Knowledge (XXG)

Lac repressor

Source 📝

173: 31: 319:(TFs) find their binding sites by facilitated diffusion, a combination of free diffusion in 3D and 1D-sliding on the DNA. During sliding the repressor is in contact with the DNA helix, sliding around and tracking its major groove, which speeds up the search process by extending the target length when the TF slides in onto the operator from the side. 37:. Two monomers (of four total) co-operate to bind each DNA operator sequence. Monomers (red and blue) contain DNA binding and core domains (labeled) which are connected by a linker (labeled). The C-terminal tetramerization helix is not shown. The repressor is shown in complex with operator DNA (gold) and ONPF (green), an anti-inducer ligand ( 346:
almost always make a very short journey before finding the way back again. On the macroscopic scale, this looks like a stable interaction. This binding mechanism explains how DNA binding proteins manage to quickly search through the genome of the cell without getting stuck too long at sequences that resemble the true target.
287: 345:
experiments have shown that it is this probability to recognize the operator that changes with DNA sequence, while the time the TF remains in the bound conformation on the operator changes less with sequence. The TF often leaves the sequence it is intended to regulate, but at a strong target site, it
1138:
Marklund, Emil; van Oosten, Brad; Mao, Guanzhong; Amselem, Elias; Kipper, Kalle; Sabantsev, Anton; Emmerich, Andrew; Globisch, Daniel; Zheng, Xuan; Lehmann, Laura C.; Berg, Otto G.; Johansson, Magnus; Elf, Johan; Deindl, Sebastian (2020). "DNA surface exploration and operator bypassing during target
155:
repressor is unable to bind tightly to its cognate operator. Thus, the gene is mostly off in the absence of inducer and mostly on in the presence of inducer, although the degree of gene expression depends on the number of repressors in the cell and on the repressor's DNA-binding affinity.
331:
cells have now tested and verified the facilitated diffusion model, and shown that the TF scans on average 45 bp during each sliding event, before the TF detaches spontaneously and resumes exploring the genome in 3D. These experiments also suggest that LacI slides over the
336:
operator several times before binding, meaning that different DNA sequences can have different probabilities to be recognized at each encounter with the TF. This implies a trade-off between fast search on nonspecific sequences and binding to specific sequences.
76:
is not available to the cell, ensuring that the bacterium only invests energy in the production of machinery necessary for uptake and utilization of lactose when lactose is present. When lactose becomes available, it is firstly converted into
291: 294: 293: 289: 288: 295: 292: 385:
cells less accessible for the repressor. The existence of hopping, where the protein slips out of the major groove of DNA to land in another nearby groove along the DNA chain, has been proven more directly
183:
functional subunits (red+blue and green+orange) each bind a DNA operator sequence (labeled). These two functional subunits are coupled at the tetramerization region (labeled); thus, tetrameric
900:
Hammar, Petter; Leroy, Prune; Mahmutovic, Anel; Marklund, Erik G.; Berg, Otto G.; Elf, Johan (2012-06-22). "The lac Repressor Displays Facilitated Diffusion in Living Cells".
1276: 135:, with base contacts also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. This bound repressor can reduce 854:
Berg, Otto G.; Winter, Robert B.; Von Hippel, Peter H. (1981-11-01). "Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory".
203:. More precisely, the tetramer contains two DNA-binding subunits composed of two monomers each (a dimer of dimers). Each monomer consists of four distinct regions: 290: 464:
Schumacher MA, Choi KY, Zalkin H, Brennan RG (November 1994). "Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices".
275:. Additionally, because each tetramer contains two DNA-binding subunits, binding of multiple operator sequences by a single tetramer induces DNA looping. 394:
repressor has been observed to bypass operators, flip orientation, and rotate with a longer pitch than the 10.5 bp period of DNA while moving along it.
157: 1314: 1460: 172: 1014:
Marklund, Erik G.; Mahmutovic, Anel; Berg, Otto G.; Hammar, Petter; Spoel, David van der; Fange, David; Elf, Johan (2013-12-03).
