Knowledge (XXG)

KaiB

Source đź“ť

560:
sequential manner – Thr432 is phosphorylated first, followed by Ser431. Phosphorylation of the Ser431 residue drives a significant conformational change in the KaiC hexamer. The CI and CII rings of the protein complex stack more tightly, exposing the previously occluded B-loop. The B-loop in turn recruits KaiB, which simultaneously binds to KaiA and KaiC. KaiB binding removes KaiA from the A-loop, and in turn both promotes the autophosphatase activity of KaiC and inhibits its autokinase activity. Dephosphorylation of KaiC occurs in the subjective night, and proceeds in the reverse order of phosphorylation; Thr432 is dephosphorylated before Ser431.
593:
interacting with KaiC. The KaiB tetramer exists in equilibrium with a monomeric form of the protein. However, monomeric KaiB must undergo a radical change in tertiary structure to associate with KaiC, shifting from a so-called ground state conformation (gs-KaiB) to a fold-switched conformation (fs-KaiB) capable of binding to the KaiC B-loop. To date, KaiB is the only known metamorphic clock protein – a class of proteins capable of reversible fold-switching.
625:
mechanisms rely on biochemical changes that track photosynthetic reactions performed by the cyanobacterium, reactions that exhibit rate increases proportional to ambient light intensity. CikA and LdpA, for example, sense the redox state of the intracellular environment and relay changes to the Kai oscillator. In addition, KaiA and KaiC appear to directly detect metabolites of photosynthesis – specifically quinone and
568: 597:
the B-loop first becomes exposed - until dusk. As a result, phospho-RpaA accumulates as the day progresses and peaks near dusk, appropriately timing increases in the expression of Class 1 genes. Moreover, this time-lag in KaiB binding delays the onset of autophosphatase activity in KaiC, contributing to the circadian period of the cyanobacterial oscillator.
642:. Additionally, they hope to discover the adaptive significance of circadian rhythms using clock gene mutants of cyanobacteria. The Rust lab is researching how the interactions of proteins, neurotransmitters, and ion gradients produce the behavior of living cyanobacteria cells, using a combination of techniques such as advanced biochemical 621:– whose transcript and protein levels oscillate considerable over the course of the day - constitute an operon under the control of a single promoter and are transcribed as a polycistronic mRNA. By contrast, protein levels of KaiA, which lies under the control of an independent promoter, remain fairly across a 24-hour period. 556:
are collectively referred to as the CI and CII rings. KaiC has both intrinsic autokinase and autophosphate activity, each of which can be modulated by KaiA and KaiB binding. In particular, the phosphorylation and dephosphorylation of residues Ser431 and Thr432 in the CII ring drive circadian rhythms in the Kai oscillator.
555:
KaiC is organized as a ring-shaped homohexamer. Each monomer component contains four essential structural motifs: a CI domain, a CII domain, a B-loop binding domain, and a tail that protrudes from the C-terminus known as the A-loop. Because the CI and CII domains are aligned in the KaiC hexamer, they
352:
Cyanobacteria are a group of photosynthetic, nitrogen-fixing bacteria that are known to be one of the first life forms on Earth, and are thought to have emerged at least 3,500 million years ago (Mya). They are the only known oxidative photosynthetic prokaryotes. Cyanobacteria use circadian clocks to
637:
Both Dr. Carl Johnson’s lab at Vanderbilt University and Dr. Michael Rust’s lab at the University of Chicago have research efforts focused on the KaiABC complex. The Johnson lab, in collaboration with Dr. Hassane Mchaourab’s lab, focuses on using biophysical methods to explain how the cyanobacteria
596:
Fs-KaiB has a thioredoxin-like fold that closely resembles the N-terminus of SasA, and competitively displaces the kinase’s binding to KaiC. However, the conformation change from gs-KaiB to fs-KaiB occurs slowly, permitting SasA binding to KaiC and downstream activation of RpaA from midday – when
559:
At the start of the subjective day, the Ser431 and Thr432 residues of the KaiC hexamer are unphosphorylated, and the A-loop domains of its constituent monomers are exposed. KaiA binds to the A-loop domain of KaiC, promoting autokinase activity. Phosphorylation of the protein occurs in an ordered,
588:
SasA can bind to the exposed B-loop of the KaiC molecule upon phosphorylation of the Ser431 residue. This interaction drives SasA autophosphorylation and subsequent phosphotransfer to RpaA. Phospho-RpaA activates the expression of dusking-peaking (Class 1) genes and represses the expression of
329:
mRNA accumulation using a transcription or translation inhibitor did not prevent the circadian cycling of kaiC phosphorylation. Thus, it is the case that cyanobacterial clock rhythmicity is independent of both transcription and translation. Additionally, experiments were conducted to test the
624:
In addition, the phase of the Kai oscillator can be shifted in response to environmental changes. However, unlike phase-shifting mechanisms characterized in eukaryotic organisms, photopigments do not appear to play a role in entrainment of the cyanobacterial clock. Instead, identified input
592:
KaiB serves as a major regulator of the SasA-RpaA pathway, and exhibits structural adaptations that both contribute to circadian rhythm generation and facilitate interaction with SasA and KaiC. The majority of KaiB expressed in cyanobacteria exists as an inactive homotetramer, incapable of
186:
species. Moreover, characterization of the cyanobacterial clock demonstrated the existence of transcription-independent, post-translational mechanisms of rhythm generation, challenging the universality of the transcription-translation feedback loop model of circadian rhythmicity.
