Knowledge (XXG)

Line moiré

Source 📝

2046: 616: 2054:
the same inclination pattern. The inclination degrees of the layers’ and moiré lines change along the horizontal axis according to the following sequence of alternating degree values (+30, –30, +30, –30, +30). In Figure 9 we obtain the same superposition pattern as in Figure 6, but with a base layer comprising straight lines inclined by –10 degrees. The revealing pattern of Figure 9 is computed by interpolating the curves into connected straight lines, where for each position along the horizontal axis, the revealing line’s inclination angle
72: 2083: 2095: 35: 26:; a pattern that appears when superposing two transparent layers containing correlated opaque patterns. Line moiré is the case when the superposed patterns comprise straight or curved lines. When moving the layer patterns, the moiré patterns transform or move at a faster speed. This effect is called optical moiré speedup. 1469: 946: 50:
and the other one as the revealing layer. It is assumed that the revealing layer is printed on a transparency and is superimposed on top of the base layer, which can be printed either on a transparency or on an opaque paper. The periods of the two layer patterns are close. We denote the period of the
759:
represent the true space between the base layer and revealing layer lines, correspondingly. The intersections of the lines of the base and the revealing layers (marked in the figure by two arrows) lie on a central axis of a light moiré band. The dashed line of Figure 8 corresponds to the axis of the
300:
For the case when the revealing layer period is longer than the base layer period, the distance between moiré bands is the absolute value computed by the formula. The superposition of two layers comprising parallel lines forms an optical image comprising parallel moiré lines with a magnified period.
2053:
For any given base layer line inclination, this equation permits us to obtain a desired moiré line inclination by properly choosing the revealing layer inclination. In Figure 6 we showed an example where the curves of layers follow an identical inclination pattern forming a superposition image with
79:
Light bands of the superposition image correspond to the zones where the lines of both layers overlap. The dark bands of the superposition image forming the moiré lines correspond to the zones where the lines of the two layers interleave, hiding the white background. The labels of Figure 2 show the
623:
The superposition of two layers with identically inclined lines forms moiré lines inclined at the same angle. Figure 5 is obtained from Figure 1 with a vertical shearing. In Figure 5 the layer lines and the moiré lines are inclined by 10 degrees. Since the inclination is not a rotation, during the
690:
More interesting is the case when the inclination degrees of layer lines are not the same for the base and revealing layers. Figure 7 shows an animation of a superposition images where the inclination degree of base layer lines is constant (10 degrees), but the inclination of the revealing layer
664:
The inclination degree of layer lines may change along the horizontal axis forming curves. The superposition of two layers with identical inclination pattern forms moiré curves with the same inclination pattern. In Figure 6 the inclination degree of layer lines gradually changes according to the
2110:
Figure 11 shows an animation where we obtain a superposition image with a constant inclination pattern of moiré lines (+30, –30, +30, –30, +30) for continuously modifying pairs of base and revealing layers. The base layer inclination pattern gradually changes and the revealing layer inclination
568:
Here we present patterns with inclined lines. When we are interested in optical speedup we can represent the case of inclined patterns such that the formulas for computing moiré periods and optical speedups remain valid in their current simplest form. For this purpose, the values of periods
2040: 94:
of moiré lines is the distance from one point where the lines of both layers overlap (at the bottom of the figure) to the next such point (at the top). Let us count the layer lines, starting from the bottom point. At the count 0 the lines of both layers overlap. Since in our case
1657: 2090:
Another example forming the same superposition patterns as in Figure 6 and Figure 9 is shown in Figure 10. In Figure 10 the desired inclination pattern (+30, –30, +30, –30, +30) is obtained using a base layer with an inverted inclination pattern (–30, +30, –30, +30, –30).