959:
Marklund, Emil; Mao, Guanzhong; Yuan, Jinwen; Zikrin, Spartak; Abdurakhmanov, Eldar; Deindl, Sebastian; Elf, Johan (2022-01-28).
1664: 1273: 1083:"What matters for lac repressor search in vivo—sliding, hopping, intersegment transfer, crowding on DNA or recognition?" 1762: 1307: 379:
repressor includes intersegment transfer and hopping as well as crowding by other proteins which make the genome in
1340: 311:
the search is 10-100 times faster than the theoretical upper limit for two particles searching for each other via
160:(IPTG) is a commonly used allolactose mimic which can be used to induce transcription of genes being regulated by 1537: 1473: 1443: 1421: 1757: 1717: 1692: 1659: 1331: 1323: 1266: 136: 1712: 1680: 1654: 1638: 1327: 1547: 1300: 278:
Each monomer has 360 amino acids, so it has 1440 amino acids in total, and 154,520 Dalton of atomic mass.
1731: 1726: 1594: 1496: 94: 24: 371:
for dissociation, implying that the repressor will slide over 8 bp on average before dissociating. The
773: 1628: 1542: 1508: 1402: 1214: 1148: 1027: 909: 811:
Riggs, Arthur D.; Bourgeois, Suzanne; Cohn, Melvin (1970). "The lac represser-operator interaction".
520: 473: 415: 407: 316: 1611: 1579: 1465: 1439: 272: 566:"Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric Induction" 30: 1380: 1180: 996: 941: 433: 350: 200: 117: 97:, thereby genes coding for proteins involved in lactose uptake and utilization can be expressed. 82: 1699: 1242: 1172: 1164: 1120: 1102: 1063: 1045: 988: 980: 933: 925: 879: 871: 836: 828: 793: 754: 705: 653: 595: 546: 489: 315:
in three dimensions (3D). To explain the fast search, it was hypothesized that LacI and other
1016:"Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models" 1621: 1604: 1232: 1222: 1156: 1110: 1094: 1053: 1035: 972: 917: 863: 820: 785: 744: 736: 695: 687: 645: 618: 585: 577: 536: 528: 481: 381: 327: 248: 245: 143:
binding site or by prompting DNA looping. When lactose is present, allolactose binds to the
113: 110: 1485: 1280: 509:"Comparison of the theoretical and real-world evolutionary potential of a genetic circuit" 53: 1262: 960: 1292: 1218: 1152: 1031: 913: 532: 524: 477: 1695: 1683: 1633: 1198: 1115: 1082: 1058: 1015: 740: 700: 675: 590: 565: 541: 508: 411: 268: 267:
operator sequence slightly overlaps with the promoter, which increases the affinity of
140: 1237: 1202: 749: 724: 1751: 1184: 1000: 824: 300:
Animation of binding and unbinding mechanism of a LacI dimer and its target DNA site.
945: 564:
Razo-Mejia M, Barnes S, Belliveau N, Chure G, Einav T, Lewis M, Phillips R (2018).
121: 622: 1286: 1584: 1552: 1455: 354: 229:
that connects the DNA-binding domain with the core domain (sometimes called the
78: 1207:
Proceedings of the National Academy of Sciences of the United States of America
789: 649: 581: 1736: 1430: 1385: 1375: 1370: 1365: 1360: 1160: 691: 445: 271:
for the promoter sequence such that it cannot enter elongation and remains in
148: 129: 86: 65: 1168: 1106: 1049: 984: 971:(6579). American Association for the Advancement of Science (AAAS): 442–445. 929: 875: 832: 797: 1392: 1040: 976: 921: 485: 353:
simulation suggests that the transcription factor encounters a barrier of 1
312: 1246: 1227: 1176: 1124: 1067: 992: 937: 709: 657: 599: 550: 507:
Razo-Mejia M, Boedicker J, Jones D, DeLuna A, Kinney J, Phillips R (2014).