589:
dawn-peaking (Class 2) genes. Conversely, unphosphorylated RpaA represses the expression of Class 1 genes. As a result, rhythmic phosphorylation of the transcription factor, driven by the Kai oscillator and associated SasA activity, produces rhythmic patterns in gene expression.
563:
Ultimately, these circadian rhythms in KaiC phosphorylation governed by KaiA and KaiB binding create a post-translation oscillator that can interact with both input pathways to entrain to changing environmental conditions and output pathways to mediate transcriptional events.
353:
regulate nitrogen-fixation, cell division, and other metabolic processes. The vast majority of cyanobacterial genes are expressed in a circadian fashion, generally falling into Class I (dusk-peaking) and Class II (dawn-peaking) categories depending on their specific function.
543:
genes, regulates global patterns of gene expression and governs essential cellular processes including photosynthesis and cell division. Cyclic, sequential rhythms of KaiC phosphorylation and dephosphorylation constitute the oscillator’s timekeeping mechanism both
211:
rule" stipulated that cellular functions could only be coupled to a circadian oscillator in cells dividing only as fast as once in a 24-hour period. Prokaryotes, which often undergo cellular division multiple times in a single day, failed to meet this condition.
580:
Though the Kai oscillator is capable of generating endogenous rhythms in phosphorylation, it does not directly influence gene expression; none of the Kai proteins possess DNA-binding domains. Instead, a two-component system consisting of SasA, a
1227:
Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L (June 2008). "Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511".
234:
cyanobacteria, demonstrating circadian rhythmicity in a prokaryotic species. Following these discoveries, chronobiologists set out to identify the molecular mechanisms governing operation of the cyanobacterial clock.
227:
observed in cyanobacteria suggested the existence of some mechanism of circadian control. Finally, in 1986 Tan-Chi Huang and colleagues discovered and characterized robust, 24-hour rhythms of nitrogen fixation in
298:. Examination of rescue patterns in over 50 clock mutants showing either short periods, long periods or arrhythmia revealed restoration to WT phenotype in all mutants. Further sequencing revealed 19 total 356:
The rhythmic expression of cyanobacterial genes is driven by oscillation in the phosphorylation state of the Kai oscillator and its interaction with various output mechanisms. The evolution of the three
943:
Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (September 1998). "Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria".
334:
gene cluster. By incubating KaiC together with KaiA and KaiB, as well as ATP, the temperature compensation aspect of the KaiABC clock was proved. Additionally, such circadian periods seen in kaiC
203:- endogenous, entrainable oscillations in biological processes with periods that roughly correspond to the 24-hour day – were once believed to be an exclusive property of eukaryotic lifeforms. 1044:
Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (April 2005). "Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro".
274:
in a plasmid vector allowed testing for “rescue clones” with a normal period of 25 hours. When the DNA library from this rescued clone was placed into a plasmid at the original site,
571:
Cyclic rhythms in phosphorylation of the KaiC hexamer serve as a timekeeping mechanism for the cyanobacterial Kai oscillator. Circles shaded red represent phosphorylated residues.
