Knowledge

Lindelöf space

Source 📝

1237: – property of certain mathematical objects (usually in a category) that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not probably exist. 370:
in the Sorgenfrey plane are unions of half-open rectangles that include the south and west edges and omit the north and east edges, including the northwest, northeast, and southeast corners. The
643: 549: 681:
The thing to notice here is that each point on the antidiagonal is contained in exactly one set of the covering, so all the (uncountably many) sets of item (2) above are needed.
1066: 1485:
Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences, American Mathematical Society, 1975, p. 4, retrievable on Google Books
335: 486: 394: 360: 892: 865: 243: 1357: 1133: 1001: 1193: 1153: 1090: 958: 838: 806: 783: 760: 458: 938: 675: 581: 426: 1224: 732: 1173: 1110: 1021: 978: 702: 214: 1679: 1403: 1628: 1068:
The Lindelöf number as defined above does not distinguish between compact spaces and Lindelöf non-compact spaces. Some authors gave the name
734:
This subspace is not Lindelöf, and so the whole space cannot be Lindelöf either (as closed subspaces of Lindelöf spaces are also Lindelöf).
1486: 1669: 1654: 1580: 1565: 1611: 589: 495: 363: 1674: 1507: 249: 89: 1440: 123:
is Lindelöf, but not conversely. For example, there are many compact spaces that are not second-countable.
1606: 1234: 276: 269: 135: 120: 1243: 265:
Hereditarily Lindelöf spaces are closed under taking countable unions, subspaces, and continuous images.
1026: 742:
The following definition generalises the definitions of compact and Lindelöf: a topological space is
71:
is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called
75:, but confusingly that terminology is sometimes used with an altogether different meaning. The term 315: 187: 469: 377: 343: 1616: 1534: 1306: 870: 843: 106: 1426: 222: 1650: 1624: 1602: 1576: 1561: 1115: 983: 113: 39: 1178: 1138: 1075: 943: 823: 791: 768: 745: 1516: 1366: 813: 431: 310: 217: 1638: 1530: 1380: 911: 648: 554: 399: 1634: 1620: 1526: 1376: 809: 194: 131: 1246: – lemma that every open subset of the reals is a countable union of open intervals 1206: 714: 1158: 1095: 1006: 963: 708: 687: 199: 1371: 1352: 262:
A space is hereditarily Lindelöf if and only if every open subspace of it is Lindelöf.
1663: 1590: 1538: 1310: 463: 306: 293: 153: 142: 102: 86: 1295: 286: 146: 127: 50:
subcover. The Lindelöf property is a weakening of the more commonly used notion of
1135:
In this latter (and less used) sense the Lindelöf number is the smallest cardinal
309:
of Lindelöf spaces is not necessarily Lindelöf. The usual example of this is the
1472: 705: 167: 157: 52: 31: 43: 17: 338: 166:
Every closed subspace of a Lindelöf space is Lindelöf. Consequently, every
47: 193:
The product of two Lindelöf spaces need not be Lindelöf. For example, the
163:
A countable union of Lindelöf subspaces of a topological space is Lindelöf.
367: 1521: 1498: 268:
A regular Lindelöf space is hereditarily Lindelöf if and only if it is
83: 704:
is not Lindelöf is to note that the antidiagonal defines a closed and
1473:"General topology - Another question on hereditarily lindelöf space" 109:, is Lindelöf. In particular, every countable space is Lindelöf. 1404:"Examples of Lindelof Spaces that are not Hereditarily Lindelof" 183:
The product of a Lindelöf space and a compact space is Lindelöf.
177:
Arbitrary subspaces of a Lindelöf space need not be Lindelöf.
190:
is Lindelöf. This is a corollary to the previous property.
1209: 1181: 1161: 1141: 1118: 1098: 1078: 1029: 1009: 986: 966: 946: 914: 873: 846: 826: 794: 771: 748: 717: 690: 651: 592: 557: 498: 472: 434: 402: 380: 346: 318: 225: 202: 180:
The continuous image of a Lindelöf space is Lindelöf.
