Knowledge

Lyot filter

Source 📝

163:. The waveplate may modify the incoming horizontally polarized light to a different polarization based on the light's wavelength. The second horizontal polarizer passes only the horizontal polarization component of the light exiting the waveplate. For example, at one wavelength, if the light exiting the waveplate is horizontally polarized, then the light passes through the second horizontal polarizer fully, exiting the optical filter with no 802: 96: 525: 866:
are the most common tunable electro-optic filters. In comparison to the Fabry-Perót filter, the tunable Lyot filter has broader and more stable adjustable range, but the Lyot filter transmits less light. Poor transmittance occurs due to the large number of highly absorbing polarizers and imperfect
440:
Multiplate filters are a series of consecutive single-plate filters, with each waveplate half the thickness of the preceding plate. Using this design, a graph describing the transmitted light intensity at each wavelength will show sharper major peaks (narrower bandwidth) of transmitted light and a
851:
allow analog tuning of the transmitted wavelength by carefully adjusting the voltage over the liquid crystal cells. Liquid crystal Lyot filter spectral bandpass may range from 30 nm to 0.05 nm. The two categories of Lyot liquid crystal filters are polarizing interference retardance
99:
The light's path (red dashed line) through a single-plate Lyot filter. The first polarizer transmits horizontally polarized light to the waveplate. The waveplate's fast (F) and slow (S) transmission directions make a 45-degree angle to the horizontal. For the wavelength in this example, the
830:
waveplate in the middle increases the filter's field of view. The separation and narrowness of the transmission peaks depends on the number, thicknesses, and orientation of the plates. Due to the temperature dependent birefringent properties of quartz and calcite, the Lyot filter requires a
797:{\displaystyle I_{T}=I_{X}\cdot \operatorname {cos} ^{2}\left({\frac {2\pi (n_{o}-n_{e})d}{2\lambda }}\right)\cdot \operatorname {cos} ^{2}\left({\frac {2\pi (n_{o}-n_{e})d}{2^{2}\lambda }}\right)\cdot \operatorname {cos} ^{2}\left({\frac {2\pi (n_{o}-n_{e})d}{2^{3}\lambda }}\right)} 100:
waveplate transforms the light's horizontal polarization to a circular polarization. The second polarizer transmits only part of the light, the horizontal component of the circularly polarized light, leading to a wavelength dependent amount of light transmission.
167:. At a different wavelength, if the light exiting the waveplate is vertically polarized, then no light passes through the second horizontal polarizer, and no light exits the optical filter. At most wavelengths, some wavelength-dependent attenuation will occur. 867:
waveplate action. Lyot filters may contain up to 12 individual filters, making the Lyot filter expensive, limiting its use in compact instruments. In contrast to Lyot filters, the Solc filter relies on only two polarizers, leading to less light reduction.
430: 852:
filters and electro-optical photonic crystals. Often these filters are based on the original Lyot design, but many other designs exist in order to achieve other properties such as narrow or broad band transmission, or polarization selectivity.
847:
contains tuneable electro-optic or liquid crystal birefringent elements. The tunable electro-optic Lyot filter uses lead magnesium niobate-lead titanate (PMN-PT) opto-ceramic to tune the filter.
926:
losses from the plate and other intracavity elements are usually sufficient to produce the polarizing effect, and no additional polarizers are required. Lyot filters are used also in
327: 128:
polarization). For a typical single-plate Lyot filter, light passes through three consecutive optical elements that modify the light's polarization: the first horizontal
159:
The first horizontal polarizer transforms the incoming light's polarization to horizontally polarized light by passing only the incoming light's horizontal polarization
245: 490: 319: 292: 222: 195: 517: 463: 265: 1610: 1589: 1555: 1520: 1499: 1478: 1457: 1436: 1415: 1394: 1322: 1301: 1280: 956: 977:
Another application has been use of Lyot filters is for Raman chemical imaging. Other applications have been in microspectrometer and
862: 1530:
Lizana, Angel; Yzuel, María Josefa; Escalera, Juan Carlos; Campos, Juan (2019). Poulin-Girard, Anne-Sophie; Shaw, Joseph A. (eds.).
