Knowledge (XXG)

Late Paleozoic icehouse

Source đź“ť

670:). With a smaller area for deposition of carbon, more carbon dioxide was returned to the atmosphere, further warming the planet. Over the course of the Early and Middle Permian, glacial periods became progressively shorter while warm interglacials became longer, gradually transitioning the world from an icehouse to a greenhouse as the Permian progressed. Obliquity nodes that triggered glacial expansion and increased tropical precipitation before 285.1 Mya became linked to intervals of marine anoxia and increased terrestrial aridification after this point, a turning point signifying the icehouse-greenhouse transition. Increased lacustrine methane emissions acted as a positive feedback enhancing warming. The LPIA finally ended for good around 255 Ma. 188: 458:. The reduction of carbon dioxide levels in the atmosphere would be enough to begin the process of changing polar climates, leading to cooler summers which could not melt the previous winter's snow accumulations. The growth in snowfields to 6 m deep would create sufficient pressure to convert the lower levels to ice. Research indicates that changing carbon dioxide concentrations were the dominant driver of changes between colder and warmer intervals during the Early and Middle Permian portions of the LPIA. 3898: 345: 146:, a global eustatic sea level drop occurred, signifying the first major glacial maximum of the LPIA. The Lhasa terrane became glaciated during this stage of the Carboniferous. A relatively warm interglacial interval spanning the Kasimovian and Gzhelian, coinciding with the Alykaevo Climatic Optimum, occurred between this first major glacial period and the later second major glacial period. The second glacial period occurred from the late 163:
Sakmarian and Artinskian is sometimes considered to be the end of the LPIA proper, with the Artinskian-Kungurian boundary and the associated Kungurian Carbon Isotopic Excursion used as the boundary demarcating the ice age's end. Nonetheless, ice caps of a much lower volume and area remained in Australia. Another long regional interval also limited to Australia from the middle Kungurian to the early
537:
interglacial periods. Data from Serpukhovian and Moscovian marine strata of South China point to glacioeustasy being driven primarily by long-period eccentricity, with a cyclicity of about 0.405 million years, and the modulation of the amplitude of Earth's obliquity, with a cyclicity of approximately 1.2 million years. This is most similar to the early part of the Late Cenozoic Ice Age, from the
20: 158:. This was the most intense interval of glaciation of the LPIA; in Australia, it is known as P1. An exceptionally intense cooling event occurred at 300 Ma. From the late Sakmarian onward, and especially following the Artinskian Warming Event (AWE), these ice sheets declined, as indicated by a negative 661:
Once these factors brought a halt and a small reversal in the spread of ice sheets, the lower planetary albedo resulting from the fall in size of the glaciated areas would have been enough for warmer summers and winters and thus limit the depth of snowfields in areas from which the glaciers expanded.
645:
loops, spreading the ice sheets still further, until the process hit a limit. Falling global temperatures would eventually limit plant growth, and the rising levels of oxygen would increase the frequency of fire-storms because damp plant matter could burn. Both these effects return carbon dioxide to
178:
The time intervals here referred to as glacial and interglacial periods represented intervals of several million years corresponding to colder and warmer icehouse intervals, respectively, were influenced by long term variations in palaeogeography, greenhouse gas levels, and geological processes such
577:
The development of high-frequency, high-amplitude glacioeustasy, which resulted in sea level changes of up to 120 metres between warmer and colder intervals, during the beginning of the LPIA, combined with the increased geographic separation of marine ecoregions and decrease in ocean circulation it
106:
changed. At the beginning of the LPIA, ice centres were concentrated in western South America; they later shifted eastward across Africa and by the end of the ice age were concentrated in Australia. Evidence from sedimentary basins suggests individual ice centres lasted for approximately 10 million
101:
arguing it represented one continuous glacial event and others concluding that as many as twenty-five separate ice sheets across Gondwana developed, waxed, and waned independently and diachronously over the course of the Carboniferous and Permian, with the distribution of ice centres shifting as
281:
sedimentary strata along with Cambrian and Ordovician granitoids and some Neoproterozoic metamorphic rocks, preserves glacial sediments indicating the presence of major ice sheets. Northern Victoria Land and Tasmania hosted a distinct ice sheet from the one in southern Victoria Land that flowed
162:
excursion. Ice sheets retreated southward across Central Africa and in the Karoo Basin. A regional glaciation spanning the latest Sakmarian and the Artinskian, known as P2, occurred in Australia amidst this global pulse of net warming and deglaciation. This massive deglaciation during the late
1644:
Chen, Jitao; Montañez, Isabel P.; Zhang, Shuang; Isson, Terry T.; Macarewich, Sophia I.; Planavsky, Noah J.; Zhang, Feifei; Rauzi, Sofia; Daviau, Kierstin; Yao, Le; Qi, Yu-ping; Wang, Yue; Fan, Jun-xuan; Poulsen, Christopher J.; Anbar, Ariel D.; Shen, Shu-zhong; Wang, Xiang-dong (2 May 2022).
536:
acting on timescales of tens of thousands to millions of years. Periods of low obliquity, which decreased annual insolation at the poles, were associated with high moisture flux from low latitudes and glacial expansion at high latitudes, while periods of high obliquity corresponded to warmer,
1137:
Griffis, Neil Patrick; Montañez, Isabel Patricia; Mundil, Roland; Richey, Jon; Isbell, John L.; Fedorchuk, Nicholas D.; Linol, Bastien; Iannuzzi, Roberto; Vesely, Fernando; Mottin, Thammy; Da Rosa, Eduardo; Keller, Brenhin; Yin, Qing-Zhu (2 October 2019).
710:
Fedorchuk, Nicholas D.; Griffis, Neil Patrick; Isbell, John L.; Goso, César; Rosa, Eduardo L. M.; Montañez, Isabel Patricia; Yin, Qing-Zhu; Huyskens, Magdalena H.; Sanborn, Matthew E.; Mundil, Roland; Vesely, Fernando F.; Iannuzzi, Roberto (March 2022).
2732: 1651: 1298:
Ezpeleta, Miguel; Rustán, Juan José; Balseiro, Diego; Dávila, Federico Miguel; Dahlquist, Juan Andrés; Vaccari, Norberto Emilio; Sterren, Andrea Fabiana; Prestianni, Cyrille; Cisterna, Gabriela Adriana; Basei, Miguel (22 July 2020).
605:
of plants and animals. Higher oxygen concentration (and accompanying higher atmospheric pressure) enabled energetic metabolic processes which encouraged evolution of large land-dwelling arthropods and flight, with the dragonfly-like
921:
Isbell, John L.; Vesely, Fernando F.; Rosa, Eduardo L. M.; Pauls, Kathryn N.; Fedorchuk, Nicholas D.; Ives, Libby R. W.; McNall, Natalie B.; Litwin, Scott A.; Borucki, Mark K.; Malone, John E.; Kusick, Allison R. (October 2021).
585:
At the beginning of the LPIA, the transition from a greenhouse to an icehouse climate, in conjunction with increases in atmospheric oxygen concentrations, reduced thermal stratification and increased the vertical extent of the
171:, known as P4. As with P3, P4's ice sheets were primarily high altitude glaciers. This glacial period was interrupted by a rapid warming interval corresponding to a surge in activity from the Emeishan Traps and corresponding 1805:
Marchetti, Lorenzo; Forte, Giuseppa; Kustatscher, Evelyn; DiMichele, William A.; Lucas, Spencer G.; Roghi, Guido; Juncal, Manuel A.; Hartkopf-Fröder, Christoph; Krainer, Karl; Morelli, Corrado; Ronchi, Ausonio (March 2022).
2790:
Peter J. Franks, Dana L. Royer, David J. Beerling, Peter K. Van de Water, David J. Cantrill, Margaret M. Barbour and Joseph A. Berry (16 July 2014). "New constraints on atmospheric CO2 concentration for the Phanerozoic".
167:, known as P3, though unlike the previous glaciations, this one and the following P4 glaciation was largely limited to alpine glaciation. A final regional Australian interval lasted from the middle Capitanian to the late 2133:"Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the late Palaeozoic Ice Age" 1301:"Glaciomarine sequence stratigraphy in the Mississippian Río Blanco Basin, Argentina, southwestern Gondwana. Basin analysis and palaeoclimatic implications for the Late Paleozoic Ice Age during the Tournaisian" 274:). Glaciofluvial sandstones, moraines, boulder beds, glacially striated pavements, and other glacially derived geologic structures and beds are also known throughout the southern part of the Arabian Peninsula. 3290: 2919: 231:. During the Late Carboniferous glacial accumulation (c. 300 Ma) a very large area of Gondwana land mass was experiencing glacial conditions. The thickest glacial deposits of Permo-Carboniferous age are the 2078:"Reassessing the chronostratigraphy and tempo of climate change in the Lower-Middle Permian of the southern Sydney Basin, Australia: Integrating evidence from U–Pb zircon geochronology and biostratigraphy" 289:
of eastern Australia lay at a palaeolatitude of around 60°S to 70°S during the Early and Middle Permian, and its sedimentary successions preserve at least four phases of glaciation throughout this time.
553:, China indicates that the climate of the time was particularly sensitive to the 1.2 million year long-period modulation cycle of obliquity. It also suggests that palaeolakes such as those found in the 179:
as rates of volcanism and of silicate weathering and should not be confused with shorter term cycles of glacials and interglacials that are driven by astronomical forcing caused by Milankovitch cycles.
2680:"The Late Paleozoic Ice Age in western equatorial Pangea: Context for complex interactions among aeolian, alluvial, and shoreface sedimentary environments during the Late Pennsylvanian – early Permian" 251:
changes in sea level that resulted and which are recorded in non-glacial basins. Late Paleozoic glaciation of Gondwana could be explained by the migration of the supercontinent across the South Pole."