883: 840: 758: 493: 1599: 1589: 1098: 420: 387: 307: 61: 867: 1559: 1426: 961:"Sequence specificity in DNA binding is mainly governed by association" 321: 73: 69: 1355: 177:
Tetrameric LacI binds two operator sequences and induces DNA looping.
125: 251:
and is targeted to one of several operator DNA sequences (known as O
1616: 1468: 285: 171: 29: 20: 1687: 1517: 1448: 429: 57: 1296: 725:"The three operators of the lac operon cooperate in repression" 723:
Oehler S, Eismann ER, Krämer H, Müller-Hill B (April 1990).
222:, which binds allolactose, an allosteric effector molecule) 1081:
Mahmutovic, Anel; Berg, Otto G.; Elf, Johan (2015-03-16).
676:"Allostery in the LacI/GalR family: variations on a theme" 211:(in which two LacI proteins bind a single operator site) 305:
LacI finds its target operator DNA surprisingly fast.
187:
binds two operator sequences. This allows tetrameric
93:
repressor bound with allolactose is inhibited due to
240:(which joins four monomers in an alpha-helix bundle) 1708: 1673: 1647: 1572: 1530: 1507: 1484: 1420: 1413: 1348: 1339: 862:(24). American Chemical Society (ACS): 6929–6948. 233:, which is important for allosteric communication) 52:(LacI) is a DNA-binding protein that inhibits the 1020:Proceedings of the National Academy of Sciences 151:change in its shape. In its changed state, the 19:"lacI" redirects here. Not to be confused with 669: 667: 1308: 72:in bacteria. These genes are repressed when 8: 35:Annotated crystal structure of dimeric LacI 1417: 1345: 1315: 1301: 1293: 636:Lewis M (June 2005). "The lac repressor". 89:) in bacteria. The DNA binding ability of 1265:at the U.S. National Library of Medicine 1236: 1226: 1114: 1057: 1039: 748: 699: 674:Swint-Kruse L, Matthews KS (April 2009). 589: 540: 424:the protein bound to DNA containing the 456: 1461:Histone acetylation and deacetylation 895: 893: 613:Goodsell DS (2003). "Lac Repressor". 428:operon, and it released the DNA when 282:Kinetics of DNA binding and unbinding 244:DNA binding occurs via an N-terminal 158:Isopropyl β-D-1-thiogalactopyranoside 139:of the Lac proteins by occluding the 7: 120:, binding base-specifically to the 741:10.1002/j.1460-2075.1990.tb08199.x 14: 1201:, Müller-Hill B (December 1966). 325:single-molecule experiments with 1203:"Isolation of the lac repressor" 1665:Archaeal transcription factor B 680:Current Opinion in Microbiology 109:repressor (LacI) operates by a 772:Lewis, Mitchell (2005-06-01). 1: 533:10.1088/1478-3975/11/2/026005 1287:Lac Repressor in Proteopedia 825:10.1016/0022-2836(70)90074-4 813:Journal of Molecular Biology 436:of allolactose) was added. 41:a stabilizer of DNA binding) 819:(3). Elsevier BV: 401–417. 