1248:
Pages displaying wikidata descriptions as a fallback
1239:
Pages displaying wikidata descriptions as a fallback
1195:-compact. This notion is sometimes also called the 1218: 1187: 1167: 1147: 1127: 1104: 1084: 1060: 1015: 995: 972: 952: 932: 886: 859: 832: 800: 777: 754: 726: 696: 669: 637: 575: 543: 480: 452: 420: 388: 354: 329: 237: 208: 112:A Lindelöf space is compact if and only if it is 1573:Cardinal functions in topology - ten years later 1358:Proceedings of the American Mathematical Society 638:{\displaystyle [x,+\infty )\times [y,+\infty ),} 544:{\displaystyle (-\infty ,x)\times (-\infty ,y),} 252:family of nonempty subsets is at most countable. 282:Every countable space is hereditarily Lindelöf. 296:on a hereditarily Lindelöf space is moderated. 1619:reprint of 1978 ed.). Berlin, New York: 1072:to a different notion: the smallest cardinal 301:Example: the Sorgenfrey plane is not Lindelöf 8: 1112:has a subcover of size strictly less than 257:Properties of hereditarily Lindelöf spaces 1520: 1370: 1208: 1180: 1160: 1140: 1117: 1097: 1077: 1049: 1028: 1008: 985: 965: 945: 913: 878: 872: 851: 845: 825: 793: 770: 747: 716: 689: 650: 591: 556: 497: 474: 473: 471: 433: 401: 382: 381: 379: 348: 347: 345: 320: 319: 317: 224: 201: 1092:such that every open cover of the space 960:such that every open cover of the space 1259: 186:The product of a Lindelöf space and a 7: 1296:"A note on strongly Lindelöf spaces" 82:Lindelöf spaces are named after the 56:, which requires the existence of a 1575:. Math. Centre Tracts, Amsterdam. 1560:, Heldermann Verlag Berlin, 1989. 1046: 875: 848: 626: 605: 526: 505: 25: 1372:10.1090/S0002-9939-1953-0056905-8 1061:{\displaystyle l(X)=\aleph _{0}.} 130:is Lindelöf if and only if it is 1680:Properties of topological spaces 174:in a Lindelöf space is Lindelöf. 79:is more common and unambiguous. 1441:"A Note on the Sorgenfrey Line" 980:has a subcover of size at most 1353:"A note on paracompact spaces" 1332:Willard, theorem 16.11, p. 112 1155:such that a topological space 1039: 1033: 924: 918: 867:-compact and Lindelöf is then 816:has a subcover of cardinality 664: 652: 629: 614: 608: 593: 570: 558: 535: 520: 514: 499: 415: 403: 1: 1416:Willard, theorem 16.6, p. 110 1393:Willard, theorem 16.6, p. 110 1341:Willard, theorem 16.8, p. 111 1323:Willard, theorem 16.9, p. 111 330:{\displaystyle \mathbb {S} ,} 96:Properties of Lindelöf spaces 1649:, Dover Publications (2004) 481:{\displaystyle \mathbb {S} } 389:{\displaystyle \mathbb {S} } 355:{\displaystyle \mathbb {R} } 337:which is the product of the 1612:Counterexamples in Topology 1462:Engelking, 3.8.A(c), p. 194 1453:Engelking, 3.8.A(b), p. 194 1303:Technische Universität Graz 887:{\displaystyle \aleph _{1}} 860:{\displaystyle \aleph _{0}} 364:half-open interval topology 248:In a Lindelöf space, every 134:, and if and only if it is 105:, and more generally every 67:hereditarily Lindelöf space 1696: 1503:-compact spaces is simple" 1275:Willard, Def. 16.5, p. 110 1266:Steen & Seebach, p. 19 586:The set of all rectangles 492:The set of all rectangles 1670:Compactness (mathematics) 1508:Mathematische Zeitschrift 940:is the smallest cardinal 289:is hereditarily Lindelöf. 279:is hereditarily Lindelöf. 