Knowledge (XXG)

Lefschetz pencil

Source đź“ť

186: 247: 438: 455: 283:
hyperplane section will be smooth). A Lefschetz pencil restricts the nature of the acquired singularities, so that the topology may be analysed by the
374: 463: 500: 408: 325: 403: 143: 362: 345:(Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)). Extra Volume II: 309–314. 68: 56: 480: 272: 398: 216: 313: 291: 287:
method. The fibres with singularities are required to have a unique quadratic singularity, only.
98: 90: 33: 25: 276: 370: 358: 37: 29: 303: 208: 476: 350: 472: 346: 338: 309: 299: 284: 64: 295: 79: 494: 451: 426: 430: 204: 17: 261: 252:
which is in fact well-defined only outside the points on the intersection of
271:
The second point is that the fibers may themselves 'degenerate' and acquire
75: 294:. They apply in ways similar to, but more complicated than, 164: 369:. Wiley Classics Library. Wiley Interscience. p. 509. 302:. It has also been shown that Lefschetz pencils exist in 341:(1998). "Lefschetz fibrations in symplectic geometry". 219: 146: 109:′, spanning the pencil — in other words, 63:, namely a one-parameter family, parametrised by the 316:, leading to more recent research interest in them. 290:It has been shown that Lefschetz pencils exist in 241: 180: 82:; but with two qualifications about singularity. 133:′, and the general hyperplane section is 181:{\displaystyle \lambda L+\mu L^{\prime }=0.\ } 8: 439:Notices of the American Mathematical Society 85:The first point comes up if we assume that 312:has found a role for Lefschetz pencils in 230: 218: 163: 145: 74:, a Lefschetz pencil is something like a 390: 260:. To make a well-defined mapping, some 456:"The topology of symplectic manifolds" 7: 242:{\displaystyle V\rightarrow P^{1}\ } 67:. This means that in the case of a 14: 367:Principles of Algebraic Geometry 464:Turkish Journal of Mathematics 223: 1: 431:"What is a Lefschetz pencil?" 125:′= 0 for linear forms 101:. Suppose given hyperplanes 404:Encyclopedia of Mathematics 517: 399:"Monodromy transformation" 306:for the Ă©tale topology. 69:complex algebraic variety 57:linear system of divisors 55:is a particular kind of 326:Picard–Lefschetz theory 243: 191:Then the intersection 182: 93:, and the divisors on 32:, used to analyse the 343:Documenta Mathematica 244: 183: 24:is a construction in 501:Geometry of divisors 217: 144: 339:Donaldson, Simon K. 314:symplectic topology 292:characteristic zero 264:must be applied to 99:hyperplane sections 359:Griffiths, Phillip 239: 178: 91:projective variety 34:algebraic topology 26:algebraic geometry 238: 177: 137:intersected with 38:algebraic variety 30:Solomon Lefschetz 508: 487: 485: 479:. Archived from 460: 447: 435: 413: 412: 395: 380: 354: 304:characteristic p 300:smooth manifolds 248: 246: 245: 240: 236: 235: 234: 209:rational mapping 207:two. There is a 187: 185: 184: 179: 175: 168: 167: 22:Lefschetz pencil 516: 515: 511: 510: 509: 507: 506: 505: 491: 490: 483: 458: 450: 433: 425: 422: 417: 416: 397: 396: 392: 387: 377: 357: 337: 334: 322: 310:Simon Donaldson 296:Morse functions 285:vanishing cycle 277:Bertini's lemma 273:singular points 226: 215: 214: 159: 142: 141: 65:projective line 49: 12: 11: 5: 514: 512: 504: 503: 493: 492: 489: 488: 486:on 2022-02-06. 448: 421: 420:External links 418: 415: 414: 389: 388: 386: 383: 382: 381: 375: 355: 333: 330: 329: 328: 321: 318: 250: 249: 233: 229: 225: 222: 189: 188: 174: 171: 166: 162: 158: 155: 152: 149: 89:is given as a 80:Riemann sphere 48: 45: 28:considered by 13: 10: 9: 6: 4: 3: 2: 513: 502: 499: 498: 496: 482: 478: 474: 470: 466: 465: 457: 453: 452:Gompf, Robert 449: 445: 441: 440: 432: 428: 427:Gompf, Robert 424: 423: 419: 410: 406: 405: 400: 394: 391: 384: 378: 376:0-471-05059-8 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 335: 331: 327: 324: 323: 319: 317: 315: 311: 307: 305: 301: 297: 293: 288: 286: 282: 279:applies, the 278: 274: 269: 267: 263: 259: 255: 231: 227: 220: 213: 212: 211: 210: 206: 202: 198: 194: 172: 169: 160: 156: 153: 150: 147: 140: 139: 138: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 83: 81: 77: 73: 70: 66: 62: 58: 54: 46: 44: 42: 39: 35: 31: 27: 23: 19: 481:the original 468: 462: 443: 437: 402: 393: 366: 342: 308: 289: 280: 270: 265: 257: 253: 251: 203:′ has 200: 196: 192: 190: 134: 130: 126: 122: 118: 114: 113:is given by 110: 106: 102: 94: 86: 84: 71: 60: 52: 50: 40: 21: 15: 363:Harris, Joe 205:codimension 121:′ by 47:Description 18:mathematics 332:References 262:blowing up 471:: 43–59. 409:EMS Press 224:→ 165:′ 157:μ 148:λ 78:over the 76:fibration 495:Category 454:(2001). 429:(2005). 365:(1994). 320:See also 117:= 0 and 477:1829078 411:, 2001 351:1648081 281:general 275:(where 475:  373:  349:  237:  176:  53:pencil 36:of an 484:(PDF) 459:(PDF) 434:(PDF) 385:Notes 256:with 199:with 446:(8). 371:ISBN 129:and 105:and 97:are 20:, a 298:on 195:of 59:on 43:. 16:In 497:: 473:MR 469:25 467:. 461:. 444:52 442:. 436:. 407:, 401:, 361:; 347:MR 268:. 173:0. 51:A 379:. 353:. 266:V 258:V 254:J 232:1 228:P 221:V 201:H 197:H 193:J 170:= 161:L 154:+ 151:L 135:V 131:L 127:L 123:L 119:H 115:L 111:H 107:H 103:H 95:V 87:V 72:V 61:V 41:V

Index

mathematics
algebraic geometry
Solomon Lefschetz
algebraic topology
algebraic variety
linear system of divisors
projective line
complex algebraic variety
fibration
Riemann sphere
projective variety
hyperplane sections
codimension
rational mapping
blowing up
singular points
Bertini's lemma
vanishing cycle
characteristic zero
Morse functions
smooth manifolds
characteristic p
Simon Donaldson
symplectic topology
Picard–Lefschetz theory
Donaldson, Simon K.
MR
1648081
Griffiths, Phillip
Harris, Joe

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