Violin 807:Series 589:  565:–117. 131:dust, 968:Piano 953:Sound 767:pitch 729:Pitch 427:nodes 365:metal 332:metal 301:metal 265:rosin 187:nodes 109:solid 107:or a 103:in a 943:Echo 849:Node 775:Beat 765:and 587:ISBN 133:talc 129:cork 563:115 499:doi 487:127 375:air 347:air 311:air 135:or 105:gas 1010:: 543:^ 526:. 497:. 481:. 436:. 640:e 633:t 626:v 613:. 595:. 537:. 511:. 501:: 493:: 390:d 387:L 382:= 355:= 339:f 324:f 318:= 307:c 297:c 281:d 277:L 228:f 222:= 219:c 206:c 202:f 198:λ 194:λ 171:λ 84:. 57:) 53:( 43:.

Index


lead section
summarize
provide an accessible overview

Annalen der Physik
acoustical
August Kundt
speed of sound
gas
solid
standing waves
transparent
cork
talc
lycopodium
pure tone
resonator
loudspeaker
signal generator
sine wave
resonance
wavelength
sound waves
standing waves
amplitude
nodes
wavelength
acoustic streaming
boundary layer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