2552:"Middle Permian U–Pb zircon ages of the "glacial" deposits of the Atkan Formation, Ayan-Yuryakh anticlinorium, Magadan province, NE Russia: Their significance for global climatic interpretations" 582:. Milankovitch cycles profound impacts on marine life at the height of the LPIA, with high-latitude species being more strongly affected by glacial-interglacial cycles than low-latitude species. 569:
were deposited. These were produced by the repeated alterations of marine and nonmarine environments resulting from glacioeustatic rises and falls of sea levels linked to Milankovitch cycles.
2455: 2303: 579: 1083:"A paleoclimatic reconstruction of the Carboniferous-Permian paleovalley fill in the eastern Paganzo Basin: Insights into glacial extent and deglaciation of southwestern Gondwana" 324:
The tropics experienced a cyclicity between wetter and drier periods that may have been related to changes between cold glacials and warm interglacials. In the Midland Basin of
2019:"Permian carbon isotope and clay mineral records from the Xikou section, Zhen'an, Shaanxi Province, central China: Climatological implications for the easternmost Paleo-Tethys" 1558:"Latest Chesterian (Carboniferous) initiation of Gondwanan glaciation recorded in facies stacking patterns and brachiopod paleocommunities of the Antler foreland basin, Idaho" 3203:"Revealing the hidden Milankovitch record from Pennsylvanian cyclothem successions and implications regarding late Paleozoic chronology and terrestrial-carbon (coal) storage" 2181:"Chemical weathering indices on marine detrital sediments from a low-latitude Capitanian to Wuchiapingian carbonate-dominated succession and their paleoclimate significance" 2496:"Stacked Parahaentzschelinia ichnofabrics from the Lower Permian of the southern Sydney Basin, southeastern Australia: Palaeoecologic and palaeoenvironmental significance" 126:
and minor, with them sometimes being considered discrete glaciations separate from and preceding the LPIA proper. Between 335 and 330 Mya, or sometime between the middle
3391: 3343: 3156: 2967: 2924: 2500: 2185: 2137: 2023: 1868: 1767:"The chemical index of alteration in Permo-Carboniferous strata in North China as an indicator of environmental and climate change throughout the late Paleozoic Ice Age" 1723: 1562: 1419: 1371: 1195: 822: 2846: 877: 122:
evidence showing that the transition from greenhouse to icehouse was a stepwise process and not an immediate change. These Early Mississippian glaciations were
3109:"Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics" 2638:"The Far-Field imprint of the late Paleozoic Ice Age, its demise, and the onset of a dust-house climate across the Eastern Shelf of the Midland Basin, Texas" 3481:
Fang, Qiang; Wu, Huaichu; Shen, Shu-zhong; Fan, Junxuan; Hinnov, Linda A.; Yuan, Dongxun; Zhang, Shihong; Yang, Tianshui; Chen, Jun; Wu, Qiong (June 2022).
911:"The late Paleozoic icehouse was the longest-lived ice age of the Phanerozoic, and its demise constitutes the only recorded turnover to a greenhouse state." 3387:"From greenhouse to icehouse: Nitrogen biogeochemistry of an epeiric sea in the context of the oxygenation of the Late Devonian atmosphere/ocean system" 3202: 1247:"The late Paleozoic Ice Age along the southwestern margin of Gondwana: Facies models, age constraints, correlation and sequence stratigraphic framework" 3059:"Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age" 1251: 1087: 717: 549:, suggesting the climate of this episode of time was relatively warm for an icehouse period. Evidence from the Middle Permian Lucaogou Formation of 376: 3897: 2460: 2456:"Detrital zircons from Late Paleozoic Ice Age sequences in Victoria Land (Antarctica): New constraints on the glaciation of southern Gondwana" 2375:
Abbate, Ernesto; Bruni, Piero; Sagri, Mario (2015). "Geology of Ethiopia: A Review and Geomorphological Perspectives". In Billi, Paolo (ed.).
2454:
Zurli, Luca; Cornamusini, Gianluca; Woo, Jusun; Liberato, Giovanni Pio; Han, Seunghee; Kim, Yoonsup; Talarico, Franco Maria (27 April 2021).
2392: 1969:
Chen, Bo; Joachimski, Michael M.; Shen, Shu-zhong; Lambert, Lance L.; Lai, Xu-long; Wang, Xiang-dong; Chen, Jun; Yuan, Dong-xun (July 2013).
997: 787: 713:"Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paraná Basin, Uruguay and southernmost Paraná Basin, Brazil" 3009:
Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent (10 April 2017).
2593:
Isbell, John L.; Biakov, Alexander S.; Vedernikov, Igor L.; Davydov, Vladimir I.; Gulbranson, Erik L.; Fedorchuk, Nicholas D. (March 2016).
4149: 1031: 666:
produced by global warming drowned the large areas of flatland where previously anoxic swamps assisted in burial and removal of carbon (as
2678:
Olivier, Marie; Bourquin, Sylvie; Desaubliaux, Guy; Ducassou, CĂ©line; Rossignol, Camille; Daniau, Gautier; Chaney, Dan (1 December 2023).
3339:"Paleoecology of brachiopod communities during the late Paleozoic ice age in Bolivia (Copacabana Formation, Pennsylvanian–Early Permian)" 3150:
Huang, He; Gao, Yuan; Jones, Matthew M.; Tao, Huifei; Carroll, Alan R.; Ibarra, Daniel E.; Wu, Huaichun; Wang, Chengshan (15 July 2020).
3431: 1140:"Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana" 3680: 2963:"Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China)" 2359: 1245:
LĂłpez-GamundĂ­, Oscar; Limarino, Carlos O.; Isbell, John L.; Pauls, Kathryn; CĂ©sari, Silvia N.; Alonso-Muruaga, Pablo J. (April 2021).
4124: 3057:
Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Yang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong (April 2018).
1305: 2179:
Cheng, Cheng; Wang, Xinyu; Li, Shuangying; Cao, Tingli; Chu, Yike; Wei, Xing; Li, Min; Wang, Dan; Jiang, Xinyi (15 November 2022).
1081:
Pauls, Kathryn N.; Isbell, John L.; McHenry, Lindsay; Limarino, C. Oscar; Moxness, Levi D.; Schencmann, L. Jazmin (November 2019).
301:
did, with most palaeoclimate models suggesting that ice sheets did exist in Northern Pangaea but that they were very negligible in
2860:
Richey, Jon D.; Montañez, Isabel P.; Goddéris, Yves; Looy, Cindy V.; Griffis, Neil P.; DiMichele, William A. (22 September 2020).
561:
during the later stages of the LPIA, with their absorption and release of carbon dioxide acting as powerful feedback loops during
4134: 172: 134:, the LPIA proper began. A start in glacioeustatic sea level changes is recorded from Idaho at around this time. The first major 1596:
An, Xianyin; Xu, Huan; He, Keheng; Xia, Lei; Du, Yan; Ding, Jiaxiang; Yuan, Tingyuan; Liu, Gaozheng; Zheng, Hongbo (June 2023).
3113: 2236: 1912:"Carbon isotopic evidence for rapid methane clathrate release recorded in coals at the terminus of the Late Palaeozoic Ice Age" 313:
have been interpreted as being glacigenic, although recent analyses have challenged this interpretation, suggesting that these
175:. The final alpine glaciers of the LPIA melted in what is now eastern Australia around 255 Mya, during the late Wuchiapingian. 4154: 2920:"Wildfire activity and impacts on palaeoenvironments during the late Paleozoic Ice Age - New data from the North China Basin" 1864:"Post-glacial Permian stratigraphy and geography of southern and central Africa: boundary conditions for climatic modelling" 924:"Evaluation of physical and chemical proxies used to interpret past glaciations with a focus on the late Paleozoic Ice Age" 492:, which led to progressive cooling of summers, and the snowfields accumulating in winters, which caused mountainous alpine 4114: 4104: 4032: 1765:
Li, Yanan; Shao, Longyi; Fielding, Christopher R.; Frank, Tracy D.; Wang, Dewei; Mu, Guangyuan; Lu, Jing (February 2023).
1517:"Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record" 195:
According to Eyles and Young, "Renewed Late Devonian glaciation is well documented in three large intracratonic basins in
75: 3537:
Sun, Funing; Hu, Wenxuan; Cao, Jian; Wang, Xiaolin; Zhang, Zhirong; Ramezani, Jahandar; Shen, Shuzhong (18 August 2022).
4144: 2793: 1910:
Van de Wetering, Nikola; Esterle, Joan S.; Golding, Suzanne D.; Rodrigues, Sandra; Götz, Annette E. (12 November 2019).
4129: 3487: 3063: 2595:"Permian diamictites in northeastern Asia: Their significance concerning the bipolarity of the late Paleozoic ice age" 1771: 1602: 328:, increased aeolian sedimentation reflective of heightened aridity occurred during warmer intervals, as it did in the 187: 3241:
Shi, Yukun; Wang, Xiangdong; Fan, Junxuan; Huang, Hao; Xu, Huiqing; Zhao, Yingying; Shen, Shuzhong (September 2021).
612:, an aerial predator, with a wingspan of 60 to 75 cm. The herbivorous stocky-bodied and armoured millipede-like 3427:"Timing of Early and Middle Permian deglaciation of the southern hemisphere: Brachiopod-based 87Sr/86Sr calibration" 3425:
Garbelli, C.; Shen, S. Z.; Immenhauser, A.; Brand, U.; Buhl, D.; Wang, W. Q.; Zhang, H.; Shi, G. R. (15 June 2019).
4139: 3729: 2862:"Influence of temporally varying weatherability on CO2-climate coupling and ecosystem change in the late Paleozoic" 2017:
Cheng, Cheng; Li, Shuangying; Xie, Xiangyang; Cao, Tingli; Manger, Walter L.; Busbey, Arthur B. (15 January 2019).