780:. Retour sur l'operon lac. 623:10.2210/rcsb_pdb/mom_2003_3 1779: 1341:Transcriptional regulation 1274:the lac repressor molecule 790:10.1016/j.crvi.2005.04.004 650:10.1016/j.crvi.2005.04.004 582:10.1016/j.cels.2018.02.004 418:in 1966. They showed that 18: 1538:Transcription coregulator 1474:Histone acetyltransferase 1444:Histone methyltransferase 1422:Histone-modifying enzymes 1161:10.1038/s41586-020-2413-7 692:10.1016/j.mib.2009.01.009 1267:Medical Subject Headings 778:Comptes Rendus Biologies 638:Comptes Rendus Biologies 1639:Internal control region 1041:10.1073/pnas.1307905110 977:10.1126/science.abg7427 922:10.1126/science.1221648 486:10.1126/science.7973627 199:repressor protein is a 1228:10.1073/pnas.56.6.1891 1087:Nucleic Acids Research 615:RCSB Protein Data Bank 363:during sliding and 12 302: 238:tetramerization region 218:(sometimes called the 192: 191:to induce DNA looping. 147:repressor, causing an 42: 1732:Intrinsic termination 1497:DNA methyltransferase 375:search model for the 317:transcription factors 298: 175: 95:allosteric regulation 33: 1509:Chromatin remodeling 1272:More information on 406:repressor was first 1466:Histone deacetylase 1456:Histone demethylase 1440:Histone methylation 1283:on protein database 1219:1966PNAS...56.1891G 1153:2020Natur.583..858M 1032:2013PNAS..11019796M 1026:(49): 19796–19801. 914:2012Sci...336.1595H 908:(6088): 1595–1598. 868:10.1021/bi00527a028 774:"The lac repressor" 525:2014PhBio..11b6005R 478:1994Sci...266..763S 273:abortive initiation 16:DNA-binding protein 1763:Bacterial proteins 1279:2010-05-28 at the 1099:10.1093/nar/gkv207 351:molecular dynamics 303: 209:DNA-binding domain 195:Structurally, the 193: 118:DNA-binding domain 43: 1745: 1744: 1700:RNA polymerase II 1568: 1567: 1526: 1525: 1147:(7818): 858–861. 416:Benno Müller-Hill 296: 216:regulatory domain 1770: 1622:Response element 1605:Response element 1418: 1346: 1317: 1310: 1303: 1294: 1251: 1250: 1240: 1230: 1195: 1189: 1188: 1135: 1129: 1128: 1118: 1093:(7): 3454–3464. 1078: 1072: 1071: 1061: 1043: 1011: 1005: 1004: 956: 950: 949: 897: 888: 887: 851: 845: 844: 808: 802: 801: 769: 763: 762: 752: 729:The EMBO Journal 720: 714: 713: 703: 671: 662: 661: 633: 627: 626: 610: 604: 603: 593: 561: 555: 554: 544: 513:Physical Biology 504: 498: 497: 472:(5186): 763–70. 461: 297: 249:structural motif 246:helix-turn-helix 111:helix-turn-helix 64:involved in the 1778: 1777: 1773: 1772: 1771: 1769: 1768: 1767: 1758:Gene expression 1748: 1747: 1746: 1741: 1716: 1710: 1704: 1669: 1643: 1564: 1522: 1503: 1486:DNA methylation 1480: 1424: 1409: 1335: 1321: 1281:Wayback Machine 1259: 1254: 1197: 1196: 1192: 1137: 1136: 1132: 1080: 1079: 1075: 1013: 1012: 1008: 958: 957: 953: 899: 898: 891: 853: 852: 848: 810: 809: 805: 771: 770: 766: 722: 721: 717: 673: 672: 665: 635: 634: 630: 612: 611: 607: 563: 562: 558: 506: 505: 501: 463: 462: 458: 454: 442: 400: 368: 359: 335: 286: 284: 266: 262: 258: 254: 170: 126:operator