963: 136:(retarder) and a second horizontal polarizer. Linearly polarized light travels fastest when aligned with the waveplate's fast 820:. Rotating the waveplate may shift the wavelength of the transmission peaks. Splitting the crystals in half and adding a 1000: 848: 445:). As an example, extending the single-plate equation to a 3-plate optical filter with maximum waveplate thickness 1531: 104:
This section describes how the Lyot filter's wavelength dependent transmission of light arises from birefrigence.
1629: 156:. This example assumes that the horizontal makes a 45-degree angle with the waveplate's F and S directions. 967: 425:{\displaystyle I_{T}=I_{X}\cdot \operatorname {cos} ^{2}\left({\frac {\pi (n_{o}-n_{e})d}{\lambda }}\right)} 125: 1353: 74: 978: 971: 121: 1345: 24: 1358: 923: 442: 117: 1371: 81: 1332:
Beeckman, Jeroen; Hui, Tian; Vanbrabant, Pieter J. M.; Zmijan, Robert; Neyts, Kristiaan (2009).
1606: 1585: 1551: 1516: 1495: 1474: 1453: 1432: 1411: 1390: 1318: 1297: 1276: 884: 230: 160: 28: 1565:
Lyot, B. (1933). "Optical apparatus with wide field using interference of polarized light".
1543: 1363: 1333: 995: 892: 84: 468: 297: 270: 200: 173: 896: 43: 1349: 915: 495: 448: 250: 113: 1290:
Ammann, E.O. (1971). "Synthesis of optical birefringent networks". In Wolf, E. (ed.).
1623: 152: 146: 47: 31: 1375: 876: 144:
direction. The speed difference depends on the difference between the waveplate's
39: 35: 1600: 1579: 1510: 1489: 1468: 1447: 1426: 1405: 1384: 1312: 1291: 1270: 1470:
Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line
952: 948: 900: 888: 164: 966:
or used to give each suburban home its own return-signal laser wavelength in a
1367: 880: 832: 225: 55: 990: 941: 938: 927: 133: 129: 77: 66: 59: 1272:
Physics of the Invisible Sun: Instrumentation, Observations, and Inferences
441:
greater wavelength interval between the major peaks of transmitted light (
934: 930: 908: 140:
direction, and slowest when aligned with the waveplate's orthogonal slow
51: 1428:
Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB® Models
1174: 1172: 1170: 1168: 1166: 1164: 95: 1547: 904: 817: 1512:
Applications of Vibrational Spectroscopy in Food Science, 2 Volume Set
1051: 1049: 1047: 813: 70: 112:
The Lyot filter relies on light's polarization property, a vector (
919: 94: 1532:"Training in polarization through a virtual learning environment" 1136: 1134: 1509:
Li-Chan, Eunice; Chalmers, John M.; Griffiths, Peter R. (2010).
914:
Single- and multi-plate Lyot filters are often used inside the
1386:
Spectrochemical Analysis Using Infrared Multichannel Detectors
63: 116:) perpendicular to light's path that has a fixed direction ( 1240: 465:, this multiplate optical filter transmits light intensity 170:
This single-plate optical filter transmits light intensity
1178: 1055: 887:), such as a Lyot filter, using wavelengths for viewing 492:
from an input of horizontally polarized light intensity
197:
from an input of horizontally polarized light intensity