1808:"The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian" 2861: 2550:
Davydov, V. I.; Biakov, A. S.; Isbell, John L.; Crowley, J. L.; Schmitz, M. D.; Vedernikov, I. L. (October 2016).
3914: 3807: 139: 86: 3152:"Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China" 2961:
Chen, Bo; Joachimski, Michael M.; Wang, Xiang-dong; Shen, Shu-zhong; Qi, Yu-ping; Qie, Wen-kun (15 April 2016).
875:
Montañez, Isabel P.; Poulsen, Christopher J. (2013-05-30). "The Late Paleozoic Ice Age: An Evolving Paradigm".
2410:"Late Paleozoic (Late Carboniferous-Early Permian) glaciogenic sandstone reservoirs on the Arabian Peninsula" 1367:"Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation" 488:, made a major continental land mass within the Antarctic region and an increase in carbon sequestration via 4119: 4109: 3769: 578:
caused in conjunction with closure of the Rheic Ocean, has been hypothesised to have been the cause of the
4074: 3945: 3829: 3761: 3673: 3482: 3426: 3338: 3295: 3058: 2962: 2495: 2180: 2132: 2077: 2018: 1970: 1807: 1366: 1190: 1082: 817: 712: 690: 501: 3243:"Carboniferous-earliest Permian marine biodiversification event (CPBE) during the Late Paleozoic Ice Age" 2131:
Birgenheier, Lauren P.; Frank, Tracy D.; Fielding, Christopher R.; Rygel, Michael C. (15 February 2010).
1863: 767: 4037: 3882: 3855: 3785: 3702: 3697: 3543: 3247: 2840: 2599: 2241: 1812: 1466: 1026: 974:"The late Paleozoic ice age--A review of current understanding and synthesis of global climate patterns" 928: 684: 565:
driven glacial and interglacial transitions. Also during this time, unique sedimentary sequences called
529: 247:
in eastern Australia. The Permo-Carboniferous glaciations are significant because of the marked glacio-
1460:
Scotese, Christopher Robert; Song, Haijun; Mills, Benjamin J. W.; van der Meer, Douwe G. (April 2021).
1415:"Changes in marine nitrogen fixation and denitrification rates during the end-Devonian mass extinction" 263: 3242: 2679: 2409: 2302:
Rygel, Michael C.; Fielding, Christopher R.; Frank, Tracy D.; Birgenheier, Lauren P. (1 August 2008).
1718: 1597: 1461: 1246: 923: 454:(as tree trunks and other vegetation debris) accumulating and being buried in the great Carboniferous 3765: 3757: 3738: 3618: 3496: 3440: 3256: 3165: 3122: 3072: 3024: 2976: 2875: 2802: 2741: 2608: 2565: 2509: 2250: 2194: 2146: 2087: 2032: 1984: 1925: 1877: 1821: 1660: 1380: 1314: 1204: 1153: 1096: 1040: 937: 886: 831: 423: 150:
across the Carboniferous-Permian boundary to the early Sakmarian; ice sheets expanded from a core in
3483:"Astronomically paced climate evolution during the Late Paleozoic icehouse-to-greenhouse transition" 4094: 4057: 3991: 3972: 3968: 3939: 3847: 3773: 3734: 3724: 3207: 3107:
Fang, Qiang; Wu, Huaichun; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong (1 May 2018).
2866: 1413:
Liu, Jiangsi; Qie, Wenkun; Algeo, Thomas J.; Yao, Le; Huang, Junhua; Luo, Genming (15 April 2016).
1365:
Buggisch, Werner; Joachimski, Michael M.; Sevastopulo, George; Morrow, Jared R. (24 October 2008).
533: 497: 489: 482: 372: 298: 294: 271: 255: 220: 2235:
Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (April 2021).
4010: 3512: 3456: 3386: 3360: 3312: 3183: 3011:"Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering" 2893: 2828: 2637: 2525: 2429: 2274: 2210: 2103: 2048: 1916: 1837: 1766: 1719:"Acme and demise of the late Palaeozoic ice age: A view from the southeastern margin of Gondwana" 1696: 1557: 1538: 1414: 1340: 1220: 1171: 1112: 1056: 847: 793: 734: 562: 380: 248: 3753: 219:. By the mid-Carboniferous glaciation had spread to Antarctica, Australia, southern Africa, the 2351: 2345: 2237:"Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years" 1462:"Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years" 344: 4099: 3821: 3813: 3795: 3781: 3777: 3666: 3646: 3560: 3015: 2769: 2701: 2684: 2642: 2556: 2388: 2355: 2266: 1975: 1951: 1740: 1688: 1619: 1483: 1300: 1270: 1191:"New data on the Late Paleozoic Ice Age glaciomarine successions from Tasmania (SE Australia)" 1144: 993: 902: 783: 647: 642: 443: 431: 356: 348: 278: 259: 228: 71: 395:, growing to 20 m (66 ft) high, were secondarily dominant to the large arborescent 199:(Solimoes, Amazonas and Paranaiba basins) and in Bolivia. By the Early Carboniferous (c. 350 3983: 3851: 3803: 3799: 3636: 3626: 3552: 3504: 3448: 3444: 3400: 3352: 3304: 3264: 3216: 3173: 3130: 3080: 3032: 2984: 2933: 2883: 2818: 2810: 2759: 2749: 2693: 2651: 2616: 2573: 2517: 2469: 2421: 2380: 2315: 2258: 2202: 2154: 2095: 2082: 2076:
Shi, G. R.; Nutman, Allen P.; Lee, Sangmin; Jones, Brian G.; Bann, Glen R. (February 2022).
2040: 1992: 1941: 1933: 1885: 1829: 1780: 1732: 1678: 1668: 1611: 1571: 1528: 1475: 1428: 1388: 1330: 1322: 1260: 1212: 1189:
Zurli, Luca; Cornamusini, Gianluca; Liberato, Giovanni Pio; Conti, Paolo (15 October 2022).
1161: 1104: 1048: 985: 945: 894: 839: 775: 726: 679: 504:
via silicate weathering to have been sufficient to generate the ice age. The closure of the
500:, which spread to cover much of Gondwana. Modelling evidence points to tectonically induced 478: 3539:"Sustained and intensified lacustrine methane cycling during Early Permian climate warming" 107:
years, with their peaks alternating with periods of low or absent permanent ice coverage.
3843: 3835: 3791: 462: 277:
In southern Victoria Land, Antarctica, the Metschel Tillite, made up of reworked Devonian
244: 123: 83: 352: 240: 3622: 3500: 3260: 3169: 3126: 3076: 3028: 2980: 2879: 2806: 2745: 2612: 2569: 2513: 2254: 2198: 2150: 2091: 2036: 1988: 1929: 1881: 1825: 1664: 1384: 1318: 1208: 1157: 1100: 1044: 1025:
Yu, H. C.; Qiu, K. F.; Li, M.; Santosh, M.; Zhao, Z. G.; Huang, Y. Q. (5 October 2020).
941: 898: 890: 835: 4159: 4047: 4042: 4027: 3960: 3590: 1946: 1911: 1683: 1646: 779: 663: 619: 546: 439: 427: 419: 384: 306: 135: 27: 601:
The rising levels of oxygen during the late Paleozoic icehouse had major effects upon
4088: 3839: 3825: 3817: 3746: 3641: 3594: 3538: 3516: 3460: 3316: 3201:
Van den Belt, Frank J. G.; Van Hoof, Thomas B.; Pagnier, Henk J. M. (1 August 2015).
3187: 2897: 2764: 2727: 2529: 2433: 2341: 2282: 2278: 2214: 2107: 2052: 1889: 1841: 1700: 1542: 1344: 1224: 1175: 1116: 1060: 973: 851: 797: 738: 591: 554: 509: 455: 400: 329: 168: 55: 3508: 3364: 3268: 3085: 2918:
Shen, Wenchao; Zhao, Qiaojing; Uhl, Dieter; Wang, Jun; Sun, Yuzhuang (August 2023).
2832: 2621: 2594: 2262: 1833: 1784: 1615: 1479: 950: 4052: 1647:"Marine anoxia linked to abrupt global warming during Earth's penultimate icehouse" 614: 286: 267: 142:: ice sheets expanded from a core in southern Africa and South America. During the 131: 59: 3404: 3356: 3178: 3151: 3135: 3108: 2988: 2937: 2521: 2206: 2158: 2099: 2044: 1736: 1575: 1433: 1392: 1265: 1216: 1108: 843: 730: 4002: 3742: 2384: 1971:"Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited" 1717:
Frank, Tracy D.; Shultis, Aaron I.; Fielding, Christopher R. (15 January 2015).
587: 558: 517: 513: 505: 403: 318: 236: 232: 115: 79: 3556: 3452: 3308: 2733:
Proceedings of the National Academy of Sciences of the United States of America
2425: 1937: 1652:
Proceedings of the National Academy of Sciences of the United States of America
972:
Fielding, Christopher R.; Frank, Tracy Dagmar; Isbell, John L. (January 2008).
270:
can be found buried beneath Late Carboniferous-Early Permian glacial deposits (
19: 3956: 3719: 3711: 3385:
Tuite, Michael L.; Williford, Kenneth H.; Macko, Stephen A. (1 October 2019).
989: 622: 566: 466: 435: 411: 392: 314: 164: 143: 103: 98: 3564: 2754: 2705: 2697: 2656: 2578: 2551: 2347:
Geodynamic controls on glaciation in Earth history, in Earth's Glacial Record
2270: 1996: 1744: 1623: 1598:"Onset of the late Paleozoic glaciation in the Lhasa terrane, Southern Tibet" 1487: 1274: 906: 317:
formed during a Capitanian integrlacial interval as a result of volcanogenic
3931: 3906: 3874: 2888: 2636:
Griffis, Neil; Tabor, Neil J.; Stockli, Daniel; Stockli, Lisa (March 2023).