region 103: 83:β-Galactosidase 28: 17: 12: 11: 5: 1776: 1774: 1766: 1765: 1760: 1750: 1749: 1743: 1742: 1740: 1739: 1734: 1729: 1723: 1721: 1706: 1705: 1703: 1702: 1696:RNA polymerase 1690: 1684:RNA polymerase 1677: 1675: 1671: 1670: 1668: 1667: 1662: 1657: 1651: 1649: 1645: 1644: 1642: 1641: 1636: 1631: 1626: 1625: 1624: 1619: 1609: 1608: 1607: 1602: 1597: 1592: 1587: 1576: 1574: 1570: 1569: 1566: 1565: 1563: 1562: 1557: 1556: 1555: 1550: 1545: 1534: 1532: 1528: 1527: 1524: 1523: 1521: 1520: 1514: 1512: 1505: 1504: 1502: 1501: 1500: 1499: 1491: 1489: 1482: 1481: 1479: 1478: 1477: 1476: 1471: 1458: 1453: 1452: 1451: 1436: 1434: 1415: 1411: 1410: 1408: 1407: 1406: 1405: 1400: 1390: 1389: 1388: 1383: 1378: 1373: 1368: 1363: 1352: 1350: 1343: 1337: 1336: 1322: 1320: 1319: 1312: 1305: 1297: 1291: 1290: 1284: 1270: 1258: 1257:External links 1255: 1253: 1252: 1190: 1130: 1073: 1006: 951: 889: 846: 803: 784:(6): 521–548. 764: 715: 663: 628: 605: 576:(4): 456–469. 556: 499: 455: 453: 450: 449: 448: 441: 438: 412:Walter Gilbert 399: 396: 366: 357: 333: 283: 280: 269:RNA polymerase 264: 260: 256: 252: 242: 241: 234: 223: 212: 207:An N-terminal 169: 166: 141:RNA polymerase 102: 99: 15: 13: 10: 9: 6: 4: 3: 2: 1775: 1764: 1761: 1759: 1756: 1755: 1753: 1738: 1735: 1733: 1730: 1728: 1725: 1724: 1722: 1719: 1714: 1707: 1701: 1697: 1694: 1691: 1689: 1685: 1682: 1679: 1678: 1676: 1672: 1666: 1663: 1661: 1658: 1656: 1653: 1652: 1650: 1646: 1640: 1637: 1635: 1632: 1630: 1627: 1623: 1620: 1618: 1615: 1614: 1613: 1610: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1582: 1581: 1578: 1577: 1575: 1571: 1561: 1558: 1554: 1551: 1549: 1546: 1544: 1541: 1540: 1539: 1536: 1535: 1533: 1529: 1519: 1516: 1515: 1513: 1510: 1506: 1498: 1495: 1494: 1493: 1492: 1490: 1487: 1483: 1475: 1472: 1470: 1467: 1464: 1463: 1462: 1459: 1457: 1454: 1450: 1447: 1446: 1445: 1441: 1438: 1437: 1435: 1432: 1428: 1423: 1419: 1416: 1412: 1404: 1403:trp repressor 1401: 1399: 1398:lac repressor 1396: 1395: 1394: 1391: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1358: 1357: 1354: 1353: 1351: 1347: 1344: 1342: 1338: 1333: 1329: 1325: 1324:Transcription 1318: 1313: 1311: 1306: 1304: 1299: 1298: 1295: 1288: 1285: 1282: 1278: 1275: 1271: 1268: 1264: 1263:Lac Repressor 1261: 1260: 1256: 1248: 1244: 1239: 1234: 1229: 1224: 1220: 1216: 1213:(6): 1891–8. 1212: 1208: 1204: 1200: 1194: 1191: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1134: 1131: 1126: 1122: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1074: 1069: 1065: 1060: 1055: 1051: 1047: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1007: 1002: 998: 994: 990: 986: 982: 978: 974: 970: 966: 962: 955: 952: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 896: 894: 890: 885: 881: 877: 873: 869: 865: 861: 857: 850: 847: 842: 838: 834: 830: 826: 822: 818: 814: 807: 804: 799: 795: 791: 787: 783: 779: 775: 768: 765: 760: 756: 751: 746: 742: 738: 734: 730: 726: 719: 716: 711: 707: 702: 697: 693: 689: 686:(2): 129–37. 