314:. The mutant phenotypes being all caused by a single amino acid substitution on one of the aforementioned genes determined that Kai proteins play a significant role in the 514:
are coincident - have been tentatively implicated in rudimentary timekeeping mechanisms. Others play roles in strikingly divergent cellular processes, such as the
432:
demonstrate oscillations in gene expression and cell cycle progression, but these rhythms are not self-sustaining and rapidly disappear under constant conditions.
1544:
Chang YG, Cohen SE, Phong C, Myers WK, Kim YI, Tseng R, Lin J, Zhang L, Boyd JS, Lee Y, Kang S, Lee D, Li S, Britt RD, Rust MJ, Golden SS, LiWang A (July 2015).
629:– and adjust the phase of the oscillator accordingly. To date, KaiB has not been implicated in an input pathway capable of entraining the cyanobacterial clock. 80: 68: 115: 765:
Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986). "Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically".
1312:
Loza-Correa M, Sahr T, Rolando M, Daniels C, Petit P, Skarina T, Gomez Valero L, Dervins-Ravault D, Honoré N, Savchenko A, Buchrieser C (February 2014).
207:
were thought to lack the cellular complexity to maintain persistent, temperature-compensated timekeeping. In addition, the widely supported "circadian-
178:, KaiB plays a central role in operation of the cyanobacterial circadian clock. Discovery of the Kai genes marked the first-ever identification of a 321:
Initially, it was thought that a transcription-translation feedback loop was necessary in creating circadian rhythms so it was believed that
61: 1314:"The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments" 714:
Kippert F (1987). "Endocytobiotic coordination, intracellular calcium signaling, and the origin of endogenous rhythms".
655: 1412:"Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria" 1479:"A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria" 216: 1854: 1849: 1603:"In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB" 282:, was found to be rhythmic in nature when the fragment of the plasmid responsible for rescue was sequenced. 38: 1546:"Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria" 626: 467:. The function this expanded set of clock genes remains speculative, but current evidence suggests these 1817:"Carl Johnson Laboratory." Carl Johnson Laboratory. Vanderbilt University, 2017. Web. 30 Apr. 2017. < 585:, and RpaA, a transcription factor, connect changes in KaiC phosphorylation to transcriptional events. 1644:"KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system" 613:. For example, a stoichiometric ratio of clock components must be maintained to preserve rhythmicity. 1774: 1707: 1557: 1490: 1423: 1325: 1115: 1053: 1000: 953: 774: 723: 1763:"Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator" 330:
self-sustainable oscillation of KaiC phosphorylation, which is important in the regulation of the
1725: 1508: 1441: 1253: 1133: 1077: 1026: 790: 747: 215:
Over time, mounting evidence began to challenge this assertion and supported the existence of a
1800: 1743: 1673: 1624: 1583: 1526: 1459: 1392: 1351: 1294: 1245: 1209: 1151: 1069: 1018: 969: 925: 876: 739: 224: 200: 1830:"Research." Rust Lab. Institute of Genomics and Systems Biology, n.d. Web. 30 Apr. 2017. < 1790: 1782: 1733: 1715: 1663: 1655: 1614: 1573: 1565: 1516: 1498: 1477:
Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H (August 2006).
1449: 1431: 1382: 1341: 1333: 1284: 1237: 1199: 1191: 1141: 1123: 1061: 1008: 961: 915: 907: 866: 858: 825: 782: 731: 660: 582: 408:
genes are independently required for sustained circadian rhythmicity in cyanobacteria, the
1371:"Visualizing a circadian clock protein: crystal structure of KaiC and functional insights" 690: 251: 135: 1778: 1711: 1561: 1494: 1427: 1329: 1273:"Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides" 1119: 1057: 1004: 957: 778: 727: 1795: 1762: 1738: 1695: 1578: 1545: 1521: 1478: 1346: 1313: 1204: 1179: 920: 895: 871: 846: 830: 809: 735: 499: 220: 167: 1668: 1643: 1146: 1103: 325:
would have this function as well. However, it was later discovered that inhibition of
1843: 1696:"Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock" 1454: 1411: 695: 670: 665: 230: 1081: 751: 412:
gene is restricted to a group of higher-order cyanobacteria. For example, while the
1257: 1030: 989:"No transcription-translation feedback in circadian rhythm of KaiC phosphorylation" 794: 247: 1619: 1602: 1289: 1272: 965: 373:– remains an area of active study. Recent phylogenetic evidence suggests that the 1387: 1370: 85: 73: 685: 271: 243: 204: 183: 145: 1700:
Proceedings of the National Academy of Sciences of the United States of America
1483:
Proceedings of the National Academy of Sciences of the United States of America
1416:
Proceedings of the National Academy of Sciences of the United States of America
1108:
Proceedings of the National Academy of Sciences of the United States of America
643: 567: 255: 109: 92: 1241: 397:
into an operon under the control of a single promoter occurred shortly after
1831: 1786: 1720: 1569: 1503: 1337: 1128: 1065: 1013: 988: 503: 208: 179: 1804: 1747: 1677: 1659: 1628: 1587: 1530: 1463: 1396: 1355: 1298: 1249: 1213: 1155: 1073: 1022: 929: 880: 1436: 1195: 973: 743: 468: 340: 266:
cyanobacteria. The transformation of a 44 hour long-period clock mutant,
97: 1818: 1729: 1512: 862: 1137: 911: 495: 1445: 1369:
Pattanayek R, Wang J, Mori T, Xu Y, Johnson CH, Egli M (August 2004).