1673: 608: 602: 538: 451: 212: 151: 111: 63: 3650: 3631: 3010: 2773: 1955: 1692: 1533: 1516: 127: 2823: 2304:"The Magnitude of Late Paleozoic Glacioeustatic Fluctuations: A Synthesis" 2287: 62:, occurring from 360 to 255 million years ago (Mya), and large land-based 3866: 3220: 2814: 2319: 1052: 626: 550: 542: 470: 216: 147: 24: 1326: 4062: 3870: 3689: 1335: 655: 520:
Sea, which may have also been a factor in the development of the LPIA.
493: 485: 474: 396: 208: 159: 119: 51: 3337:
Badyrka, Kira; Clapham, Matthew E.; LĂłpez, Shirley (1 October 2013).
3036: 2473: 1166: 1139: 638: 447: 415: 388: 360: 310: 302: 204: 196: 446:
was coupled with burial of organic carbon as charcoal or coal, with
321:
associated with the formation of the Okhotsk–Taigonos Volcanic Arc.
2340:
Eyles, Nicholas; Young, Grant (1994). Deynoux, M.; Miller, J.M.G.;
426:
raised the atmospheric oxygen levels to a peak of 35%, and lowered
407: 343: 325: 155: 67: 18: 3291:"Foraminiferal diversification during the late Paleozoic ice age" 667: 646:
the atmosphere, reversing the "snowball" effect and forcing the
333: 224: 110:
The first glacial episodes of the LPIA occurred during the late
3662: 23:
Approximate extent of the Karoo Glaciation (in blue), over the
2785: 2783: 200: 3658: 1455: 1453: 1451: 618:
was 1.8 metres (5.9 ft) long, and the semiterrestrial
351:
formed by late Paleozoic glaciers in the Witmarsum Colony,
496:
to grow, and then spread out of highland areas. That made
1027:"Record of the Late Paleozoic Ice Age From Tarim, China" 580:
Carboniferous-Earliest Permian Biodiversification Event
2379:. World Geomorphological Landscapes. pp. 33–64. 207:
were beginning to accumulate in sub-Andean basins of
4020: 4001: 3982: 3955: 3930: 3905: 3865: 3710: 3696: 2494:Luo, Mao; Shi, G. R.; Lee, Sangmin (1 March 2020). 2071: 2069: 641:produced by the expanding ice sheets would lead to 2350:. Cambridge: Cambridge University Press. pp.  2344:; Eyles, N.; Fairchild, I.J.; Young, G.M. (eds.). 978:Special Paper of the Geological Society of America 870: 868: 774:(2nd ed.). Academic Press. pp. 534–545. 434:(ppm), possibly as low as 180 ppm during the 102:Gondwana drifted and its position relative to the 3392:Palaeogeography, Palaeoclimatology, Palaeoecology 3344:Palaeogeography, Palaeoclimatology, Palaeoecology 3157:Palaeogeography, Palaeoclimatology, Palaeoecology 2968:Palaeogeography, Palaeoclimatology, Palaeoecology 2925:Palaeogeography, Palaeoclimatology, Palaeoecology 2501:Palaeogeography, Palaeoclimatology, Palaeoecology 2186:Palaeogeography, Palaeoclimatology, Palaeoecology 2138:Palaeogeography, Palaeoclimatology, Palaeoecology 2024:Palaeogeography, Palaeoclimatology, Palaeoecology 1869:Palaeogeography, Palaeoclimatology, Palaeoecology 1724:Palaeogeography, Palaeoclimatology, Palaeoecology 1563:Palaeogeography, Palaeoclimatology, Palaeoecology 1420:Palaeogeography, Palaeoclimatology, Palaeoecology 1372:Palaeogeography, Palaeoclimatology, Palaeoecology 1196:Palaeogeography, Palaeoclimatology, Palaeoecology 823:Palaeogeography, Palaeoclimatology, Palaeoecology 629:reached 50 or 70 centimetres (20 or 28 in). 191:Timeline of glaciations (ice ages), shown in blue 2408:Senalp, Muhittin; Tetiker, Sema (1 March 2022). 2297: 2295: 1712: 1710: 1521:Geological Society, London, Special Publications 387:on land began a long-term increase in planetary 3289:Groves, John R.; Yue, Wang (1 September 2009). 2956: 2954: 1510: 1508: 1506: 1504: 1293: 1291: 770:. In Alderton, David; Elias, Scott A. (eds.). 532:, saw glacial-interglacial cycles governed by 3674: 1515:Montañez, Isabel Patricia (2 December 2021). 878:Annual Review of Earth and Planetary Sciences 766:Rosa, Eduardo L. M.; Isbell, John L. (2021). 512:saw disruption of warm-water currents in the 239:in southern Africa, the ItararĂ© Group of the 8: 2845:: CS1 maint: multiple names: authors list ( 816:Kent, D.V.; Muttoni, G. (1 September 2020). 761: 759: 757: 755: 97:Interpretations of the LPIA vary, with some 30:during the Carboniferous and Permian periods 590:, which promoted higher rates of microbial 3707: 3681: 3667: 3659: 2728:"Atmospheric oxygen over Phanerozoic time" 811: 809: 807: 654:levels rising to 300 ppm in the following 305:. Diamictites from the Atkan Formation of 3640: 3630: 3177: 3134: 3084: 2887: 2822: 2763: 2753: 2655: 2620: 2577: 1945: 1682: 1672: 1532: 1432: 1334: 1264: 1165: 949: 818:"Pangea B and the Late Paleozoic Ice Age" 1252:Journal of South American Earth Sciences 1088:Journal of South American Earth Sciences 1020: 1018: 1016: 718:Journal of South American Earth Sciences 377:Silurian-Devonian Terrestrial Revolution 186: 702: 3607:event on the terrestrial carbon cycle" 3595:"Impact of a Permo-Carboniferous high 2838: 2461:Geological Society of America Bulletin 138:occurred from the Serpukhovian to the 2126: 2124: 1862:Visser, Johan N. J. (November 1995). 557:likely played an important role as a 7: 2377:Landscapes and Landforms of Ethiopia 1585:– via Elsevier Science Direct. 1032:Geochemistry, Geophysics, Geosystems 3432:Earth and Planetary Science Letters 899:10.1146/annurev.earth.031208.100118 1876:(3–4): 213–218, 219–220, 223–243. 780:10.1016/B978-0-08-102908-4.00063-1 14: 1556:Butts, Susan H. (1 August 2005). 1306:Journal of the Geological Society 438:, which is today associated with 418:, and later on the flanks of the 3896: 625:were perhaps as large, and some 594:as revealed by an increase in δN 297:experienced glaciation like the 293:Debate exists as to whether the 173:Capitanian mass extinction event 3509:10.1016/j.gloplacha.2022.103822 3269:10.1016/j.earscirev.2021.103699 3114:Journal of Asian Earth Sciences 3086:10.1016/j.gloplacha.2018.01.022 2622:10.1016/j.earscirev.2016.01.007 2308:Journal of Sedimentary Research 2263:10.1016/j.earscirev.2021.103503 1834:10.1016/j.earscirev.2022.103922 1785:10.1016/j.gloplacha.2023.104035 1616:10.1016/j.gloplacha.2023.104139 1480:10.1016/j.earscirev.2021.103503 951:10.1016/j.earscirev.2021.103756 2414:Arabian Journal of Geosciences 545:, before the formation of the 465:assembly of the continents of 406:that flourished in equatorial 1: 4033:Greenhouse and icehouse Earth 3611:Proc. Natl. Acad. Sci. U.S.A 3405:10.1016/j.palaeo.2019.05.026 3357:10.1016/j.palaeo.2013.07.016 3179:10.1016/j.palaeo.2020.109735 3136:10.1016/j.jseaes.2018.02.001 2989:10.1016/j.palaeo.2016.01.002 2938:10.1016/j.palaeo.2023.111781 2794:Geophysical Research Letters 2522:10.1016/j.palaeo.2019.109538 2207:10.1016/j.palaeo.2022.111248 2159:10.1016/j.palaeo.2010.01.008 2100:10.1016/j.lithos.2021.106570 2045:10.1016/j.palaeo.2018.10.023 1890:10.1016/0031-0182(95)00008-3 1737:10.1016/j.palaeo.2014.11.016 1576:10.1016/j.palaeo.2005.04.010 1434:10.1016/j.palaeo.2015.10.022 1393:10.1016/j.palaeo.2008.03.043 1266:10.1016/j.jsames.2020.103056 1217:10.1016/j.palaeo.2022.111210 1109:10.1016/j.jsames.2019.102236 844:10.1016/j.palaeo.2020.109753 731:10.1016/j.jsames.2020.102989 637:Earth's increased planetary 46:) and formerly known as the 4150:Carboniferous South America 3488:Global and Planetary Change 3064:Global and Planetary Change 2385:10.1007/978-94-017-8026-1_2 1772:Global and Planetary Change 1603:Global and Planetary Change 768:"Late Paleozoic Glaciation" 528:The LPIA, like the present 4176: 3730:Penultimate Glacial Period 3557:10.1038/s41467-022-32438-2 3453:10.1016/j.epsl.2019.03.039 3309:10.1666/0094-8373-35.3.367 2426:10.1007/s12517-022-09467-8 1938:10.1038/s41598-019-52863-6 243:, Brazil (1400 m) and the 74:. It was the second major 4071: 3894: 2726:Robert A. Berner (1999). 