685: 681: 677: 670: 668: 664: 659: 655: 651: 647: 644:(6): 521–48. 643: 639: 632: 629: 624: 620: 616: 609: 606: 601: 597: 592: 587: 583: 579: 575: 571: 567: 560: 557: 552: 548: 543: 538: 534: 530: 526: 522: 519:(2): 026005. 518: 514: 510: 503: 500: 495: 491: 487: 483: 479: 475: 471: 467: 460: 457: 451: 447: 444: 443: 439: 437: 435: 431: 427: 423: 422: 417: 413: 409: 405: 397: 395: 393: 389: 384: 383: 378: 374: 370: 362: 361: 352: 347: 344: 340: 330: 329: 324: 323: 318: 314: 310: 309: 301: 281: 279: 276: 274: 270: 250: 247: 239: 236:A C-terminal 235: 232: 228: 224: 221: 217: 213: 210: 206: 205: 204: 202: 198: 190: 186: 182: 178: 174: 167: 165: 163: 159: 154: 150: 146: 142: 138: 137:transcription 134: 132: 127: 123: 119: 115: 112: 108: 100: 98: 96: 92: 88: 84: 80: 75: 71: 67: 63: 59: 55: 51: 49: 40: 36: 32: 26: 22: 1397: 1210: 1206: 1193: 1144: 1140: 1133: 1090: 1086: 1076: 1023: 1019: 1009: 968: 964: 954: 905: 901: 859: 856:Biochemistry 855: 849: 816: 812: 806: 781: 777: 767: 735:(4): 973–9. 732: 728: 718: 683: 679: 641: 637: 631: 614: 608: 573: 570:Cell Systems 569: 559: 516: 512: 502: 469: 465: 459: 425: 419: 403: 401: 391: 390:, where the 380: 376: 372: 364: 355: 349:An all-atom 348: 342: 338: 326: 320: 306: 304: 299: 277: 243: 237: 230: 226: 219: 215: 208: 201:homotetramer 196: 194: 188: 184: 180: 179:Two dimeric 176: 161: 152: 144: 130: 122:major groove 106: 104: 90: 47: 46: 44: 38: 34: 1709:Termination 1585:Pribnow box 1553:Corepressor 1548:Coactivator 1349:prokaryotic 231:hinge helix 220:core domain 164:repressor. 79:allolactose 60:coding for 1752:Categories 1737:Rho factor 1727:Terminator 1718:eukaryotic 1693:eukaryotic 1674:Elongation 1660:Eukaryotic 1648:Initiation 1431:nucleosome 1414:eukaryotic 1386:gal operon 1381:ara operon 1376:Gua Operon 1371:gab operon 1366:trp operon 1361:lac operon 1332:Eukaryotic 452:References 446:Lac operon 149:allosteric 66:metabolism 54:expression 1713:bacterial 1681:bacterial 1655:Bacterial 1629:Insulator 1573:Promotion 1543:Activator 1393:Repressor 1328:Bacterial 1199:Gilbert W 1185:220049852 1169:0028-0836 1139:search". 1107:1362-4962 1050:0027-8424 1001:246360459 985:0036-8075 930:0036-8075 876:0006-2960 833:0022-2836 798:1631-0691 398:Discovery 313:diffusion 263:). The O 168:Structure 50:repressor 1634:Silencer 1612:Enhancer 1600:CAAT box 1590:TATA box 1580:Promoter 1277:Archived 1247:16591435 1177:32581356 1125:25779051 1068:24222688 993:35084952 946:21351861 938:22723426 710:19269243 658:15950160 600:29574055 551:24685590 440:See also 421:in vitro 408:isolated 388:in vitro 343:in vitro 308:In vitro 101:Function 62:proteins 1560:Inducer 1427:histone 1215:Bibcode 