1197: 1195: 1193: 1191: 1189: 1187: 1106: 1104: 1102: 1100: 1098: 1151: 1149: 1085: 1083: 1081: 1079: 1066: 1064: 498: 38:
filter), named for its inventor and French astronomer
1449:
Liquid Crystals: Frontiers in Biomedical Applications
1212: 1210: 1121: 1119: 528: 471: 451: 330: 300: 273: 253: 233: 203: 176: 1404:Bhatnagar, A.; Livingston, William Charles (2005). 1140: 955:of multiple wavelengths which can be placed on the 1491:Imaging Sunlight Using a Digital Spectroheliograph 1334:"Polarization Selective Wavelength Tunable Filter" 1022: 1020: 1018: 1016: 796: 511: 484: 457: 424: 313: 286: 259: 239: 216: 189: 879:, the sun's second atmospheric layer, requires 1228: 951:lasers and Lyot-filter lasers both produce a 294:and waveplate extraordinary refractive index 8: 1252: 922:to allow tuning of the laser. In this case, 1314:Ferroelectrics: Principles and Applications 1605:. Springer Science & Business Media. 1357: 1110: 947:Although their mechanisms are different, 778: 760: 747: 731: 718: 695: 677: 664: 648: 635: 601: 588: 572: 559: 546: 533: 527: 503: 497: 476: 470: 450: 400: 387: 374: 361: 348: 335: 329: 305: 299: 278: 272: 252: 232: 208: 202: 181: 175: 1201: 1155: 1089: 1070: 120:) or a time-varying rotating direction ( 1467:Lewis, Ian R.; Edwards, Howell (2001). 1425:Binh, Le Nguyen; Ngo, Nam Quoc (2018). 1383:Bhargava, Rohit; Levin, Ira W. (2008). 1311:Bain, Ashim Kumar; Chand, Prem (2017). 1125: 1012: 1338:Molecular Crystals and Liquid Crystals 1216: 1056:Li-Chan, Chalmers & Griffiths 2010 875:In solar astronomy, viewing the sun's 835:to minimize temperature fluctuations. 267:, waveplate ordinary refractive index 16:Astronomical spectral light processor 7: 1038: 1026: 981:devices and biomedical photonics. 14: 1446:Crawford, Gregory Philip (2007). 961:dense wave division multiplexing 845:electrically tunable Lyot filter 1407:Fundamentals of Solar Astronomy 1141:Bhatnagar & Livingston 2005 1296:. Elsevier. pp. 125–180. 849:Liquid crystal tunable filters 766: 740: 683: 657: 607: 581: 406: 380: 153:extraordinary refractive index 1: 1275:. CRC Press. pp. 2.5.2. 1001:Liquid crystal tunable filter 1293:Progress in Optics Volume IX 812:The waveplates are commonly 108:Single-plate optical filter 58:. Lyot filters are used in 1646: 944:for wavelength selection. 1578:Meschede, Dieter (2004). 1515:. John Wiley & Sons. 1488:Harrison, Ken M. (2016). 1389:. John Wiley & Sons. 1368:10.1080/15421400902813626 1317:. John Wiley & Sons. 1229:Bhargava & Levin 2008 436:Multiplate optical filter 147:ordinary refractive index 1602:The Sun: An Introduction 1581:Optics, Light and Lasers 1269:Ambastha, Ashok (2020). 1253:Lewis & Edwards 2001 240:{\displaystyle \lambda } 968:passive optical network 856:Comparative performance 1599:Stix, Michael (2012). 970:(PON) used to provide 798: 513: 486: 459: 426: 315: 288: 261: 247:, waveplate thickness 241: 218: 191: 101: 1111:Bain & Chand 2017 979:hyperspectral imaging 974:(Fiber To The Home). 