238:{\displaystyle S\times S} 27:Type of topological space 1497:Hušek, Miroslav (1969). 1351:Michael, Ernest (1953). 1128:{\displaystyle \kappa .} 996:{\displaystyle \kappa .} 684:Another way to see that 1188:{\displaystyle \kappa } 1148:{\displaystyle \kappa } 1085:{\displaystyle \kappa } 953:{\displaystyle \kappa } 833:{\displaystyle \kappa } 801:{\displaystyle \kappa } 778:{\displaystyle \kappa } 755:{\displaystyle \kappa } 677:is on the antidiagonal. 583:is on the antidiagonal. 1607:Seebach, J. Arthur Jr. 1235:Axioms of countability 1220: 1189: 1169: 1149: 1129: 1106: 1086: 1062: 1017: 997: 974: 954: 934: 888: 861: 834: 802: 779: 756: 728: 698: 671: 639: 577: 545: 482: 454: 453:{\displaystyle x+y=0.} 422: 390: 356: 331: 277:second-countable space 239: 210: 121:second-countable space 90:Ernst Leonard Lindelöf 1221: 1190: 1170: 1150: 1130: 1107: 1087: 1063: 1018: 998: 975: 955: 935: 933:{\displaystyle l(X),} 889: 862: 835: 803: 780: 757: 729: 699: 672: 670:{\displaystyle (x,y)} 640: 578: 576:{\displaystyle (x,y)} 546: 483: 455: 423: 421:{\displaystyle (x,y)} 396:is the set of points 391: 357: 332: 240: 216:is Lindelöf, but the 211: 77:hereditarily Lindelöf 1556:Engelking, Ryszard, 1443:. 27 September 2009. 1294:Ganster, M. (1989). 1284:Willard, 16E, p. 114 1207: 1179: 1159: 1139: 1116: 1096: 1076: 1027: 1007: 984: 964: 944: 912: 871: 844: 824: 792: 769: 746: 715: 688: 649: 590: 555: 496: 470: 432: 400: 378: 344: 316: 223: 200: 488:which consists of: 1645:Willard, Stephen. 1603:Steen, Lynn Arthur 1571:I. Juhász (1980). 1522:10.1007/BF01124977 1219:{\displaystyle X.} 1216: 1199:compactness degree 1185: 1165: 1145: 1125: 1102: 1082: 1058: 1013: 1003:In this notation, 993: 970: 950: 930: 884: 857: 840:. Compact is then 830: 798: 775: 752: 727:{\displaystyle S.} 724: 694: 667: 635: 573: 541: 478: 450: 418: 386: 352: 327: 235: 206: 156:Lindelöf space is 145:Lindelöf space is 1630:978-0-486-68735-3 1168:{\displaystyle X} 1105:{\displaystyle X} 1016:{\displaystyle X} 973:{\displaystyle X} 697:{\displaystyle S} 209:{\displaystyle S} 114:countably compact 73:strongly Lindelöf 40:topological space 16:(Redirected from 1687: 1675:General topology 1647:General Topology 1642: 1598: 1595:Topology, 2nd ed 1586: 1558:General Topology 1544: 1542: 1524: 1494: 1488: 1483: 1477: 1476: 1469: 1463: 1460: 1454: 1451: 1445: 1444: 1437: 1431: 1430: 1427:"The Tube Lemma" 1423: 1417: 1414: 1408: 1407: 1406:. 15 April 2012. 1400: 1394: 1391: 1385: 1384: 1374: 1348: 1342: 1339: 1333: 1330: 1324: 1321: 1315: 1314: 1300: 1291: 1285: 1282: 1276: 1273: 1267: 1264: 1249: 1244:Lindelöf's lemma 1240: 1225: 1223: 1222: 1217: 1201: 1200: 1194: 1192: 1191: 1186: 1174: 1172: 1171: 1166: 1154: 1152: 1151: 1146: 1134: 1132: 1131: 1126: 1111: 1109: 1108: 1103: 1091: 1089: 1088: 1083: 1067: 1065: 1064: 1059: 1054: 1053: 1022: 1020: 1019: 1014: 1002: 1000: 999: 994: 979: 977: 976: 971: 959: 957: 956: 951: 939: 937: 936: 931: 903: 902: 893: 891: 890: 885: 883: 882: 866: 864: 863: 858: 856: 855: 839: 837: 836: 831: 812:, if every open 807: 805: 804: 799: 784: 782: 781: 776: 761: 759: 758: 753: 733: 731: 730: 725: 703: 701: 700: 695: 676: 674: 673: 668: 644: 642: 641: 636: 582: 580: 579: 574: 550: 548: 547: 542: 487: 485: 484: 479: 477: 459: 457: 456: 451: 427: 425: 424: 419: 395: 393: 392: 387: 385: 361: 359: 358: 353: 351: 336: 334: 333: 328: 323: 311:Sorgenfrey plane 270:perfectly normal 245:is not Lindelöf. 