716:
Figure 8 helps to compute the inclination degree of moiré optical lines as a function of the inclination of the revealing and the base layer lines. We draw the layer lines schematically without showing their true thicknesses. The bold lines of the diagram inclined by
1267: 1080: 559:
In case the period of the revealing layer is longer than the period of the base layer, the optical image moves in the opposite direction. The negative value of the ratio computed according to this formula signifies a movement in the reverse direction.
326:
The moiré bands of Figure 1 will move if we displace the revealing layer. When the revealing layer moves perpendicularly to layer lines, the moiré bands move along the same axis, but several times faster than the movement of the revealing layer.
1300: 1779: 776: 42:
Simple moiré patterns can be observed when superposing two transparent layers comprising periodically repeating opaque parallel lines as shown in Figure 1. The lines of one layer are parallel to the lines of the second layer.
1864: 2078:
Figure 9 demonstrates that the difference between the inclination angles of revealing and base layer lines has to be several times smaller than the difference between inclination angles of moiré and base layer lines.
554: 1901: 1498: 342:
shown in Figure 4 corresponds to a slow movement of the revealing layer. The GIF file repeatedly animates an upward movement of the revealing layer (perpendicular to layer lines) across a distance equal to
453: 295: 590:
correspond to the distances between the lines along the axis of movements (the vertical axis in the animated example of Figure 4). When the layer lines are perpendicular to the movement axis, the periods
68:
The superposition image of Figure 1 outlines periodically repeating dark parallel bands, called moiré lines. Spacing between the moiré lines is much larger than the periods of lines in the two layers.
1117: 360:) of its pattern, the superposition optical image must be the same as the initial one. It means that the moiré lines traverse a distance equal to the period of the superposition image 957: 109:, for the same number of counted lines, the base layer lines with a long period advance faster than the revealing layer lines with a short period. At the halfway of the distance 84:
Figure 3 shows a detailed diagram of the superposition image between two adjacent zones with overlapping lines of the revealing and base layers (i.e., between two light bands).
46:
The superposition image does not change if transparent layers with their opaque patterns are inverted. When considering printed samples, one of the layers is denoted as the
2364:: The basics of line moiré patterns and optical speedup; equations for computing the contours and the velocities of moiré curves; circular patterns and rotational movements 951:
From these equations we deduce the equation for computing the inclination of moiré lines as a function of the inclinations of the base layer and the revealing layer lines:
1464:{\displaystyle \alpha _{m}=\arctan \left({\frac {T_{b}\cdot \sin \alpha _{r}-T_{r}\cdot \sin \alpha _{b}}{T_{b}\cdot \cos \alpha _{r}-T_{r}\cdot \cos \alpha _{b}}}\right)} 941:{\displaystyle {\begin{cases}\tan \alpha _{m}={\frac {p_{b}+l\cdot \tan \alpha _{b}}{l}}\\\tan \alpha _{r}={\frac {p_{b}-p_{r}+l\cdot \tan \alpha _{b}}{l}}\end{cases}}} 1693: 2128: 350:. The animation demonstrates that the moiré lines of the superposition image move up at a speed, much faster than the movement speed of the revealing layer. 80:
passages from light zones with overlapping layer lines to dark zones with interleaving layer lines. The light and dark zones are periodically interchanging.
