Knowledge (XXG)

Theorem of Bertini

Source đź“ť

708: 801: 410: 205: 553: 987: 915: 1048: 263: 234: 160: 97: 346: 1013: 477: 747: 503: 603: 304: 127: 655: 631: 573: 1312: 68: 1087: 431:
Over a finite field, the above open subset may not contain rational points and in general there is no hyperplanes with smooth intersection with
1272: 1205: 424:
is infinite, this open subset then has infinitely many rational points and there are infinitely many smooth hyperplane sections in
1307: 1264: 1117: 163: 510: 1071:
Theorem of Bertini has also been generalized to discrete valuation domains or finite fields, or for Ă©tale coverings of
1112: 672: 40: 1259: 764: 658: 373: 168: 130: 52: 48: 523: 952: 880: 1149: 1018: 1107: 239: 210: 136: 73: 820: 435:. However, if we take hypersurfaces of sufficiently big degrees, then the theorem of Bertini holds. 831: 313: 992: 1158: 446: 36: 713: 1268: 1233: 1201: 1197: 1254: 1189: 1168: 482: 1282: 1292: 1278: 918: 824: 815:
The theorem of Bertini has been generalized in various ways. For example, a result due to
44: 578: 279: 102: 67:
be a smooth quasi-projective variety over an algebraically closed field, embedded in a
1221: 1057: 816: 640: 616: 558: 413: 1301: 1190: 942: 17: 1140: 1144: 1173: 28: 666: 1237: 520:
The rank of the fibration in the product is one less than the codimension of
47:. This is the simplest and broadest of the "Bertini theorems" applying to a 803:. This theorem also holds in characteristic p>0 when the linear system 1288: 268:
The theorem of Bertini states that the set of hyperplanes not containing
669:
of the system. For clarification, this means that given a linear system
55:
of the underlying field, while the extensions require characteristic 0.
575:
and so its projection is contained in a divisor of the complete system
1163: 1015:, as well. The above theorem of Bertini is the special case where 276:
contains an open dense subset of the total system of divisors
35:
is an existence and genericity theorem for smooth connected
363:
is smooth, that is: the property of smoothness is generic.
348:, then these intersections (called hyperplane sections of 761:
in some dense open subset of the dual projective space
1224:(1974), "The transversality of a general translate", 1021: 995: 955: 883: 767: 716: 675: 643: 619: 581: 561: 526: 485: 449: 376: 316: 282: 242: 213: 171: 139: 105: 76: 59:
Statement for hyperplane sections of smooth varieties
555:, so that the total space has lesser dimension than 443:
We consider the subfibration of the product variety
1042: 1007: 981: 909: 857:be the variety obtained by letting σ ∈ 795: 741: 702: 649: 625: 597: 567: 547: 497: 471: 404: 340: 298: 257: 228: 199: 154: 121: 91: 51:; simplest because there is no restriction on the 945:and the base field has characteristic zero, then 416:define hyperplanes smooth hyperplane sections of 370:, there is a dense open subset of the dual space 505:the linear system of hyperplanes that intersect 1291:by Steven L. Kleiman, on the life and works of 1078:The theorem is often used for induction steps. 