430:level below the 300  87:Andean-Saharan glaciation 4125:Carboniferous Antarctica 2755:10.1073/pnas.96.20.10955 2698:10.1016/j.gr.2023.07.004 2657:10.1016/j.gr.2022.11.004 2579:10.1016/j.gr.2015.10.014 1997:10.1016/j.gr.2012.07.007 442:. This reduction in the 367:Greenhouse gas reduction 4135:Carboniferous Australia 3921:Late Paleozoic icehouse 3593:; Berner, R.A. (2000). 3445:2019E&PSL.516..122G 2889:10.5194/cp-16-1759-2020 1674:10.1073/pnas.2115231119 772:Encyclopedia of Geology 258:glacial landforms like 36:late Paleozoic icehouse 4075:Timeline of glaciation 3942:(579.88 to 579.63 Mya) 3632:10.1073/pnas.220280097 1534:10.1144/SP512-2021-124 691:Timeline of glaciation 502:carbon dioxide removal 399:(30–40 m high) of the 363: 235:(1000 m thick) in the 192: 40:Late Paleozoic Ice Age 31: 4155:Permian South America 4038:Great Oxidation Event 3544:Nature Communications 3248:Earth-Science Reviews 2600:Earth-Science Reviews 2242:Earth-Science Reviews 1813:Earth-Science Reviews 1467:Earth-Science Reviews 990:10.1130/2008.2441(24) 929:Earth-Science Reviews 687:– the current ice age 685:Quaternary glaciation 530:Quaternary glaciation 347: 190: 66:were then present on 22: 4115:Carboniferous Africa 4105:Carboniferous events 3923:(360 Mya to 260 Mya) 3917:(460 Mya to 430 Mya) 3739:Last Glacial Maximum 3221:10.2110/jsr.2008.058 2815:10.1002/2014GL060457 2320:10.2110/jsr.2008.058 1053:10.1029/2020GC009237 498:continental glaciers 424:carbon sequestration 282:west-northwestward. 38:, also known as the 4145:Carboniferous India 4058:Milankovitch cycles 3735:Last Glacial Period 3623:2000PNAS...9712428B 3501:2022GPC...21303822F 3261:2021ESRv..22003699S 3170:2020PPP...550j9735H 3127:2018JAESc.156..302F 3077:2018GPC...163...97F 3029:2017NatGe..10..382G 2981:2016PPP...448..151C 2880:2020CliPa..16.1759R 2867:Climate of the Past 2807:2014GeoRL..41.4685F 2746:1999PNAS...9610955B 2613:2016ESRv..154..279I 2570:2016GondR..38...74D 2514:2020PPP...541j9538L 2255:2021ESRv..21503503S 2199:2022PPP...606k1248C 2151:2010PPP...286..178B 2092:2022Litho.41006570S 2086:. 410–411: 106570. 2037:2019PPP...514..407C 1989:2013GondR..24...77C 1930:2019NatSR...916544V 1882:1995PPP...118..213V 1826:2022ESRv..22603922M 1665:2022PNAS..11915231C 1659:(19): e2115231119. 1385:2008PPP...268..273B 1327:10.1144/jgs2019-214 1319:2020JGSoc.177.1107E 1209:2022PPP...604k1210Z 1158:2019Geo....47.1146G 1101:2019JSAES..9502236P 1045:2020GGG....2109237Y 942:2021ESRv..22103756I 891:2013AREPS..41..629M 836:2020PPP...553j9753K 534:Milankovitch cycles 524:Milankovitch cycles 490:silicate weathering 379:and the subsequent 373:evolution of plants 299:Southern Hemisphere 295:Northern Hemisphere 272:Edaga Arbi Glacials 221:Indian Subcontinent 4130:Permian Antarctica 3971:(717 to 660 Mya); 3948:(547 to 541.5 Mya) 2285:on 8 January 2021. 1917:Scientific Reports 563:Milankovitch cycle 381:adaptive radiation 364: 349:Glacial striations 193: 54:that began in the 32: 4140:Permian Australia 4082: 4081: 4013:(2.9 to 2.78 Gya) 3892: 3891: 3016:Nature Geoscience 2801:(13): 4685–4694. 2685:Gondwana Research 2643:Gondwana Research 2557:Gondwana Research 2394:978-94-017-8026-1 1976:Gondwana Research 1152:(12): 1146–1150. 999:978-0-8137-2441-6 789:978-0-08-102909-1 664:Rising sea levels 648:greenhouse effect 643:positive feedback 444:greenhouse effect 432:parts per million 279:Beacon Supergroup 229:Arabian Peninsula 58:and ended in the 4167: 3994:(2.4 to 2.1 Gya) 3984:Paleoproterozoic 3975:(650 to 635 Mya) 3900: 3708: 3683: 3676: 3669: 3660: 3654: 3644: 3634: 3617:(23): 12428–32. 3606: 3605: 3604: 3576: 3575: 3573: 3571: 3534: 3528: 3527: 3525: 3523: 3478: 3472: 3471: 3469: 3467: 3422: 3416: 3415: 3413: 3411: 3382: 3376: 3375: 3373: 3371: 3334: 3328: 3327: 3325: 3323: 3286: 3280: 3279: 3277: 3275: 3238: 3232: 3231: 3229: 3227: 3215:(4): 1062–1076. 3198: 3192: 3191: 3181: 3147: 3141: 3140: 3138: 3104: 3098: 3097: 3095: 3093: 3088: 3054: 3048: 3047: 3045: 3043: 3037:10.1038/ngeo2931 3006: 3000: 2999: 2997: 2995: 2958: 2949: 2948: 2946: 2944: 2915: 2909: 2908: 2906: 2904: 2891: 2874:(5): 1759–1775. 2857: 2851: 2850: 2844: 2836: 2826: 2787: 2778: 2777: 2767: 2757: 2723: 2717: 2716: 2714: 2712: 2675: 2669: 2668: 2666: 2664: 2659: 2633: 2627: 2626: 2624: 2590: 2584: 2583: 2581: 2547: 2541: 2540: 2538: 2536: 2491: 2485: 2484: 2482: 2480: 2474:10.1130/B35905.1 2468:(1–2): 160–178. 2451: 2445: 2444: 2442: 2440: 2405: 2399: 2398: 2372: 2366: 2365: 2337: 2331: 2330: 2328: 2326: 2299: 2290: 2286: 2281:. Archived from 2232: 2226: 2225: 2223: 2221: 2176: 2170: 2169: 2167: 2165: 2145:(3–4): 178–193. 2128: 2119: 2118: 2116: 2114: 2073: 2064: 2063: 2061: 2059: 2014: 2008: 2007: 2005: 2003: 1966: 1960: 1959: 1949: 1907: 1901: 1900: 1898: 1896: 1859: 1853: 1852: 1850: 1848: 1802: 1796: 1795: 1793: 1791: 1762: 1756: 1755: 1753: 1751: 1714: 1705: 1704: 1686: 1676: 1641: 1635: 1634: 1632: 1630: 1593: 1587: 1586: 1584: 1582: 1570:(3–4): 275–289. 1553: 1547: 1546: 1536: 1512: 1499: 1498: 1496: 1494: 1457: 1446: 1445: 1443: 1441: 1436: 1410: 1404: 1403: 1401: 1399: 1379:(3–4): 273–292. 1362: 1356: 1355: 1353: 1351: 1338: 1313:(6): 1107–1128. 1295: 1286: 1285: 1283: 1281: 1268: 1242: 1236: 1235: 1233: 1231: 1186: 1180: 1179: 1169: 1167:10.1130/G46740.1 1134: 1128: 1127: 1125: 1123: 1078: 1072: 1071: 1069: 1067: 1022: 1011: 1010: 1008: 1006: 969: 963: 962: 960: 958: 953: 918: 912: 910: 872: 863: 862: 860: 858: 813: 802: 801: 763: 750: 749: 747: 745: 707: 680:History of Earth 410:stretching from 264:rĂ´che moutonnĂ©es 183:Geologic effects 4175: 4174: 4170: 4169: 4168: 4166: 4165: 4164: 4085: 4084: 4083: 4078: 4067: 4016: 3997: 3978: 3951: 3926: 3901: 3888: 3885:(34 to 2.5 Mya) 3873: 3869: 3861: 3701: 3692: 3687: 3657: 3603: 3600: 3599: 3598: 3596: 3589: 3585: 3580: 3579: 3569: 3567: 3536: 3535: 3531: 3521: 3519: 3480: 3479: 3475: 3465: 3463: 3424: 3423: 3419: 3409: 3407: 3384: 3383: 3379: 3369: 3367: 3336: 3335: 3331: 3321: 3319: 3288: 3287: 3283: 3273: 3271: 3240: 3239: 3235: 3225: 3223: 3200: 3199: 3195: 3149: 3148: 3144: 3106: 3105: 3101: 3091: 3089: 3056: 3055: 3051: 3041: 3039: 3008: 3007: 3003: 2993: 2991: 2960: 2959: 2952: 2942: 2940: 2917: 2916: 2912: 2902: 2900: 2859: 2858: 2854: 2837: 2789: 2788: 2781: 2740:(20): 10955–7. 