244: 242: 241: 236: 218:Sorgenfrey plane 215: 213: 212: 207: 136:second-countable 69: 68: 21: 1695: 1694: 1690: 1689: 1688: 1686: 1685: 1684: 1660: 1659: 1631: 1621:Springer-Verlag 1601: 1589: 1583: 1570: 1553: 1548: 1547: 1496: 1495: 1491: 1484: 1480: 1471: 1470: 1466: 1461: 1457: 1452: 1448: 1439: 1438: 1434: 1425: 1424: 1420: 1415: 1411: 1402: 1401: 1397: 1392: 1388: 1350: 1349: 1345: 1340: 1336: 1331: 1327: 1322: 1318: 1298: 1293: 1292: 1288: 1283: 1279: 1274: 1270: 1265: 1261: 1256: 1247: 1238: 1231: 1205: 1204: 1198: 1197: 1177: 1176: 1157: 1156: 1137: 1136: 1114: 1113: 1094: 1093: 1074: 1073: 1070:Lindelöf number 1045: 1025: 1024: 1023:is Lindelöf if 1005: 1004: 982: 981: 962: 961: 942: 941: 910: 909: 907:Lindelöf number 901:Lindelöf degree 900: 899: 874: 869: 868: 847: 842: 841: 822: 821: 790: 789: 767: 766: 744: 743: 740: 713: 712: 686: 685: 647: 646: 588: 587: 553: 552: 494: 493: 468: 467: 430: 429: 398: 397: 376: 375: 342: 341: 314: 313: 303: 259: 221: 220: 198: 197: 195:Sorgenfrey line 188:σ-compact space 171: 107:σ-compact space 98: 66: 65: 42:in which every 28: 23: 22: 15: 12: 11: 5: 1693: 1691: 1683: 1682: 1677: 1672: 1662: 1661: 1658: 1657: 1643: 1629: 1599: 1591:Munkres, James 1587: 1581: 1568: 1552: 1549: 1546: 1545: 1515:(2): 123–126. 1499:"The class of 1489: 1478: 1464: 1455: 1446: 1432: 1418: 1409: 1395: 1386: 1365:(5): 831–838. 1343: 1334: 1325: 1316: 1286: 1277: 1268: 1258: 1257: 1255: 1252: 1251: 1250: 1241: 1230: 1227: 1215: 1212: 1184: 1164: 1144: 1124: 1121: 1101: 1081: 1057: 1052: 1048: 1044: 1041: 1038: 1035: 1032: 1012: 992: 989: 969: 949: 929: 926: 923: 920: 917: 881: 877: 854: 850: 829: 797: 774: 751: 739: 738:Generalisation 736: 723: 720: 693: 679: 678: 666: 663: 660: 657: 654: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 598: 595: 584: 572: 569: 566: 563: 560: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 510: 507: 504: 501: 476: 449: 446: 443: 440: 437: 417: 414: 411: 408: 405: 384: 350: 326: 322: 302: 299: 298: 297: 290: 283: 280: 273: 266: 263: 258: 255: 254: 253: 250:locally finite 246: 234: 231: 228: 205: 191: 184: 181: 178: 175: 169: 164: 161: 150: 139: 124: 117: 110: 97: 94: 36:Lindelöf space 26: 24: 18:Lindelof space 14: 13: 10: 9: 6: 4: 3: 2: 1692: 1681: 1678: 1676: 1673: 1671: 1668: 1667: 1665: 1656: 1655:0-486-43479-6 1652: 1648: 1644: 1640: 1636: 1632: 1626: 1622: 1618: 1614: 1613: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1582:90-6196-196-3 1578: 1574: 1569: 1567: 1566:3-88538-006-4 1563: 1559: 1555: 1554: 1550: 1540: 1536: 1532: 1528: 1523: 1518: 1514: 1510: 1509: 1504: 1502: 1493: 1490: 1487: 1482: 1479: 1474: 1468: 1465: 1459: 1456: 1450: 1447: 1442: 1436: 1433: 1429:. 2 May 2011. 1428: 1422: 1419: 1413: 1410: 1405: 1399: 1396: 1390: 1387: 1382: 1378: 1373: 1368: 1364: 1360: 1359: 1354: 1347: 1344: 1338: 1335: 1329: 1326: 1320: 1317: 1312: 1308: 1304: 1297: 1290: 1287: 1281: 1278: 1272: 1269: 1263: 1260: 1253: 1245: 1242: 1236: 1233: 1232: 1228: 1226: 1213: 1210: 1203:of the space 1202: 1182: 1162: 1142: 1122: 1119: 1099: 1079: 1071: 1055: 1050: 1042: 1036: 1030: 1010: 990: 987: 967: 947: 927: 921: 915: 908: 904: 895: 879: 852: 827: 819: 815: 811: 795: 787: 772: 764: 749: 737: 735: 721: 718: 710: 707: 691: 682: 661: 658: 655: 632: 623: 620: 617: 611: 602: 599: 596: 585: 567: 564: 561: 538: 532: 529: 523: 517: 511: 508: 502: 491: 490: 489: 465: 464:open covering 462:Consider the 460: 447: 444: 441: 438: 435: 412: 409: 406: 373: 369: 366:with itself. 