703:{\displaystyle f:X\rightarrow \mathbf {P} ^{n}} 1196:. Boston, MA: Birkhäuser Boston, Inc. p.  8: 917:is either empty or purely of the (expected) 1267:, vol. 52, New York: Springer-Verlag, 796:{\displaystyle (\mathbf {P} ^{n})^{\star }} 405:{\displaystyle (\mathbf {P} ^{n})^{\star }} 200:{\displaystyle (\mathbf {P} ^{n})^{\star }} 1172: 1162: 1034: 1030: 1029: 1020: 994: 970: 960: 954: 898: 888: 882: 865:. Then, there is an open dense subscheme 787: 777: 772: 766: 721: 715: 694: 689: 674: 642: 618: 590: 582: 580: 560: 548:{\displaystyle X\subset \mathbf {P} ^{n}} 539: 534: 525: 484: 464: 456: 448: 396: 386: 381: 375: 315: 291: 283: 281: 249: 244: 241: 220: 215: 212: 191: 181: 176: 170: 146: 141: 138: 114: 106: 104: 83: 78: 75: 1289:Bertini and his two fundamental theorems 1099: 982:{\displaystyle Y^{\sigma }\times _{X}Z} 910:{\displaystyle Y^{\sigma }\times _{X}Z} 753:is smooth -- outside the base locus of 1145:"Bertini theorems over finite fields" 39:for smooth projective varieties over 7: 1192:ThĂ©orèmes de Bertini et applications 1088:Grothendieck's connectedness theorem 352:) are connected, hence irreducible. 1050:is expressed as the quotient of SL 1043:{\displaystyle X=\mathbb {P} ^{n}} 272:and with smooth intersection with 25: 355:The theorem hence asserts that a 773: 690: 657:-variety, a general member of a 535: 382: 359:hyperplane section not equal to 258:{\displaystyle \mathbf {P} ^{n}} 245: 229:{\displaystyle \mathbf {P} ^{n}} 216: 177: 155:{\displaystyle \mathbf {P} ^{n}} 142: 92:{\displaystyle \mathbf {P} ^{n}} 79: 1188:Jouanolou, Jean-Pierre (1983). 1313:Theorems in algebraic geometry 1060:of upper triangular matrices, 784: 768: 736: 730: 685: 591: 583: 465: 457: 393: 377: 329: 323: 292: 284: 188: 172: 115: 107: 1: 1265:Graduate Texts in Mathematics 873:such that for σ ∈ 637:is a smooth quasi-projective 341:{\displaystyle \dim(X)\geq 2} 1174:10.4007/annals.2004.160.1099 1008:{\displaystyle \sigma \in H} 306:. The set itself is open if 1113:Encyclopedia of Mathematics 819:asserts the following (cf. 472:{\displaystyle X\times |H|} 41:algebraically closed fields 1329: 133:of hyperplane divisors in 742:{\displaystyle f^{-1}(H)} 659:linear system of divisors 49:linear system of divisors 949:may be taken such that 665:is smooth away from the 633:of characteristic 0, if 613:Over any infinite field 366:Over an arbitrary field 162:. Recall that it is the 1130:Hartshorne, Ch. III.10. 757:-- for all hyperplanes 1226:Compositio Mathematica 1044: 1009: 983: 911: 797: 743: 704: 651: 627: 599: 569: 549: 499: 498:{\displaystyle x\in X} 473: 406: 342: 300: 259: 230: 201: 156: 123: 93: 1150:Annals of Mathematics 1045: 1010: 984: 912: 798: 744: 705: 652: 628: 600: 570: 550: 500: 474: 407: 343: 301: 260: 236:and is isomorphic to 231: 202: 157: 124: 94: 1308:Geometry of divisors 1064:is a subvariety and 1019: 993: 953: 881: 841:, and two varieties 765: 714: 673: 641: 617: 579: 559: 524: 483: 447: 374: 314: 280: 240: 211: 169: 137: 103: 74: 18:Bertini's lemma 933:. If, in addition, 823:): for a connected 598:{\displaystyle |H|} 299:{\displaystyle |H|} 122:{\displaystyle |H|} 37:hyperplane sections 1260:Algebraic Geometry 1222:Kleiman, Steven L. 1108:"Bertini theorems" 1040: 1005: 989:is smooth for all 979: 907: 793: 739: 700: 647: 623: 595: 565: 545: 495: 469: 439:Outline of a proof 402: 338: 310:is projective. If 296: 255: 226: 197: 152: 119: 89: 33:theorem of Bertini 1274:978-0-387-90244-9 1255:Hartshorne, Robin 1068:is a hyperplane. 