786: 162: 56: 609:, the clock is subject to various additional levels of regulation 566: 680: 675: 605:
While rhythmicity in the KaiABC oscillator can be reconstituted
175: 171: 1104:"Origin and evolution of circadian clock genes in prokaryotes" 896:"Circadian Rhythm in Amino Acid Uptake by Synechococcus RF-1" 531:
The core cyanobacterial circadian oscillator, encoded by the
278:
was found to be completely rescued. One single gene cluster,
471:
help to fine-tune a central circadian rhythm established by
1410:
Nishiwaki T, Iwasaki H, Ishiura M, Kondo T (January 2000).
847:"Circadian Rhythm of the Prokaryote Synechococcus sp. RF-1" 502:. Likely originating from lateral transfer, some of these 987:
Tomita J, Nakajima M, Kondo T, Iwasaki H (January 2005).
1694:
Ivleva NB, Gao T, LiWang AC, Golden SS (November 2006).
1642:
Kitayama Y, Iwasaki H, Nishiwaki T, Kondo T (May 2003).
894:
Chen TH, Chen TL, Hung LM, Huang TC (September 1991).
262:
to monitor the activity of this clock gene found in
141: 131: 126: 108: 103: 91: 79: 67: 55: 47: 33: 28: 23: 845:Huang TC, Tu J, Chow TJ, Chen TH (February 1990). 1173: 1171: 1169: 1167: 1165: 1102:Dvornyk V, Vinogradova O, Nevo E (March 2003). 302:specific mutants, 14 of which had mutations in 219:. For example, discrete temporal separation of 1761:Rust MJ, Golden SS, O'Shea EK (January 2011). 494:genes have been identified in some species of 389:most recently around 1,000 Mya. The fusion of 258:, a reporter for gene expression, on the gene 808:Grobbelaar N, Huang T, Lin H, Chow T (1986). 8: 435:Contrasting cyanobacterial species lacking 420:cyanobacterial genera are closely related, 1184:Microbiology and Molecular Biology Reviews 716:Annals of the New York Academy of Sciences 160:is a gene located in the highly-conserved 123: 1832:http://rustlab.uchicago.edu/research.html 1794: 1737: 1719: 1667: 1618: 1601:Nakajima M, Ito H, Kondo T (March 2010). 1577: 1520: 1502: 1453: 1435: 1386: 1345: 1288: 1203: 1145: 1127: 1097: 1095: 1093: 1091: 1012: 919: 870: 829: 576:Circadian outputs and KaiB fold switching 1689: 1687: 810:"Dinitrogen-fixing endogenous rhythm in 706: 286:is composed of three individual genes: 1271:Min H, Guo H, Xiong J (January 2005). 254:, and their colleagues used bacterial 20: 1819:https://as.vanderbilt.edu/johnsonlab/ 1178:Cohen SE, Golden SS (December 2015). 518:oxidative and salt stress responses. 239:Discovery of the cyanobacterial clock 7: 1180:"Circadian Rhythms in Cyanobacteria" 16:Gene found in various cyanobacteria 831:10.1111/j.1574-6968.1986.tb01788.x 736:10.1111/j.1749-6632.1987.tb40631.x 14: 601:Regulation of the Kai oscillator 428:species. Cyanobacteria lacking 506:– particularly in cases where 385:between 3,500-2,3200 Mya, and 338:mutants were also observed in 270:, with wild-type (WT) genomic 1: 1620:10.1016/j.febslet.2010.01.016 1290:10.1016/j.febslet.2005.01.003 1230:Journal of Biological Rhythms 966:10.1126/science.281.5382.1519 401:’s appearance in the genome. 