2277: 331: 2172: 2241: 1794: 2374: 311:
The thicknesses of layer lines affect the overall darkness of the superposition image and the thickness of the moiré bands, but the period
2035:{\displaystyle \tan \alpha _{r}={\frac {p_{r}}{p_{b}}}\cdot \tan \alpha _{b}+\left(1-{\frac {p_{r}}{p_{b}}}\right)\cdot \tan \alpha _{m}.} 473: 1652:{\displaystyle T_{m}={\frac {T_{b}\cdot T_{r}}{\sqrt {T_{b}^{2}+T_{r}^{2}-2\cdot T_{b}\cdot T_{r}\cdot \cos(\alpha _{r}-\alpha _{b})}}}} 2189: 387: 213: 2103: 686:(the vertical distance between the moiré curves) and the optical speedup (along the vertical axis) are valid for Figure 6. 123:/2) of the revealing layer lines, due to which the lines are interleaving, forming a dark moiré band. At the full distance 1262:{\displaystyle T_{b}=p_{b}\cdot \cos \alpha _{b},\ T_{r}=p_{r}\cdot \cos \alpha _{r},\ T_{m}=p_{m}\cdot \cos \alpha _{m}} 632:) between the lines (along an axis perpendicular to these lines) is changed. The difference between the vertical periods 2094: 2045: 615: 339: 679:
represent the distances between the curves along the vertical axis. The presented formulas for computing the period
2147: 2300: 71: 1075:{\displaystyle \tan \alpha _{m}={\frac {p_{b}\cdot \tan \alpha _{r}-p_{r}\cdot \tan \alpha _{b}}{p_{b}-p_{r}}}} 2195: 2252: 2082: 2367: 2111:
pattern correspondingly adapts such that the superposition image’s inclination pattern remains the same.
731:
degrees are the revealing layer lines. The base layer lines are vertically spaced by a distance equal to
2398: 2378: 2361: 330: 381:=0), the following equation represents the ratio of the optical speed to the revealing layer’s speed: 34: 2333: 785: 2278:"Moiré patterns: their application to refractive index and refractive index gradient measurements" 2220: 1774:{\displaystyle T_{m}={\frac {T}{2\cdot \sin \left({\frac {\alpha _{r}-\alpha _{b}}{2}}\right)}}} 2408: 2403: 2393: 2185: 353:
When the revealing layer is shifted up perpendicularly to the layer lines by one full period (
2341: 2292: 2139: 1870:
The revealing lines inclination as a function of the superposition image’s lines inclination
1489: 23: 691:
lines oscillates between 5 and 15 degrees. The periods of layers along the vertical axis
2337: 1111:(along the axes perpendicular to pattern lines) are computed as follows (see Figure 8): 2219:
Emin Gabrielyan (2007-03-08). "The basics of line moiré patterns and optical speedup".
628:) between the layer lines along the vertical axis is conserved, but the true distance ( 2345: 308:, the closer the periods of the two layers, the stronger the magnification factor is. 2387: 760:
light moiré band. The inclination degree of moiré lines is therefore the inclination
137:, so the lines of the layers again overlap. The base layer lines gain the distance 611:
Computing moiré lines’ inclination as function of the inclination of layers’ lines
712:(along the vertical axis) computed with the basic formula also remains the same. 130:, the base layer lines are ahead of the revealing layer lines by a full period 116:, the base layer lines are ahead the revealing layer lines by a half a period ( 599:) between the lines (as in Figure 4). If the lines are inclined, the periods ( 47: 738:, and the revealing layer lines are vertically spaced by a distance equal to 1859:{\displaystyle \alpha _{m}=90^{\circ }+{\frac {\alpha _{r}+\alpha _{b}}{2}}} 2296: 2143: 2225: 1874:
Here is the equation for computing the revealing layer line inclination
2102: 665:
following sequence of degrees (+30, –30, +30, –30, +30). Layer periods
2181: 367:
while the revealing layer traverses the distance equal to its period
549:{\displaystyle {\frac {v_{m}}{v_{r}}}={\frac {p_{b}}{p_{b}-p_{r}}}.} 2101: 30:
Superposition of layers with periodically repeating parallel lines
603:) along the axis of the movement are not equal to the distances ( 2240:
Stanley Morse; August J. Durelli; Cesar A. Sciammarella (1961).