821:Kleiman's theorem 650:{\displaystyle k} 626:{\displaystyle k} 609:General statement 568:{\displaystyle n} 479:with fiber above 16:(Redirected from 1320: 1285: 1241: 1240: 1218: 1212: 1211: 1195: 1185: 1179: 1178: 1176: 1166: 1157:(3): 1099–1127. 1137: 1131: 1128: 1122: 1121: 1104: 1049: 1047: 1046: 1041: 1039: 1038: 1033: 1014: 1012: 1011: 1006: 988: 986: 985: 980: 975: 974: 965: 964: 916: 914: 913: 908: 903: 902: 893: 892: 807:is unramified. 802: 800: 799: 794: 792: 791: 782: 781: 776: 749:of a hyperplane 748: 746: 745: 740: 729: 728: 709: 707: 706: 701: 699: 698: 693: 656: 654: 653: 648: 632: 630: 629: 624: 604: 602: 601: 596: 594: 586: 574: 572: 571: 566: 554: 552: 551: 546: 544: 543: 538: 504: 502: 501: 496: 478: 476: 475: 470: 468: 460: 411: 409: 408: 403: 401: 400: 391: 390: 385: 347: 345: 344: 339: 305: 303: 302: 297: 295: 287: 264: 262: 261: 256: 254: 253: 248: 235: 233: 232: 227: 225: 224: 219: 206: 204: 203: 198: 196: 195: 186: 185: 180: 161: 159: 158: 153: 151: 150: 145: 128: 126: 125: 120: 118: 110: 98: 96: 95: 90: 88: 87: 82: 69:projective space 43:, introduced by 21: 1328: 1327: 1323: 1322: 1321: 1319: 1318: 1317: 1298: 1297: 1293:Eugenio Bertini 1275: 1253: 1250: 1245: 1244: 1220: 1219: 1215: 1208: 1187: 1186: 1182: 1139: 1138: 1134: 1129: 1125: 1106: 1105: 1101: 1096: 1084: 1055: 1028: 1017: 1016: 991: 990: 966: 956: 951: 950: 894: 884: 879: 878: 825:algebraic group 813: 811:Generalizations 783: 771: 763: 762: 717: 712: 711: 710:, the preimage 688: 671: 670: 639: 638: 615: 614: 611: 577: 576: 557: 556: 533: 522: 521: 481: 480: 445: 444: 441: 414:rational points 392: 380: 372: 371: 312: 311: 278: 277: 243: 238: 237: 214: 209: 208: 187: 175: 167: 166: 140: 135: 134: 131:complete system 101: 100: 77: 72: 71: 61: 45:Eugenio Bertini 23: 22: 15: 12: 11: 5: 1326: 1324: 1316: 1315: 1310: 1300: 1299: 1296: 1295: 1286: 1273: 1249: 1246: 1243: 1242: 1213: 1206: 1180: 1132: 1123: 1098: 1097: 1095: 1092: 1091: 1090: 1083: 1080: 1058:Borel subgroup 1051: 1037: 1032: 1027: 1024: 1004: 1001: 998: 978: 973: 969: 963: 959: 906: 901: 897: 891: 887: 817:Steven Kleiman 812: 809: 790: 786: 780: 775: 770: 738: 735: 732: 727: 724: 720: 697: 692: 687: 684: 681: 678: 646: 622: 610: 607: 593: 589: 585: 564: 542: 537: 532: 529: 494: 491: 488: 467: 463: 459: 455: 452: 440: 437: 399: 395: 389: 384: 379: 337: 334: 331: 328: 325: 322: 319: 294: 290: 286: 252: 247: 223: 218: 194: 190: 184: 179: 174: 149: 144: 117: 113: 109: 86: 81: 60: 57: 53:characteristic 24: 14: 13: 10: 9: 6: 4: 3: 2: 1325: 1314: 1311: 1309: 1306: 1305: 1303: 1294: 1290: 1287: 1284: 1280: 1276: 1270: 1266: 1262: 1261: 1256: 1252: 1251: 1247: 1239: 1235: 1231: 1227: 1223: 1217: 1214: 1209: 1207:0-8176-3164-X 1203: 1199: 1194: 1193: 1184: 1181: 1175: 1170: 1165: 1160: 1156: 1152: 1151: 1146: 1142: 1141:Poonen, Bjorn 1136: 1133: 1127: 1124: 1119: 1115: 1114: 1109: 1103: 1100: 1093: 1089: 