196:Prokaryotic circadian rhythms 1388:10.1016/j.molcel.2004.07.013 377:genes emerged sequentially: 656:Bacterial circadian rhythms 646:and mathematical modeling. 527:Role in the circadian clock 443:family express paralogs of 439:genes, some members of the 1871: 1318:Environmental Microbiology 217:bacterial circadian rhythm 818:FEMS Microbiology Letters 122: 1242:10.1177/0748730408316040 166:gene cluster of various 1787:10.1126/science.1197243 1721:10.1073/pnas.0606639103 1570:10.1126/science.1260031 1504:10.1073/pnas.0602955103 1338:10.1111/1462-2920.12223 1129:10.1073/pnas.0130099100 1066:10.1126/science.1108451 1014:10.1126/science.1102540 40:Synechococcus elongatus 572: 516:Legionella pneumophila 1437:10.1073/pnas.97.1.495 1196:10.1128/MMBR.00036-15 570: 1660:10.1093/emboj/cdg212 348:Evolutionary history 246:, Masahiro Ishiura, 170:species. Along with 1779:2011Sci...331..220R 1712:2006PNAS..10317468I 1562:2015Sci...349..324C 1495:2006PNAS..10312109T 1428:2000PNAS...97..495N 1330:2014EnvMi..16..359L 1120:2003PNAS..100.2495D 1058:2005Sci...308..414N 1005:2005Sci...307..251T 958:1998Sci...281.1519I 863:10.1104/pp.92.2.531 779:1986Natur.323..720M 728:1987NYASA.503..476K 912:10.1104/pp.97.1.55 573: 381:nearly 3,800 Mya, 952:(5382): 1519–23. 638:clock oscillates 318:circadian clock. 225:nitrogen fixation 201:Circadian rhythms 155: 154: 151: 150: 116:X: 2.58 - 2.59 Mb 1862: 1855:Prokaryote genes 1850:Circadian rhythm 1835: 1828: 1822: 1815: 1809: 1808: 1798: 1758: 1752: 1751: 1741: 1723: 1706:(46): 17468–73. 1691: 1682: 1681: 1671: 1648:The EMBO Journal 1639: 1633: 1632: 1622: 1598: 1592: 1591: 1581: 1541: 1535: 1534: 1524: 1506: 1489:(32): 12109–14. 1474: 1468: 1467: 1457: 1439: 1407: 1401: 1400: 1390: 1366: 1360: 1359: 1349: 1309: 1303: 1302: 1292: 1268: 1262: 1261: 1224: 1218: 1217: 1207: 1175: 1160: 1159: 1149: 1131: 1099: 1086: 1085: 1041: 1035: 1034: 1016: 984: 978: 977: 940: 934: 933: 923: 900:Plant Physiology 891: 885: 884: 874: 851:Plant Physiology 842: 836: 835: 833: 805: 799: 798: 787:10.1038/323720a0 762: 756: 755: 711: 661:Circadian rhythm 633:Current research 583:histidine kinase 404:While all three 182:oscillator in a 124: 43: 21: 1870: 1869: 1865: 1864: 1863: 1861: 1860: 1859: 1840: 1839: 1838: 1829: 1825: 1816: 1812: 1773:(6014): 220–3. 1760: 1759: 1755: 1693: 1692: 1685: 1641: 1640: 1636: 1600: 1599: 1595: 1556:(6245): 324–8. 1543: 1542: 1538: 1476: 1475: 1471: 1409: 1408: 1404: 1368: 1367: 1363: 1311: 1310: 1306: 1270: 1269: 1265: 1226: 1225: 1221: 1177: 1176: 1163: 1114:(5): 2495–500. 1101: 1100: 1089: 1052:(5720): 414–5. 1043: 1042: 1038: 999:(5707): 251–4. 986: 985: 981: 942: 941: 937: 893: 892: 888: 844: 843: 839: 807: 806: 802: 773:(6090): 720–2. 764: 763: 759: 713: 712: 708: 704: 691:Phosphorylation 652: 635: 603: 578: 529: 524: 451:referred to as 426:Prochlorococcus 418:Prochlorococcus 350: 241: 198: 193: 37: 17: 12: 11: 5: 1868: 1866: 1858: 1857: 1852: 1842: 1841: 1837: 1836: 1823: 1810: 1753: 1683: 1654:(9): 2127–34. 