799: 514: 487: 485:{\displaystyle I_{T}} 460: 427: 316: 314:{\displaystyle n_{e}} 289: 287:{\displaystyle n_{o}} 262: 242: 219: 217:{\displaystyle I_{X}} 192: 190:{\displaystyle I_{T}} 98: 1452:. World Scientific. 1410:. World Scientific. 1241:Beeckman et al. 2009 860:The Lyot filter and 526: 496: 469: 449: 328: 298: 271: 251: 231: 201: 174: 50:to produce a narrow 1536:Proceedings of SPIE 1350:2009MCLC..502...19B 1126:Binh & Ngo 2018 443:free spectral range 118:linear polarization 62:, particularly for 1548:10.1117/12.2523772 1179:Lizana et al. 2019 863:Fabry-Perót filter 794: 512:{\textstyle I_{X}} 509: 482: 455: 422: 311: 284: 257: 237: 214: 187: 102: 1612:978-3-642-56042-2 1591:978-3-527-40364-6 1557:978-1-5106-2979-0 1522:978-0-470-74299-0 1501:978-3-319-24874-5 1480:978-1-4200-2925-3 1459:978-981-277-887-1 1438:978-1-4398-1130-6 1417:978-981-256-787-1 1396:978-0-470-99412-2 1324:978-3-527-80533-4 1303:978-0-08-087973-4 1282:978-1-000-76087-3 959:channel grid for 885:spectroheliograph 883:optical filters ( 788: 705: 622: 458:{\displaystyle d} 416: 260:{\displaystyle d} 1637: 1616: 1595: 1574: 1561: 1526: 1505: 1484: 1463: 1442: 1421: 1400: 1379: 1361: 1328: 1307: 1286: 1256: 1250: 1244: 1238: 1232: 1226: 1220: 1214: 1205: 1199: 1182: 1176: 1159: 1153: 1144: 1138: 1129: 1123: 1114: 1108: 1093: 1087: 1074: 1068: 1059: 1053: 1042: 1036: 1030: 1024: 996:Lyot depolarizer 829: 828: 824: 803: 801: 800: 795: 793: 789: 787: 783: 782: 772: 765: 764: 752: 751: 732: 723: 722: 710: 706: 704: 700: 699: 689: 682: 681: 669: 668: 649: 640: 639: 627: 623: 621: 613: 606: 605: 593: 592: 573: 564: 563: 551: 550: 538: 537: 518: 516: 515: 510: 508: 507: 491: 489: 488: 483: 481: 480: 464: 462: 461: 456: 431: 429: 428: 423: 421: 417: 412: 405: 404: 392: 391: 375: 366: 365: 353: 352: 340: 339: 320: 318: 317: 312: 310: 309: 293: 291: 290: 285: 283: 282: 266: 264: 263: 258: 246: 244: 243: 238: 223: 221: 220: 215: 213: 212: 196: 194: 193: 188: 186: 185: 91:Basic principles 85:chemical imaging 1645: 1644: 1640: 1639: 1638: 1636: 1635: 1634: 1630:Optical filters 1620: 1619: 1613: 1598: 1592: 1577: 1564: 1558: 1529: 1523: 1508: 1502: 1487: 1481: 1466: 1460: 1445: 1439: 1424: 1418: 1403: 1397: 1382: 1359:10.1.1.159.2814 1331: 1325: 1310: 1304: 1289: 1283: 1268: 1265: 1260: 1259: 1251: 1247: 1239: 1235: 1227: 1223: 1215: 1208: 1200: 1185: 1177: 1162: 1154: 1147: 1139: 1132: 1124: 1117: 1109: 1096: 1088: 1077: 1069: 1062: 1054: 1045: 1037: 1033: 1025: 1014: 1009: 987: 873: 858: 841: 839:Tunable filters 826: 822: 821: 810: 808:Design features 774: 773: 756: 743: 733: 727: 714: 691: 690: 673: 660: 650: 644: 631: 614: 597: 584: 574: 568: 555: 542: 529: 524: 523: 499: 494: 493: 472: 467: 466: 447: 446: 438: 396: 383: 376: 370: 357: 344: 331: 326: 325: 301: 296: 295: 274: 269: 268: 249: 248: 229: 228: 204: 199: 198: 177: 172: 171: 110: 93: 54:of transmitted 42:, is a type of 17: 12: 11: 5: 1643: 1641: 1633: 1632: 1622: 1621: 1618: 1617: 1611: 1596: 1590: 1575: 1562: 1556: 1527: 