1086: 1085: 1081: 1079: 1076: 1074: 1069: 1067: 1063: 1059: 1054: 1035: 1025: 1022: 1002: 999: 996: 976: 971: 967: 961: 957: 948: 944: 940: 936: 932: 928: 924: 920: 904: 899: 895: 889: 885: 876: 872: 868: 864: 860: 856: 852: 848: 844: 840: 837: 835: 829: 826: 822: 818: 810: 808: 806: 788: 778: 760: 756: 752: 733: 725: 722: 718: 695: 682: 679: 676: 668: 664: 660: 644: 636: 620: 608: 606: 587: 562: 540: 530: 527: 518: 516: 512: 511:transversally 508: 492: 489: 486: 461: 453: 450: 438: 436: 434: 429: 427: 423: 419: 415: 397: 387: 369: 364: 362: 358: 353: 351: 335: 332: 326: 320: 317: 309: 288: 275: 271: 266: 250: 221: 192: 182: 165: 147: 132: 111: 84: 70: 66: 58: 56: 54: 50: 46: 42: 38: 34: 30: 19: 1258: 1229: 1225: 1216: 1191: 1183: 1164:math/0204002 1154: 1148: 1135: 1126: 1111: 1102: 1077: 1072: 1070: 1065: 1061: 1052: 946: 938: 934: 930: 929:− dim 926: 922: 874: 870: 866: 862: 858: 854: 850: 846: 842: 838: 833: 832:homogeneous 827: 814: 804: 758: 754: 750: 662: 634: 612: 519: 514: 506: 442: 432: 430: 425: 421: 417: 367: 365: 360: 356: 354: 349: 307: 273: 269: 267: 64: 62: 32: 26: 1232:: 287–297, 849:mapping to 129:denote the 29:mathematics 1302:Categories 1248:References 830:, and any 667:base locus 164:dual space 1238:0010-437X 1118:EMS Press 1000:∈ 997:σ 968:× 962:σ 919:dimension 896:× 890:σ 789:⋆ 723:− 686:→ 531:⊂ 490:∈ 454:× 398:⋆ 333:≥ 321:⁡ 193:⋆ 1257:(1977), 1143:(2004). 1082:See also 836:-variety 1283:0463157 1120:, 2001 1056:by the 861:act on 420:. When 357:general 1281:  1271:  1236:  1204:  943:smooth 925:+ dim 853:, let 412:whose 99:. Let 31:, the 1159:arXiv 1094:Notes 1269:ISBN 1234:ISSN 1202:ISBN 941:are 937:and 921:dim 845:and 509:non- 63:Let 1169:doi 1155:160 869:of 661:on 513:at 318:dim 207:of 27:In 1304:: 1279:MR 1277:, 1263:, 1230:28 1228:, 1200:. 1198:89 1167:. 1153:. 1147:. 1116:, 1110:, 1075:. 877:, 605:. 517:. 428:. 265:. 1210:. 1177:. 1171:: 1161:: 1073:X 1066:Y 1062:Z 1053:n 1036:n 1031:P 1026:= 1023:X 1003:H 977:Z 972:X 958:Y 947:H 939:Z 935:Y 931:X 927:Z 923:Y 905:Z 900:X 886:Y 875:H 871:G 867:H 863:Y 859:G 855:Y 851:X 847:Z 843:Y 839:X 834:G 828:G 805:f 785:) 779:n 774:P 769:( 759:H 755:f 751:H 737:) 734:H 731:( 726:1 719:f 696:n 691:P 683:X 680:: 677:f 663:X 645:k 635:X 621:k 592:| 588:H 584:| 563:n 541:n 536:P 528:X 515:x 507:X 493:X 487:x 466:| 462:H 458:| 451:X 433:X 426:X 422:k 418:X 394:) 388:n 383:P 378:( 368:k 361:X 350:X 336:2 330:) 327:X 324:( 308:X 293:| 289:H 285:| 274:X 270:X 251:n 246:P 222:n 217:P 189:) 183:n 178:P 173:( 148:n 143:P 116:| 112:H 108:| 85:n 80:P 65:X 20:)

Index

Bertini's lemma
mathematics
hyperplane sections
algebraically closed fields
Eugenio Bertini
linear system of divisors
characteristic
projective space
complete system
dual space
rational points
transversally
linear system of divisors
base locus
Steven Kleiman
Kleiman's theorem
algebraic group
homogeneous G-variety
dimension
smooth
Borel subgroup
Grothendieck's connectedness theorem
"Bertini theorems"
Encyclopedia of Mathematics
EMS Press
Poonen, Bjorn
"Bertini theorems over finite fields"
Annals of Mathematics
arXiv
math/0204002

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