1634: 1613:(5): 898–902. 1593: 1536: 1469: 1402: 1375:Molecular Cell 1361: 1304: 1263: 1219: 1161: 1087: 1036: 979: 935: 886: 837: 800: 757: 705: 703: 700: 699: 698: 693: 688: 683: 678: 673: 668: 663: 658: 651: 648: 634: 631: 602: 599: 577: 574: 528: 525: 523: 520: 500:Pseudomonadota 349: 346: 240: 237: 221:photosynthesis 197: 194: 192: 189: 168:cyanobacterial 153: 152: 149: 148: 143: 139: 138: 133: 129: 128: 120: 119: 112: 106: 105: 101: 100: 95: 89: 88: 83: 77: 76: 71: 65: 64: 59: 53: 52: 49: 45: 44: 35: 31: 30: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 1867: 1856: 1853: 1851: 1848: 1847: 1845: 1833: 1827: 1824: 1820: 1814: 1811: 1806: 1802: 1797: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1757: 1754: 1749: 1745: 1740: 1735: 1731: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1697: 1690: 1688: 1684: 1679: 1675: 1670: 1665: 1661: 1657: 1653: 1649: 1645: 1638: 1635: 1630: 1626: 1621: 1616: 1612: 1608: 1604: 1597: 1594: 1589: 1585: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1537: 1532: 1528: 1523: 1518: 1514: 1510: 1505: 1500: 1496: 1492: 1488: 1484: 1480: 1473: 1470: 1465: 1461: 1456: 1451: 1447: 1443: 1438: 1433: 1429: 1425: 1421: 1417: 1413: 1406: 1403: 1398: 1394: 1389: 1384: 1381:(3): 375–88. 1380: 1376: 1372: 1365: 1362: 1357: 1353: 1348: 1343: 1339: 1335: 1331: 1327: 1324:(2): 359–81. 1323: 1319: 1315: 1308: 1305: 1300: 1296: 1291: 1286: 1283:(3): 808–12. 1282: 1278: 1274: 1267: 1264: 1259: 1255: 1251: 1247: 1243: 1239: 1236:(3): 187–99. 1235: 1231: 1223: 1220: 1215: 1211: 1206: 1201: 1197: 1193: 1190:(4): 373–85. 1189: 1185: 1181: 1174: 1172: 1170: 1168: 1166: 1162: 1157: 1153: 1148: 1143: 1139: 1135: 1130: 1125: 1121: 1117: 1113: 1109: 1105: 1098: 1096: 1094: 1092: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1028: 1024: 1020: 1015: 1010: 1006: 1002: 998: 994: 990: 983: 980: 975: 971: 967: 963: 959: 955: 951: 947: 939: 936: 931: 927: 922: 917: 913: 909: 905: 901: 897: 890: 887: 882: 878: 873: 868: 864: 860: 856: 852: 848: 841: 838: 832: 827: 823: 819: 815: 813: 812:Synechococcus 804: 801: 796: 792: 788: 784: 780: 776: 772: 768: 761: 758: 753: 749: 745: 741: 737: 733: 729: 725: 722:(1): 476–95. 721: 717: 710: 707: 701: 697: 696:Synechococcus 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 671:Cyanobacteria 669: 667: 666:Chronobiology 664: 662: 659: 657: 654: 653: 649: 647: 645: 641: 632: 630: 628: 622: 620: 616: 612: 608: 600: 598: 594: 590: 586: 584: 575: 569: 565: 561: 557: 553: 551: 547: 542: 538: 534: 526: 521: 519: 517: 513: 509: 505: 501: 497: 493: 489: 486:Orthologs of 484: 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 442: 441:Synechococcus 438: 433: 431: 427: 424:is absent in 423: 419: 415: 414:Synechococcus 411: 407: 402: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 354: 347: 345: 343: 342: 337: 333: 328: 324: 319: 317: 