1521: 1506: 1500: 1485: 1479: 1464: 1458: 1443: 1437: 1422: 1416: 1401: 1395: 1380: 1329: 1323: 1308: 1302: 1287: 1281: 1264: 1261: 1258: 1257: 1245: 1233: 1221: 1206: 1183: 1160: 1145: 1130: 1115: 1094: 1075: 1060: 1043: 1031: 1011: 1010: 1008: 1005: 1004: 1003: 998: 993: 986: 983: 962: 916:optical cavity 872: 869: 865: 857: 854: 846: 840: 837: 809: 806: 805: 804: 792: 786: 781: 777: 771: 768: 763: 759: 755: 750: 746: 742: 739: 736: 730: 726: 721: 717: 713: 709: 703: 698: 694: 688: 685: 680: 676: 672: 667: 663: 659: 656: 653: 647: 643: 638: 634: 630: 626: 620: 617: 612: 609: 604: 600: 596: 591: 587: 583: 580: 577: 571: 567: 562: 558: 554: 549: 545: 541: 536: 532: 506: 502: 479: 475: 454: 437: 434: 433: 432: 420: 415: 411: 408: 403: 399: 395: 390: 386: 382: 379: 373: 369: 364: 360: 356: 351: 347: 343: 338: 334: 308: 304: 281: 277: 256: 236: 211: 207: 184: 180: 155: 149: 143: 139: 109: 106: 92: 89: 44:optical filter 15: 13: 10: 9: 6: 4: 3: 2: 1642: 1631: 1628: 1627: 1625: 1614: 1608: 1604: 1603: 1597: 1593: 1587: 1583: 1582: 1576: 1572: 1568: 1563: 1559: 1553: 1549: 1545: 1541: 1537: 1533: 1528: 1524: 1518: 1514: 1513: 1507: 1503: 1497: 1493: 1492: 1486: 1482: 1476: 1473:. CRC Press. 1472: 1471: 1465: 1461: 1455: 1451: 1450: 1444: 1440: 1434: 1431:. CRC Press. 1430: 1429: 1423: 1419: 1413: 1409: 1408: 1402: 1398: 1392: 1388: 1387: 1381: 1377: 1373: 1369: 1365: 1360: 1355: 1351: 1347: 1343: 1339: 1335: 1330: 1326: 1320: 1316: 1315: 1309: 1305: 1299: 1295: 1294: 1288: 1284: 1278: 1274: 1273: 1267: 1266: 1262: 1254: 1249: 1246: 1242: 1237: 1234: 1230: 1225: 1222: 1218: 1213: 1211: 1207: 1203: 1202:Meschede 2004 1198: 1196: 1194: 1192: 1190: 1188: 1184: 1180: 1175: 1173: 1171: 1169: 1167: 1165: 1161: 1157: 1156:Harrison 2016 1152: 1150: 1146: 1142: 1137: 1135: 1131: 1127: 1122: 1120: 1116: 1112: 1107: 1105: 1103: 1101: 1099: 1095: 1091: 1090:Crawford 2007 1086: 1084: 1082: 1080: 1076: 1072: 1071:Ambastha 2020 1067: 1065: 1061: 1057: 1052: 1050: 1048: 1044: 1040: 1035: 1032: 1028: 1023: 1021: 1019: 1017: 1013: 1006: 1002: 999: 997: 994: 992: 989: 988: 984: 982: 980: 975: 973: 969: 965: 960: 958: 954: 950: 945: 943: 940: 936: 932: 929: 925: 921: 917: 912: 910: 906: 903:arising from 902: 898: 894: 890: 886: 882: 878: 870: 868: 864: 861: 855: 853: 850: 844: 838: 836: 834: 819: 815: 807: 790: 784: 779: 775: 769: 761: 757: 753: 748: 744: 737: 734: 728: 724: 719: 715: 711: 707: 701: 696: 692: 686: 678: 674: 670: 665: 661: 654: 651: 645: 641: 636: 632: 628: 624: 618: 615: 610: 602: 598: 594: 589: 585: 578: 575: 569: 565: 560: 556: 552: 547: 543: 539: 534: 530: 522: 521: 520: 504: 500: 477: 473: 452: 444: 435: 418: 413: 409: 401: 397: 393: 388: 384: 377: 371: 367: 362: 358: 354: 349: 345: 341: 336: 332: 324: 323: 322: 306: 302: 279: 275: 254: 234: 227: 209: 205: 182: 178: 168: 166: 162: 157: 154: 151: 148: 145: 141: 137: 135: 131: 127: 123: 119: 115: 107: 105: 97: 90: 88: 86: 83: 79: 76: 72: 68: 65: 61: 57: 53: 49: 48:birefringence 45: 41: 37: 33: 32:monochromator 30: 26: 22: 1601: 1580: 1570: 1566: 1539: 1535: 1511: 1494:. Springer. 