2725: 2724: 2720: 2710: 2708: 2677: 2676: 2672: 2662: 2660: 2635: 2634: 2630: 2592: 2591: 2587: 2549: 2548: 2544: 2534: 2532: 2493: 2492: 2488: 2478: 2476: 2453: 2452: 2448: 2438: 2436: 2407: 2406: 2402: 2395: 2374: 2373: 2369: 2362: 2339: 2338: 2334: 2324: 2322: 2301: 2300: 2293: 2234: 2233: 2229: 2219: 2217: 2178: 2177: 2173: 2163: 2161: 2130: 2129: 2122: 2112: 2110: 2075: 2074: 2067: 2057: 2055: 2016: 2015: 2011: 2001: 1999: 1968: 1967: 1963: 1909: 1908: 1904: 1894: 1892: 1861: 1860: 1856: 1846: 1844: 1804: 1803: 1799: 1789: 1787: 1764: 1763: 1759: 1749: 1747: 1716: 1715: 1708: 1643: 1642: 1638: 1628: 1626: 1595: 1594: 1590: 1580: 1578: 1555: 1554: 1550: 1514: 1513: 1502: 1492: 1490: 1459: 1458: 1449: 1439: 1437: 1412: 1411: 1407: 1397: 1395: 1364: 1363: 1359: 1349: 1347: 1297: 1296: 1289: 1279: 1277: 1244: 1243: 1239: 1229: 1227: 1188: 1187: 1183: 1136: 1135: 1131: 1121: 1119: 1080: 1079: 1075: 1065: 1063: 1024: 1023: 1014: 1004: 1002: 1000: 971: 970: 966: 956: 954: 920: 919: 915: 874: 873: 866: 856: 854: 815: 814: 805: 790: 765: 764: 753: 743: 741: 709: 708: 704: 699: 676: 653: 635: 597: 575: 526: 440:glacial periods 422:. The enhanced 385:vascular plants 369: 342: 245:Carnarvon Basin 233:Dwyka Formation 185: 95: 84:Late Ordovician 76:icehouse period 17: 12: 11: 5: 4173: 4171: 4163: 4162: 4157: 4152: 4147: 4142: 4137: 4132: 4127: 4122: 4120:Permian Africa 4117: 4112: 4110:Permian events 4107: 4102: 4097: 4087: 4086: 4080: 4079: 4072: 4069: 4068: 4066: 4065: 4060: 4055: 4050: 4048:Snowball Earth 4045: 4043:Little Ice Age 4040: 4035: 4030: 4028:Glacial period 4024: 4022: 4021:Related topics 4018: 4017: 4015: 4014: 4007: 4005: 3999: 3998: 3996: 3995: 3988: 3986: 3980: 3979: 3977: 3976: 3965: 3963: 3961:Snowball Earth 3953: 3952: 3950: 3949: 3943: 3936: 3934: 3928: 3927: 3925: 3924: 3918: 3915:Andean-Saharan 3911: 3909: 3903: 3902: 3895: 3893: 3890: 3889: 3887: 3886: 3879: 3877: 3863: 3862: 3860: 3859: 3858:(2.5 to 0 Mya) 3832: 3810: 3788: 3750: 3732: 3727: 3722: 3716: 3714: 3705: 3694: 3693: 3688: 3686: 3685: 3678: 3671: 3663: 3656: 3655: 3601: 3591:Beerling, D.J. 3586: 3584: 3581: 3578: 3577: 3529: 3473: 3417: 3377: 3329: 3303:(3): 367–392. 3281: 3233: 3193: 3142: 3099: 3049: 3023:(5): 382–386. 3001: 2950: 2910: 2852: 2824:10211.3/200431 2779: 2718: 2670: 2628: 2585: 2542: 2486: 2446: 2400: 2393: 2367: 2361:978-0521548038 2360: 2332: 2314:(8): 500–511. 2291: 2227: 2171: 2120: 2065: 2009: 1961: 1902: 1854: 1797: 1757: 1706: 1636: 1588: 1548: 1500: 1447: 1405: 1357: 1287: 1237: 1181: 1129: 1073: 1012: 998: 964: 913: 885:(1): 629–656. 864: 803: 788: 751: 701: 700: 698: 695: 694: 693: 688: 682: 675: 672: 651: 634: 631: 620:Hibbertopterid 595: 574: 573:Biotic effects 571: 547:Arctic ice cap 525: 522: 428:carbon dioxide 391:levels. Large 375:following the 368: 365: 341: 338: 307:Magadan Oblast 184: 181: 136:glacial period 94: 91: 28:supercontinent 15: 13: 10: 9: 6: 4: 3: 2: 4172: 4161: 4158: 4156: 4153: 4151: 4148: 4146: 4143: 4141: 4138: 4136: 4133: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4096: 4093: 4092: 4090: 4077: 4076: 4070: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4025: 4023: 4019: 4012: 4009: 4008: 4006: 4004: 4000: 3993: 3990: 3989: 3987: 3985: 3981: 3974: 3970: 3967: 3966: 3964: 3962: 3958: 3954: 3947: 3944: 3941: 3938: 3937: 3935: 3933: 3929: 3922: 3919: 3916: 3913: 3912: 3910: 3908: 3904: 3899: 3884: 3881: 3880: 3878: 3876: 3872: 3868: 3864: 3857: 3853: 3849: 3845: 3841: 3840:Pre-Illinoian 3837: 3833: 3831: 3827: 3823: 3819: 3818:Pre-Illinoian 3815: 3811: 3809: 3805: 3801: 3797: 3793: 3789: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3748: 3747:Younger Dryas 3744: 3740: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3717: 3715: 3713: 3709: 3706: 3704: 3703:Late Cenozoic 3699: 3695: 3691: 3684: 3679: 3677: 3672: 3670: 3665: 3664: 3661: 3652: 3648: 3643: 3638: 3633: 3628: 3624: 3620: 3616: 3612: 3608: 3592: 3588: 3587: 3582: 3566: 3562: 3558: 3554: 3550: 3546: 3545: 3540: 3533: 3530: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3490: 3489: 3484: 3477: 3474: 3462: 3458: 3454: 3450: 3446: 3442: 3438: 3434: 3433: 3428: 3421: 3418: 3406: 3402: 3398: 3394: 3393: 3388: 3381: 3378: 3366: 3362: 3358: 3354: 3350: 3346: 3345: 3340: 3333: 3330: 3318: 3314: 3310: 3306: 3302: 3298: 3297: 3292: 3285: 3282: 3270: 3266: 3262: 3258: 3254: 3250: 3249: 3244: 3237: 3234: 3222: 3218: 3214: 3210: 3209: 3204: 3197: 3194: 3189: 3185: 3180: 3175: 3171: 3167: 3163: 3159: 3158: 3153: 3146: 3143: 3137: 3132: 3128: 3124: 3120: 3116: 3115: 3110: 3103: 3100: 3087: 3082: 3078: 3074: 3070: 3066: 3065: 3060: 3053: 3050: 3038: 3034: 3030: 3026: 3022: 3018: 3017: 3012: 3005: 3002: 2990: 2986: 2982: 2978: 2974: 2970: 2969: 2964: 2957: 2955: 2951: 2939: 2935: 2931: 2927: 2926: 2921: 2914: 2911: 2899: 2895: 2890: 2885: 2881: 2877: 2873: 2869: 2868: 2863: 2856: 2853: 2848: 2842: 2834: 2830: 2825: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2795: 2786: 2784: 2780: 2775: 2771: 2766: 2761: 2756: 2751: 2747: 2743: 2739: 2735: 2734: 2729: 2722: 2719: 2707: 2703: 2699: 2695: 2691: 2687: 2686: 2681: 2674: 2671: 2658: 2653: 2649: 2645: 2644: 2639: 2632: 2629: 2623: 2618: 2614: 2610: 2606: 2602: 2601: 2596: 2589: 2586: 2580: 2575: 2571: 2567: 2563: 2559: 2558: 2553: 2546: 2543: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2503: 2502: 2497: 2490: 2487: 2475: 2471: 2467: 2463: 2462: 2457: 2450: 2447: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2404: 2401: 2396: 2390: 2386: 2382: 2378: 2371: 2368: 2363: 2357: 2353: 2349: 2348: 2343: 2336: 2333: 2321: 2317: 2313: 2309: 2305: 2298: 2296: 2292: 2289: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2243: 2238: 2231: 2228: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2187: 2182: 2175: 2172: 2160: 2156: 2152: 2148: 2144: 2140: 2139: 2134: 2127: 2125: 2121: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2084: 2079: 2072: 2070: 2066: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2025: 2020: 2013: 2010: 1998: 1994: 1990: 1986: 1982: 1978: 1977: 1972: 1965: 1962: 1957: 1953: 1948: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1918: 1913: 1906: 1903: 1891: 1887: 1883: 1879: 1875: 1871: 1870: 1865: 1858: 1855: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1814: 1809: 1801: 1798: 1786: 1782: 1778: 1774: 1773: 1768: 1761: 1758: 1746: 1742: 1738: 1734: 1730: 1726: 1725: 1720: 1713: 1711: 1707: 1702: 1698: 1694: 1690: 1685: 1680: 1675: 1670: 1666: 1662: 1658: 1654: 1653: 1648: 1640: 1637: 1625: 1621: 1617: 1613: 1609: 1605: 1604: 1599: 1592: 1589: 1577: 1573: 1569: 1565: 1564: 1559: 1552: 1549: 1544: 1540: 1535: 1530: 1526: 1522: 1518: 1511: 1509: 1507: 1505: 1501: 1489: 1485: 