1283:, we deduce a well known formula for computing the moiré angle 200:+ 1. From here we obtain the well known formula for the period 2098:
Figure 11. The same moiré curves with modifying layer patterns
1481:
we deduce another well known formula for computing the period
448:{\displaystyle {\frac {v_{m}}{v_{r}}}={\frac {p_{m}}{p_{r}}}.} 290:{\displaystyle p_{m}={\frac {p_{b}\cdot p_{r}}{p_{b}-p_{r}}}.} 724:
degrees are the base layer lines. The bold lines inclined by
934: 2249:
Transactions of the American Society of Civil Engineers
2136:
Transactions of the American Society of Civil Engineers
705:
are the same all the time. Correspondingly, the period
2049:
Figure 9. Moiré curves with straight base layer lines
1904: 1797: 1696: 1501: 1303: 1120: 960: 779: 770:
From Figure 8 we deduce the following two equations:
476: 390: 334:
Figure 4. Slow movement of the revealing layer upward
216: 2034: 1858: 1773: 1651: 1463: 1261: 1074: 940: 548: 447: 289: 2324:G. Oster; Y. Nishijima (1963). "Moiré patterns". 2129:"Moiré fringes as a means of analyzing strains" 1492:(along the axis perpendicular to moiré bands): 1272:From here, using the formula for computing tan( 318:does not depend on the layer lines’ thickness. 2242:"Geometry of moiré fringes in strain analysis" 2086:Figure 10. Inversed base layer and moiré lines 619:Figure 5. Identical inclination of layer lines 158:) as the number of the revealing layer lines ( 8: 374:. Assuming that the base layer is immobile ( 75:Figure 2. Overlapping and interleaving zones 564:Superposition of layers with inclined lines 2285:Journal of the Optical Society of America 2224: 2023: 1997: 1987: 1981: 1961: 1940: 1930: 1924: 1915: 1903: 1844: 1831: 1824: 1815: 1802: 1796: 1752: 1739: 1732: 1710: 1701: 1695: 1637: 1624: 1602: 1589: 1570: 1565: 1552: 1547: 1535: 1522: 1515: 1506: 1500: 1448: 1429: 1416: 1397: 1385: 1366: 1353: 1334: 1327: 1308: 1302: 1253: 1234: 1221: 1205: 1186: 1173: 1157: 1138: 1125: 1119: 1063: 1050: 1038: 1019: 1006: 987: 980: 971: 959: 919: 894: 881: 874: 865: 839: 814: 807: 798: 780: 778: 595:) are equal to the distances (denoted as 534: 521: 510: 504: 493: 483: 477: 475: 434: 424: 418: 407: 397: 391: 389: 275: 262: 250: 237: 230: 221: 215: 58:and the period of the revealing layer as 2127:C.A. Sciammarella; A.J. Durelli (1962). 2093: 2081: 2044: 1881:for a given base layer line inclination 614: 329: 70: 38:Figure 1. Two layers with parallel lines 33: 2119: 1888:, and a desired moiré line inclination 301:According to the formula for computing 2251:. 126, part I: 250–271. Archived from 660:is shown in the diagram of Figure 8. 7: 1687:is reduced into well known formula: 172:) for the same distance minus one: 2373:Mirrors of line moiré intro page: 2174:The Theory of the Moiré Phenomenon 14: 2346:10.1038/scientificamerican0563-54 2075:according to the equation above. 2276:Y. Nishijima; G. Oster (1964). 