365: 340: 324: 312: 308: 300: 295: 294:Radon measure 291: 288: 284: 281: 278: 274: 271: 267: 264: 261: 260: 256: 251: 247: 232: 229: 226: 219: 203: 196: 192: 189: 185: 182: 179: 176: 173: 165: 162: 159: 155: 151: 148: 144: 140: 137: 133: 129: 125: 122: 118: 115: 111: 108: 104: 103:compact space 100: 99: 95: 93: 91: 88: 87:mathematician 85: 80: 78: 74: 70: 61: 59: 55: 54: 49: 45: 41: 37: 33: 19: 1646: 1610: 1594: 1572: 1557: 1512: 1506: 1500: 1492: 1481: 1467: 1458: 1449: 1435: 1421: 1412: 1398: 1389: 1362: 1356: 1346: 1337: 1328: 1319: 1302: 1289: 1280: 1271: 1262: 1196: 1069: 906: 898: 896: 817: 785: 762: 741: 711:subspace of 683: 680: 461: 372:antidiagonal 371: 304: 287:Suslin space 128:metric space 81: 76: 72: 64: 62: 57: 51: 35: 29: 706:uncountable 158:paracompact 53:compactness 32:mathematics 1664:Categories 1551:References 894:-compact. 820:less than 428:such that 362:under the 60:subcover. 44:open cover 1609:(1995) . 1539:120212653 1311:208002077 1183:κ 1143:κ 1120:κ 1080:κ 1047:ℵ 988:κ 948:κ 876:ℵ 849:ℵ 828:κ 796:κ 788:), where 786:-Lindelöf 773:κ 750:κ 627:∞ 612:× 606:∞ 527:∞ 524:− 518:× 506:∞ 503:− 368:Open sets 339:real line 230:× 132:separable 48:countable 1229:See also 818:strictly 810:cardinal 763:-compact 709:discrete 1639:0507446 1531:0244947 1381:0056905 808:is any 307:product 154:regular 143:regular 84:Finnish 1653:  1637:  1627:  1579:  1564:  1537:  1529:  1379:  1309:  645:where 551:where 292:Every 285:Every 275:Every 152:Every 147:normal 141:Every 119:Every 101:Every 58:finite 46:has a 1617:Dover 1535:S2CID 1307:S2CID 1299:(PDF) 1254:Notes 905:, or 814:cover 38:is a 1651:ISBN 1625:ISBN 1577:ISBN 1562:ISBN 897:The 765:(or 305:The 34:, a 1517:doi 1513:110 1367:doi 1175:is 466:of 374:of 172:set 30:In 1666:: 1635:MR 1633:. 1623:. 1605:; 1593:. 1533:. 1527:MR 1525:. 1511:. 1505:. 1377:MR 1375:. 1361:. 1355:. 1305:. 1301:. 448:0. 126:A 92:. 63:A 1641:. 1615:( 1597:. 1585:. 1543:. 1541:. 1519:: 1501:k 1475:. 1383:. 1369:: 1363:4 1313:. 1214:. 1211:X 1163:X 1123:. 1100:X 1056:. 1051:0 1043:= 1040:) 1037:X 1034:( 1031:l 1011:X 991:. 968:X 928:, 925:) 922:X 919:( 916:l 880:1 853:0 722:. 719:S 692:S 665:) 662:y 659:, 656:x 653:( 633:, 630:) 624:+ 621:, 618:y 615:[ 609:) 603:+ 600:, 597:x 594:[ 571:) 568:y 565:, 562:x 559:( 539:, 536:) 533:y 530:, 521:( 515:) 512:x 509:, 500:( 475:S 445:= 442:y 439:+ 436:x 416:) 413:y 410:, 407:x 404:( 383:S 349:R 325:, 321:S 272:. 233:S 227:S 204:S 170:σ 168:F 160:. 149:. 138:. 116:. 20:)

Index

Lindelof space
mathematics
topological space
open cover
countable
compactness
Finnish
mathematician
Ernst Leonard Lindelöf
compact space
σ-compact space
countably compact
second-countable space
metric space
separable
second-countable
regular
normal
regular
paracompact
Fσ set
σ-compact space
Sorgenfrey line
Sorgenfrey plane
locally finite
perfectly normal
second-countable space
Suslin space
Radon measure
product

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.