1481: 1477: 1473: 1469: 1468: 1463: 1456: 1454: 1452: 1448: 1435: 1430: 1426: 1422: 1421: 1416: 1409: 1406: 1394: 1390: 1386: 1382: 1378: 1374: 1373: 1368: 1361: 1358: 1346: 1342: 1337: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1307: 1302: 1294: 1292: 1288: 1276: 1272: 1267: 1262: 1258: 1254: 1253: 1248: 1241: 1238: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1197: 1192: 1185: 1182: 1177: 1173: 1168: 1163: 1159: 1155: 1151: 1147: 1146: 1141: 1133: 1130: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1089: 1084: 1077: 1074: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1033: 1028: 1021: 1019: 1017: 1013: 1001: 995: 991: 987: 983: 979: 975: 968: 965: 952: 947: 943: 939: 935: 931: 930: 925: 917: 914: 908: 904: 900: 896: 892: 888: 884: 880: 879: 871: 869: 865: 853: 849: 845: 841: 837: 833: 829: 825: 824: 819: 812: 810: 808: 804: 799: 795: 791: 785: 781: 777: 773: 769: 762: 760: 758: 756: 752: 740: 736: 732: 728: 724: 720: 719: 714: 706: 703: 696: 692: 689: 686: 683: 681: 678: 677: 673: 671: 669: 665: 659: 657: 649: 644: 640: 632: 630: 628: 624: 621: 617: 616: 611: 610: 604: 599: 593: 592:nitrification 589: 583: 581: 572: 570: 568: 564: 560: 556: 555:Junggar Basin 552: 548: 544: 540: 535: 531: 523: 521: 519: 515: 511: 510:Iapetus Ocean 507: 503: 499: 495: 491: 487: 484: 480: 476: 472: 468: 464: 459: 457: 456:coal measures 453: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 402: 401:Carboniferous 398: 394: 390: 386: 382: 378: 374: 366: 362: 358: 354: 350: 346: 339: 337: 335: 331: 330:Paradox Basin 327: 322: 320: 316: 312: 308: 304: 300: 296: 291: 288: 283: 280: 275: 273: 269: 268:chatter marks 265: 261: 257: 252: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 189: 182: 180: 176: 174: 170: 169:Wuchiapingian 166: 161: 157: 153: 149: 145: 141: 137: 133: 130:and earliest 129: 125: 121: 117: 113: 108: 105: 100: 92: 90: 88: 85: 81: 77: 73: 69: 65: 61: 57: 56:Late Devonian 53: 49: 48:Karoo ice age 45: 41: 37: 29: 26: 21: 4073: 4053:Interglacial 3920: 3614: 3610: 3583:Bibliography 3568:. Retrieved 3548: 3542: 3532: 3520:. Retrieved 3492: 3486: 3476: 3464:. Retrieved 3436: 3430: 3420: 3408:. Retrieved 3396: 3390: 3380: 3368:. Retrieved 3348: 3342: 3332: 3320:. Retrieved 3300: 3296:Paleobiology 3294: 3284: 3272:. Retrieved 3252: 3246: 3236: 3224:. Retrieved 3212: 3206: 3196: 3161: 3155: 3145: 3118: 3112: 3102: 3090:. Retrieved 3068: 3062: 3052: 3042:14 September 3040:. Retrieved 3020: 3014: 3004: 2992:. Retrieved 2972: 2966: 2941:. Retrieved 2929: 2923: 2913: 2901:. Retrieved 2871: 2865: 2855: 2841:cite journal 2798: 2792: 2737: 2731: 2721: 2709:. Retrieved 2689: 2683: 2673: 2661:. Retrieved 2647: 2641: 2631: 2604: 2598: 2588: 2561: 2555: 2545: 2533:. Retrieved 2505: 2499: 2489: 2479:28 September 2477:. Retrieved 2465: 2459: 2449: 2437:. Retrieved 2417: 2413: 2403: 2376: 2370: 2346: 2342:Domack, E.W. 2335: 2323:. Retrieved 2311: 2307: 2283:the original 2246: 2240: 2230: 2218:. Retrieved 2190: 2184: 2174: 2162:. Retrieved 2142: 2136: 2111:. Retrieved 2081: 2056:. Retrieved 2028: 2022: 2012: 2000:. Retrieved 1983:(1): 77–89. 1980: 1974: 1964: 1924:(1): 16544. 1921: 1915: 1905: 1893:. Retrieved 1873: 1867: 1857: 1845:. Retrieved 1817: 1811: 1800: 1790:26 September 1788:. Retrieved 1776: 1770: 1760: 1750:26 September 1748:. Retrieved 1728: 1722: 1656: 1650: 1639: 1629:26 September 1627:. Retrieved 1607: 1601: 1591: 1581:12 September 1579:. Retrieved 1567: 1561: 1551: 1524: 1520: 1493:26 September 1491:. Retrieved 1471: 1465: 1438:. Retrieved 1424: 1418: 1408: 1396:. Retrieved 1376: 1370: 1360: 1350:29 September 1348:. Retrieved 1310: 1304: 1280:26 September 1278:. Retrieved 1256: 1250: 1240: 1228:. Retrieved 1200: 1194: 1184: 1149: 1143: 1132: 1120:. Retrieved 1092: 1086: 1076: 1066:29 September 1064:. Retrieved 1039:(11): 1–20. 1036: 1030: 1005:14 September 1003:. Retrieved 981: 977: 967: 955:. Retrieved 933: 927: 916: 882: 876: 857:17 September 855:. Retrieved 827: 821: 771: 742:. Retrieved 722: 716: 705: 660: 636: 615:Arthropleura 613: 607: 600: 584: 576: 527: 460: 404:coal forests 370: 353:Paraná Basin 323: 319:debris flows 292: 287:Sydney Basin 284: 276: 254:In northern 253: 241:Paraná Basin 194: 177: 132:Serpukhovian 109: 96: 82:, after the 60:Late Permian 47: 43: 39: 35: 33: 4003:Mesoarchean 3946:Baykonurian 3808:Santa MarĂ­a 3762:Weichselian 3551:(1): 4856. 3439:: 122–135. 3410:14 November 3370:24 November 3322:4 September 3274:4 September 3121:: 302–315. 3092:24 November 2975:: 151–161. 2711:14 November 2692:: 305–338. 2607:: 279–300. 2058:29 November 2031:: 407–422. 1731:: 176–192. 1527:: 213–245. 1440:14 November 1427:: 195–206. 1336:2268/295479 1230:29 November 984:: 343–354. 744:29 November 633:Termination 623:eurypterids 588:mixed layer 559:carbon sink 518:Paleotethys 514:Panthalassa 506:Rheic Ocean 315:diamictites 237:Karoo Basin 116:Tournaisian 99:researchers 80:Phanerozoic 4095:Glaciology 4089:Categories 3957:Cryogenian 3852:Beestonian 3804:Wolstonian 3786:Llanquihue 3770:Midlandian 3720:Antarctica 3712:Quaternary 3698:Quaternary 3522:17 October 3495:: 103822. 3399:: 109204. 3255:: 103699. 3226:5 November 3164:: 109735. 3071:: 97–108. 2994:5 November 2943:2 November 2932:: 111781. 2663:2 November 2535:5 November 2508:: 109538. 2249:: 103503. 2220:2 December 2193:: 111248. 2164:2 December 2002:10 October 1895:20 October 1847:30 October 1820:: 103922. 1779:: 104035. 1610:: 104139. 1474:: 103503. 1398:20 October 1259:: 103056. 1203:: 111210. 1122:21 October 1095:: 102236. 936:: 103756. 830:: 109753. 725:: 102989. 697:References 567:cyclothems 516:Ocean and 467:Euramerica 436:Kasimovian 412:Appalachia 393:tree ferns 260:striations 203:) glacial 165:Capitanian 144:Bashkirian 104:South Pole 64:ice sheets 3932:Ediacaran 3907:Paleozoic 3883:Antarctic 3875:Oligocene 3834:7th–8th: 3830:Rio Llico 3812:3rd–6th: 3796:Illinoian 3766:Devensian 3758:Wisconsin 3725:Greenland 3570:7 January 3565:2041-1723 3517:248353840 3466:27 August 3461:146718511 3351:: 56–65. 3317:130097035 3208:Geosphere 3188:216338756 2903:5 October 2898:225046506 2706:1342-937X 2650:: 17–36. 2564:: 74–85. 2530:214119448 2439:24 August 2434:247160660 2325:7 October 2279:233579194 2271:0012-8252 2215:252526238 2113:2 October 2108:245312062 2053:134157257 1842:245892961 1745:0031-0182 1701:248504537 1624:0921-8181 1543:244235424 1488:0012-8252 1345:226194983 1275:0895-9811 1225:251819987 1176:210782726 1117:198421412 1061:224922824 957:27 August 907:0084-6597 852:218953074 798:226643402 739:228838061 658:period. 650:, with CO 627:scorpions 609:Meganeura 603:evolution 539:Oligocene 483:Alleghany 479:Hercynian 477:, in the 452:cellulose 213:Argentina 152:Australia 140:Moscovian 124:transient 112:Famennian 50:, was an 4100:Ice ages 3992:Huronian 3973:Marinoan 3969:Sturtian 3940:Gaskiers 3867:Pliocene 3848:Menapian 3774:Pinedale 3690:Ice ages 3651:11050154 3365:42512923 2833:55701037 2774:10500106 1956:31719563 1693:35500118 674:See also 598:values. 