1490: 1469: 1448: 1427: 1406: 1385: 1344:(1): 19–28. 1341: 1337: 1313: 1292: 1271: 1248: 1236: 1224: 1034: 976: 946: 937:lasers, and 913: 889:solar flares 877:chromosphere 874: 871:Applications 859: 842: 811: 439: 169: 158: 114:Jones vector 111: 103: 40:Bernard Lyot 36:birefringent 29:interference 25:polarization 20: 18: 1217:Ammann 1971 949:modelocking 942:oscillators 893:prominences 165:attenuation 56:wavelengths 21:Lyot filter 1263:References 881:narrowband 833:thermostat 226:wavelength 126:elliptical 75:biomedical 46:that uses 1584:. Wiley. 1567:Acad. Sci 1354:CiteSeerX 1039:Lyot 1933 1027:Stix 2012 1007:Citations 991:Lyot stop 939:dye laser 928:broadband 897:filaments 785:λ 754:− 738:π 725:⁡ 712:⋅ 702:λ 671:− 655:π 642:⁡ 629:⋅ 619:λ 595:− 579:π 566:⁡ 553:⋅ 414:λ 394:− 378:π 368:⁡ 355:⋅ 235:λ 161:component 134:waveplate 130:polarizer 78:photonics 67:astronomy 60:astronomy 1624:Category 985:See also 935:sapphire 924:Brewster 909:hydrogen 122:circular 52:passband 1376:9235494 1346:Bibcode 905:calcium 825:⁄ 818:calcite 1609:  1588:  1554:  1542:: 87. 1519:  1498:  1477:  1456:  1435:  1414:  1393:  1374:  1356:  1321:  1300:  1279:  964:(DWDM) 920:lasers 901:plages 899:, and 814:quartz 71:lasers 1540:11143 1372:S2CID 224:with 82:Raman 64:solar 1607:ISBN 1586:ISBN 1552:ISBN 1517:ISBN 1496:ISBN 1475:ISBN 1454:ISBN 1433:ISBN 1412:ISBN 1391:ISBN 1319:ISBN 1298:ISBN 1277:ISBN 972:FTTH 953:comb 907:and 150:and 132:, a 80:and 1571:197 1544:doi 1364:doi 1342:502 957:ITU 918:of 843:An 816:or 716:cos 633:cos 557:cos 359:cos 124:or 1626:: 1569:. 1550:. 1538:. 1534:. 1370:. 1362:. 1352:. 1340:. 1336:. 1209:^ 1186:^ 1163:^ 1148:^ 1133:^ 1118:^ 1097:^ 1078:^ 1063:^ 1046:^ 1015:^ 931:Ti 911:. 895:, 891:, 519:: 321:: 87:. 73:, 69:, 34:, 19:A 1615:. 1594:. 1573:. 1560:. 1546:: 1525:. 1504:. 1483:. 1462:. 1441:. 1420:. 1399:. 1378:. 1366:: 1348:: 1327:. 1306:. 1285:. 1255:. 1243:. 1231:. 1219:. 1204:. 1181:. 1158:. 1143:. 1128:. 1113:. 1092:. 1073:. 1058:. 1041:. 1029:. 933:— 827:2 823:1 791:) 780:3 776:2 770:d 767:) 762:e 758:n 749:o 745:n 741:( 735:2 729:( 720:2 708:) 697:2 693:2 687:d 684:) 679:e 675:n 666:o 662:n 658:( 652:2 646:( 637:2 625:) 616:2 611:d 608:) 603:e 599:n 590:o 586:n 582:( 576:2 570:( 561:2 548:X 544:I 540:= 535:T 531:I 505:X 501:I 478:T 474:I 453:d 419:) 410:d 407:) 402:e 398:n 389:o 385:n 381:( 372:( 363:2 350:X 346:I 342:= 337:T 333:I 307:e 303:n 280:o 276:n 255:d 210:X 206:I 183:T 179:I 142:S 138:F 27:- 23:(

Index

polarization
interference
monochromator
birefringent
Bernard Lyot
optical filter
birefringence
passband
wavelengths
astronomy
solar
astronomy
lasers
biomedical
photonics
Raman
chemical imaging

Jones vector
linear polarization
circular
elliptical
polarizer
waveplate
ordinary refractive index
extraordinary refractive index
component
attenuation
wavelength
free spectral range

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.