316:Synechococcus 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 269: 265: 264:Synechococcus 261: 257: 253: 249: 245: 238: 236: 233: 232: 231:Synechococcus 226: 222: 218: 213: 210: 206: 202: 195: 190: 188: 185: 181: 177: 173: 169: 165: 164: 159: 147: 144: 140: 137: 134: 130: 125: 121: 118: 117: 113: 111: 107: 102: 99: 96: 94: 90: 87: 84: 82: 81:RefSeq (Prot) 78: 75: 72: 70: 69:RefSeq (mRNA) 66: 63: 60: 58: 54: 50: 46: 42: 41: 36: 32: 27: 22: 19: 1826: 1813: 1770: 1766: 1756: 1703: 1699: 1651: 1647: 1637: 1610: 1607:FEBS Letters 1606: 1596: 1553: 1549: 1539: 1486: 1482: 1472: 1422:(1): 495–9. 1419: 1415: 1405: 1378: 1374: 1364: 1321: 1317: 1307: 1280: 1277:FEBS Letters 1276: 1266: 1233: 1229: 1222: 1187: 1183: 1111: 1107: 1049: 1045: 1039: 996: 992: 982: 949: 945: 938: 903: 899: 889: 857:(2): 531–3. 854: 850: 840: 824:(2): 173–7. 821: 817: 811: 803: 770: 766: 760: 719: 715: 709: 639: 636: 623: 618: 614: 610: 606: 604: 595: 591: 587: 579: 562: 558: 554: 549: 545: 540: 536: 532: 530: 515: 511: 507: 491: 487: 485: 480: 476: 472: 464: 460: 456: 452: 448: 444: 440: 436: 434: 429: 425: 421: 417: 413: 409: 405: 403: 398: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 355: 351: 339: 335: 331: 326: 322: 320: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 267: 263: 259: 252:Carl Johnson 248:Susan Golden 242: 229: 214: 199: 161: 157: 156: 114: 39: 18: 906:(1): 55–9. 686:Oscillation 310:, and 2 in 272:DNA library 244:Takao Kondo 205:Prokaryotes 184:prokaryotic 136:Swiss-model 29:Identifiers 1844:Categories 702:References 644:microscopy 256:luciferase 132:Structures 127:Search for 110:Chromosome 104:Other data 504:orthologs 344:strains. 209:infradian 191:Discovery 180:circadian 86:NP_525056 74:NM_080317 1805:21233390 1748:17088557 1730:30052455 1678:12727879 1629:20079736 1588:26113641 1531:16882723 1513:30051673 1464:10618446 1397:15304218 1356:23957615 1299:15670851 1250:18487411 1214:26335718 1156:12604787 1082:24833877 1074:15831759 1023:15550625 930:16668415 881:16667309 752:42743872 650:See also 640:in vitro 607:in vitro 550:in vitro 522:Function 469:paralogs 361:genes – 341:in vitro 146:InterPro 34:Organism 1796:3309039 1775:Bibcode 1767:Science 1739:1859952 1708:Bibcode 1579:4506712 1558:Bibcode 1550:Science 1522:1832256 1491:Bibcode 1424:Bibcode 1347:4113418 1326:Bibcode 1258:2741470 1205:4557074 1138:3139556 1116:Bibcode 1054:Bibcode 1046:Science 1031:9447128 1001:Bibcode 993:Science 974:9727980 954:Bibcode 946:Science 921:1080963 872:1062325 795:4235387 775:Bibcode 744:3304083 724:Bibcode 611:in vivo 546:in vivo 496:Archaea 336:in vivo 306:, 3 in 142:Domains 93:UniProt 1803:  1793:  1746:  1736:  1728:  1676:  1669:156084 1666:  1627:  1586:  1576:  1529:  1519:  1511:  1462:  1452:  1446:121818 1444:  1395:  1354:  1344:  1297:  1256:  1248:  1212:  1202:  1154:  1147:151369 1144:  1136:  1080:  1072:  1029:  1021:  972:  928:  918:  879:  869:  793:  767:Nature 750:  742:  