551:Xinjiang 543:Pliocene 494:glaciers 471:Gondwana 463:tectonic 397:lycopods 256:Ethiopia 249:eustatic 227:and the 217:Paraguay 148:Gzhelian 114:and the 93:Timeline 25:Gondwana 4063:Stadial 4011:Pongola 3871:Miocene 3856:Caracol 3826:Anglian 3619:Bibcode 3497:Bibcode 3441:Bibcode 3257:Bibcode 3166:Bibcode 3123:Bibcode 3073:Bibcode 3025:Bibcode 2977:Bibcode 2876:Bibcode 2803:Bibcode 2742:Bibcode 2609:Bibcode 2566:Bibcode 2510:Bibcode 2420:(442). 2288:Alt URL 2251:Bibcode 2195:Bibcode 2147:Bibcode 2088:Bibcode 2033:Bibcode 1985:Bibcode 1947:6851110 1926:Bibcode 1878:Bibcode 1822:Bibcode 1684:9171642 1661:Bibcode 1381:Bibcode 1315:Bibcode 1205:Bibcode 1154:Bibcode 1145:Geology 1097:Bibcode 1041:Bibcode 938:Bibcode 887:Bibcode 832:Bibcode 656:Permian 541:to the 486:Orogeny 475:Pangaea 209:Bolivia 118:, with 78:of the 72:surface 52:ice age 16:Ice age 3822:Elster 3814:Mindel 3782:Merida 3778:Fraser 3649:  3639:  3563:  3515:  3459:  3363:  3315:  3186:  2896:  2831:  2772:  2762:  2704:  2528:  2432:  2391:  2358:  2277:  2269:  2213:  2106:  2083:Lithos 2051:  1954:  1944:  1840:  1743:  1699:  1691:  1681:  1622:  1541:  1486:  1343:  1273:  1223:  1174:  1115:  1059:  996:  905:  850:  796:  786:  737:  639:albedo 448:lignin 416:Poland 408:swamps 389:oxygen 361:Brazil 357:Paraná 340:Causes 311:Russia 303:volume 205:strata 197:Brazil 128:VisĂ©an 4160:Karoo 3800:Saale 3790:2nd: 3752:1st: 3743:Older 3642:18779 3513:S2CID 3457:S2CID 3361:S2CID 3313:S2CID 3184:S2CID 2894:S2CID 2829:S2CID 2765:34224 2526:S2CID 2430:S2CID 2352:10–18 2275:S2CID 2211:S2CID 2104:S2CID 2049:S2CID 1838:S2CID 1697:S2CID 1539:S2CID 1341:S2CID 1221:S2CID 1172:S2CID 1113:S2CID 1057:S2CID 848:S2CID 794:S2CID 735:S2CID 473:into 420:Urals 326:Texas 156:India 68:Earth 3844:Elbe 3836:GĂĽnz 3792:Riss 3754:WĂĽrm 3745:and 3647:PMID 3572:2024 3561:ISSN 3524:2022 3468:2022 3412:2023 3372:2022 3324:2022 3276:2022 3228:2022 3094:2022 3044:2022 2996:2022 2945:2023 2905:2022 2847:link 2770:PMID 2713:2023 2702:ISSN 2665:2023 2537:2022 2481:2022 2441:2022 2389:ISBN 2356:ISBN 2327:2022 2267:ISSN 2222:2022 2166:2022 2115:2022 2060:2022 2004:2022 1952:PMID 1897:2022 1849:2022 1792:2023 1752:2023 1741:ISSN 1689:PMID 1631:2023 1620:ISSN 1583:2024 1495:2023 1484:ISSN 1442:2023 1400:2022 1352:2022 1282:2023 1271:ISSN 1232:2022 1124:2022 1068:2022 1007:2022 994:ISBN 959:2022 903:ISSN 859:2022 784:ISBN 746:2022 668:coal 596:bulk 508:and 469:and 461:The 450:and 371:The 334:Utah 285:The 266:and 225:Asia 215:and 160:δ18O 154:and 44:LPIA 34:The 3846:or 3637:PMC 3627:doi 3553:doi 3505:doi 3493:213 3449:doi 3437:516 3401:doi 3397:531 3353:doi 3349:387 3305:doi 3265:doi 3253:220 3217:doi 3174:doi 3162:550 3131:doi 3119:156 3081:doi 3069:163 3033:doi 2985:doi 2973:448 2934:doi 2930:629 2884:doi 2819:hdl 2811:doi 2760:PMC 2750:doi 2694:doi 2690:124 2652:doi 2648:115 2617:doi 2605:154 2574:doi 2518:doi 2506:541 2470:doi 2466:134 2422:doi 2381:doi 2316:doi 2259:doi 2247:215 2203:doi 2191:606 2155:doi 2143:286 2096:doi 2041:doi 2029:514 1993:doi 1942:PMC 1934:doi 1886:doi 1874:118 1830:doi 1818:226 1781:doi 1777:221 1733:doi 1729:418 1679:PMC 1669:doi 1657:119 1612:doi 1608:225 1572:doi 1568:223 1529:doi 1525:512 1476:doi 1472:215 1429:doi 1425:448 1389:doi 1377:268 1331:hdl 1323:doi 1311:177 1261:doi 1257:107 1213:doi 1201:604 1162:doi 1105:doi 1049:doi 986:doi 982:441 946:doi 934:221 895:doi 840:doi 828:553 776:doi 727:doi 723:106 414:to 383:of 332:of 89:. 70:'s 4091:: 3854:, 3850:, 3842:, 3838:, 3828:, 3824:, 3820:, 3816:, 3806:, 3802:, 3798:, 3794:, 3784:, 3780:, 3772:, 3764:, 3760:, 3756:, 3741:, 3700:/ 3645:. 3635:. 3625:. 3615:97 3613:. 3609:. 3559:. 3549:13 3547:. 3541:. 3511:. 3503:. 3491:. 3485:. 3455:. 3447:. 3435:. 3429:. 3395:. 3389:. 3359:. 3347:. 3341:. 3311:. 3301:35 3299:. 3293:. 3263:. 3251:. 3245:. 3213:11 3211:. 3205:. 3182:. 3172:. 3160:. 3154:. 3129:. 3117:. 3111:. 3079:. 3067:. 3061:. 3031:. 3021:10 3019:. 3013:. 2983:. 2971:. 2965:. 2953:^ 2928:. 2922:. 2892:. 2882:. 2872:16 2870:. 2864:. 2843:}} 2839:{{ 2827:. 2817:. 2809:. 2799:31 2797:. 2782:^ 2768:. 2758:. 2748:. 2738:96 2736:. 2730:. 2700:. 2688:. 2682:. 2646:. 2640:. 2615:. 2603:. 2597:. 2572:. 2562:38 2560:. 2554:. 2524:. 2516:. 2504:. 2498:. 2464:. 2458:. 2428:. 2418:15 2416:. 2412:. 2387:. 2354:. 2312:78 2310:. 2306:. 2294:^ 2273:. 2265:. 2257:. 2245:. 2239:. 2209:. 2201:. 2189:. 2183:. 2153:. 2141:. 2135:. 2123:^ 2102:. 2094:. 2080:. 2068:^ 2047:. 2039:. 2027:. 2021:. 1991:. 1981:24 1979:. 1973:. 1950:. 1940:. 1932:. 1920:. 1914:. 1884:. 1872:. 1866:. 1836:. 1828:. 1816:. 1810:. 1775:. 1769:. 1739:. 1727:. 1721:. 1709:^ 1695:. 1687:. 1677:. 1667:. 1655:. 1649:. 1618:. 1606:. 1600:. 1566:. 1560:. 1537:. 1523:. 1519:. 1503:^ 1482:. 1470:. 1464:. 1450:^ 1423:. 1417:. 1387:. 1375:. 1369:. 1339:. 1329:. 1321:. 1309:. 1303:. 1290:^ 1269:. 1255:. 1249:. 1219:. 1211:. 1199:. 1193:. 1170:. 1160:. 1150:47 1148:. 1142:. 1111:. 1103:. 1093:95 1091:. 1085:. 1055:. 1047:. 1037:21 1035:. 1029:. 1015:^ 992:. 980:. 976:. 944:. 932:. 926:. 901:. 893:. 883:41 881:. 867:^ 846:. 838:. 826:. 820:. 806:^ 792:. 782:. 754:^ 733:. 721:. 715:. 359:, 355:, 336:. 309:, 262:, 223:, 211:, 201:Ma 120:δN 3959:- 3776:/ 3768:/ 3749:) 3737:( 3682:e 3675:t 3668:v 3653:. 3629:: 3621:: 3602:2 3597:O 3574:. 3555:: 3526:. 3507:: 3499:: 3470:. 3451:: 3443:: 3414:. 3403:: 3374:. 3355:: 3326:. 3307:: 3278:. 3267:: 3259:: 3230:. 3219:: 3190:. 3176:: 3168:: 3139:. 3133:: 3125:: 3096:. 3083:: 3075:: 3046:. 3035:: 3027:: 2998:. 2987:: 2979:: 2947:. 2936:: 2907:. 2886:: 2878:: 2849:) 2835:. 2821:: 2813:: 2805:: 2776:. 2752:: 2744:: 2715:. 2696:: 2667:. 2654:: 2625:. 2619:: 2611:: 2582:. 2576:: 2568:: 2539:. 2520:: 2512:: 2483:. 2472:: 2443:. 2424:: 2397:. 2383:: 2364:. 2329:. 2318:: 2261:: 2253:: 2224:. 2205:: 2197:: 2168:. 2157:: 2149:: 2117:. 2098:: 2090:: 2062:. 2043:: 2035:: 2006:. 1995:: 1987:: 1958:. 1936:: 1928:: 1922:9 1899:. 1888:: 1880:: 1851:. 1832:: 1824:: 1794:. 1783:: 1754:. 1735:: 1703:. 1671:: 1663:: 1633:. 1614:: 1574:: 1545:. 1531:: 1497:. 1478:: 1444:. 1431:: 1402:. 1391:: 1383:: 1354:. 1333:: 1325:: 1317:: 1284:. 1263:: 1234:. 1215:: 1207:: 1178:. 1164:: 1156:: 1126:. 1107:: 1099:: 1070:. 1051:: 1043:: 1009:. 988:: 961:. 948:: 940:: 909:. 897:: 889:: 861:. 842:: 834:: 800:. 778:: 748:. 729:: 652:2 481:- 42:(

Index


Gondwana
supercontinent
ice age
Late Devonian
Late Permian
ice sheets
Earth
surface
icehouse period
Phanerozoic
Late Ordovician
Andean-Saharan glaciation
researchers
South Pole
Famennian
Tournaisian
δN
transient
Viséan
Serpukhovian
glacial period
Moscovian
Bashkirian
Gzhelian
Australia
India
δ18O
Capitanian
Wuchiapingian

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