1149:Bibcode 1116:4402528 1059:3856812 1028:Bibcode 965:Science 910:Bibcode 902:Science 884:7317363 841:4924006 759:2182324 701:2688824 591:5991102 542:4051709 521:Bibcode 494:7973627 474:Bibcode 466:Science 382:E. coli 373:in vivo 339:In vivo 328:E. coli 322:In vivo 128:of the 124:of the 116:in its 74:lactose 70:lactose 1356:Operon 1269:(MeSH) 1245:  1238:220206 1235:  1183:  1175:  1167:  1141:Nature 1123:  1113:  1105:  1066:  1056:  1048:  999:  991:  983:  944:  936:  928:  882:  874:  839:  831:  796:  757:  750:551766 747:  708:  698:  656:  598:  588:  549:  539:  492:  434:analog 227:linker 133:operon 1617:E-box 1469:HDAC1 1181:S2CID 997:S2CID 942:S2CID 259:and O 114:motif 58:genes 21:lac I 1688:rpoB 1531:both 1518:CHD7 1449:EZH2 1243:PMID 1173:PMID 1165:ISSN 1121:PMID 1103:ISSN 1064:PMID 1046:ISSN 989:PMID 981:ISSN 934:PMID 926:ISSN 880:PMID 872:ISSN 837:PMID 829:ISSN 794:ISSN 755:PMID 706:PMID 654:PMID 596:PMID 547:PMID 490:PMID 432:(an 430:IPTG 414:and 402:The 341:and 189:LacI 185:LacI 181:LacI 105:The 87:lacZ 45:The 39:i.e. 25:Laci 1595:BRE 1233:PMC 1223:doi 1157:doi 1145:583 1111:PMC 1095:doi 1054:PMC 1036:doi 1024:110 973:doi 969:375 918:doi 906:336 864:doi 821:doi 786:doi 782:328 745:PMC 737:doi 696:PMC 688:doi 646:doi 642:328 619:doi 586:PMC 578:doi 537:PMC 529:doi 482:doi 470:266 426:lac 410:by 404:lac 392:lac 377:lac 255:, O 197:lac 162:lac 153:lac 145:lac 131:lac 107:lac 91:lac 81:by 68:of 56:of 48:lac 23:or 1754:: 1698:: 1686:: 1433:): 1330:, 1241:. 1231:. 1221:. 1211:56 1209:. 1205:. 1179:. 1171:. 1163:. 1155:. 1143:. 1119:. 1109:. 1101:. 1091:43 1089:. 1085:. 1062:. 1052:. 1044:. 1034:. 1022:. 1018:. 995:. 987:. 979:. 967:. 963:. 940:. 932:. 924:. 916:. 904:. 892:^ 878:. 870:. 860:20 858:. 835:. 827:. 817:53 815:. 792:. 776:. 753:. 743:. 731:. 727:. 704:. 694:. 684:12 682:. 678:. 666:^ 652:. 640:. 617:. 594:. 584:. 572:. 568:. 545:. 535:. 527:. 515:. 511:. 488:. 480:. 468:. 225:A 214:A 1720:) 1715:, 1711:( 1511:: 1488:: 1442:/ 1429:/ 1425:( 1334:) 1326:( 1316:e 1309:t 1302:v 1289:. 1249:. 1225:: 1217:: 1187:. 1159:: 1151:: 1127:. 1097:: 1070:. 1038:: 1030:: 1003:. 975:: 948:. 920:: 912:: 886:. 866:: 843:. 823:: 800:. 788:: 761:. 739:: 733:9 712:. 690:: 660:. 648:: 625:. 621:: 602:. 580:: 574:6 553:. 531:: 523:: 517:1 496:. 484:: 476:: 369:T 367:B 365:k 360:T 358:B 356:k 334:1 332:O 265:1 261:3 257:2 253:1 85:( 27:.

Index

lac I
Laci

expression
genes
proteins
metabolism
lactose
lactose
allolactose
β-Galactosidase
lacZ
allosteric regulation
helix-turn-helix
motif
DNA-binding domain
major groove
operator region
lac operon
transcription
RNA polymerase
allosteric
Isopropyl β-D-1-thiogalactopyranoside

homotetramer
helix-turn-helix
structural motif
RNA polymerase
abortive initiation
In vitro

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.