539:, and 479:, and 463:, and 369:, and 332:kaiABC 323:kaiABC 300:kaiABC 294:, and 284:kaiABC 280:kaiABC 163:kaiABC 98:P07663 57:Entrez 48:Symbol 1726:JSTOR 1509:JSTOR 1455:26691 1442:JSTOR 1254:S2CID 1134:JSTOR 1078:S2CID 1027:S2CID 814:RF-1" 791:S2CID 748:S2CID 481:kaiC1 477:kaiB1 465:kaiB3 461:kaiC3 457:kaiB2 453:kaiC2 327:kaiBC 260:psbAI 62:31251 1834:> 1821:> 1801:PMID 1744:PMID 1674:PMID 1625:PMID 1584:PMID 1527:PMID 1460:PMID 1393:PMID 1352:PMID 1295:PMID 1246:PMID 1210:PMID 1152:PMID 1070:PMID 1019:PMID 970:PMID 926:PMID 877:PMID 740:PMID 681:KaiA 676:KaiC 619:kaiC 617:and 615:kaiB 548:and 541:kaiC 537:kaiB 533:kaiA 512:kaiC 510:and 508:kaiB 498:and 492:kaiC 490:and 488:kaiB 473:kaiA 449:kaiC 447:and 445:kaiB 430:kaiA 422:kaiA 416:and 410:kaiA 399:kaiB 395:kaiB 393:and 391:kaiC 387:kaiA 383:kaiB 379:kaiC 371:kaiC 367:kaiB 363:kaiA 312:kaiB 308:kaiA 304:kaiC 296:kaiC 292:kaiB 288:kaiA 276:C44a 268:C44a 223:and 176:KaiC 174:and 172:KaiA 158:KaiB 51:kaiB 24:KaiB 1791:PMC 1783:doi 1771:331 1734:PMC 1716:doi 1704:103 1664:PMC 1656:doi 1615:doi 1611:584 1574:PMC 1566:doi 1554:349 1517:PMC 1499:doi 1487:103 1450:PMC 1432:doi 1383:doi 1342:PMC 1334:doi 1285:doi 1281:579 1238:doi 1200:PMC 1192:doi 1142:PMC 1124:doi 1112:100 1062:doi 1050:308 1009:doi 997:307 962:doi 950:281 916:PMC 908:doi 867:PMC 859:doi 826:doi 783:doi 771:323 732:doi 720:503 627:ATP 437:kai 406:kai 375:kai 359:kai 1846:: 1799:. 1789:. 1781:. 1769:. 1765:. 1742:. 1732:. 1724:. 1714:. 1702:. 1698:. 1686:^ 1672:. 1662:. 1652:22 1650:. 1646:. 1623:. 1609:. 1605:. 1582:. 1572:. 1564:. 1552:. 1548:. 1525:. 1515:. 1507:. 1497:. 1485:. 1481:. 1458:. 1448:. 1440:. 1430:. 1420:97 1418:. 1414:. 1391:. 1379:15 1377:. 1373:. 1350:. 1340:. 1332:. 1322:16 1320:. 1316:. 1293:. 1279:. 1275:. 1252:. 1244:. 1234:23 1232:. 1208:. 1198:. 1188:79 1186:. 1182:. 1164:^ 1150:. 1140:. 1132:. 1122:. 1110:. 1106:. 1090:^ 1076:. 1068:. 1060:. 1048:. 1025:. 1017:. 1007:. 995:. 991:. 968:. 960:. 948:. 924:. 914:. 904:97 902:. 898:. 875:. 865:. 855:92 853:. 849:. 822:37 820:. 816:. 789:. 781:. 769:. 746:. 738:. 730:. 718:. 552:. 535:, 483:. 475:, 459:, 455:, 365:, 290:, 250:, 1807:. 1785:: 1777:: 1750:. 1718:: 1710:: 1680:. 1658:: 1631:. 1617:: 1590:. 1568:: 1560:: 1533:. 1501:: 1493:: 1466:. 1434:: 1426:: 1399:. 1385:: 1358:. 1336:: 1328:: 1301:. 1287:: 1260:. 1240:: 1216:. 1194:: 1158:. 1126:: 1118:: 1084:. 1064:: 1056:: 1033:. 1011:: 1003:: 976:. 964:: 956:: 932:. 910:: 883:. 861:: 834:. 828:: 797:. 785:: 777:: 754:. 734:: 726::

Index

Synechococcus elongatus
Entrez
31251
RefSeq (mRNA)
NM_080317
RefSeq (Prot)
NP_525056
UniProt
P07663
Chromosome
X: 2.58 - 2.59 Mb
Swiss-model
InterPro
kaiABC
cyanobacterial
KaiA
KaiC
circadian
prokaryotic
Circadian rhythms
Prokaryotes
infradian
bacterial circadian rhythm
photosynthesis
nitrogen fixation
Synechococcus
Takao Kondo
Susan Golden
Carl Johnson
luciferase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