1784:And the formula for computing α 322:Speedup of movements with moiré 1643: 1617: 1: 2370:: Aperiodic random line moiré 2061:is computed as a function of 1680:, the formula for the period 1086:Deducing other known formulas 1662:In the particular case when 207:of the superposition image: 1474:From formula for computing 2425: 624:inclination the distance ( 465:with its formula, we have 2106:Effect on circular lines. 1090:The true pattern periods 2138:. 127, part I: 582–587. 2297:10.1364/JOSA.54.000001 2171:Isaac Amidror (2000). 2144:10.1061/TACEAT.0008466 2107: 2099: 2087: 2050: 2036: 1860: 1775: 1653: 1465: 1263: 1076: 942: 620: 550: 449: 335: 291: 76: 39: 2105: 2097: 2085: 2048: 2037: 1861: 1776: 1654: 1466: 1264: 1077: 943: 618: 607:) between the lines. 551: 450: 333: 292: 74: 37: 16:Type of moiré pattern 1902: 1795: 1694: 1499: 1301: 1118: 958: 777: 767:of the dashed line. 646:, and the distances 474: 388: 214: 144:with as many lines ( 2362:Line moiré patterns 2338:1963SciAm.208e..54O 2326:Scientific American 1575: 1557: 2108: 2100: 2088: 2051: 2032: 1856: 1771: 1649: 1561: 1543: 1461: 1259: 1072: 938: 933: 621: 546: 445: 336: 287: 77: 40: 2368:Random line moiré 2003: 1946: 1854: 1769: 1762: 1647: 1646: 1455: 1216: 1168: 1070: 929: 849: 541: 499: 440: 413: 282: 2416: 2350: 2349: 2321: 2315: 2314: 2312: 2311: 2305: 2299:. Archived from 2282: 2273: 2267: 2266: 2264: 2263: 2257: 2246: 2237: 2231: 2230: 2228: 2216: 2210: 2209: 2207: 2206: 2200: 2194:. Archived from 2179: 2168: 2162: 2161: 2159: 2158: 2152: 2146:. Archived from 2133: 2124: 2041: 2039: 2038: 2033: 2028: 2027: 2009: 2005: 2004: 2002: 2001: 1992: 1991: 1982: 1966: 1965: 1947: 1945: 1944: 1935: 1934: 1925: 1920: 1919: 1865: 1863: 1862: 1857: 1855: 1850: 1849: 1848: 1836: 1835: 1825: 1820: 1819: 1807: 1806: 1780: 1778: 1777: 1772: 1770: 1768: 1767: 1763: 1758: 1757: 1756: 1744: 1743: 1733: 1711: 1706: 1705: 1658: 1656: 1655: 1650: 1648: 1642: 1641: 1629: 1628: 1607: 1606: 1594: 1593: 1574: 1569: 1556: 1551: 1542: 1541: 1540: 1539: 1527: 1526: 1516: 1511: 1510: 1470: 1468: 1467: 1462: 1460: 1456: 1454: 1453: 1452: 1434: 1433: 1421: 1420: 1402: 1401: 1391: 1390: 1389: 1371: 1370: 1358: 1357: 1339: 1338: 1328: 1313: 1312: 1268: 1266: 1265: 1260: 1258: 1257: 1239: 1238: 1226: 1225: 1214: 1210: 1209: 1191: 1190: 1178: 1177: 1166: 1162: 1161: 1143: 1142: 1130: 1129: 1081: 1079: 1078: 1073: 1071: 1069: 1068: 1067: 1055: 1054: 1044: 1043: 1042: 1024: 1023: 1011: 1010: 992: 991: 981: 976: 975: 947: 945: 944: 939: 937: 936: 930: 925: 924: 923: 899: 898: 886: 885: 875: 870: 869: 850: 845: 844: 843: 819: 818: 808: 803: 802: 745:. The distances 555: 553: 552: 547: 542: 540: 539: 538: 526: 525: 515: 514: 505: 500: 498: 497: 488: 487: 478: 454: 452: 451: 446: 441: 439: 438: 429: 428: 419: 414: 412: 411: 402: 401: 392: 296: 294: 293: 288: 283: 281: 280: 279: 267: 266: 256: 255: 254: 242: 241: 231: 226: 225: 2424: 2423: 2419: 2418: 2417: 2415: 2414: 2413: 2384: 2383: 2358: 2353: 2323: 2322: 2318: 2309: 2307: 2303: 2280: 2275: 2274: 2270: 2261: 2259: 2255: 2244: 2239: 2238: 2234: 2226:physics/0703098 2218: 2217: 2213: 2204: 2202: 2198: 2192: 2177: 2170: 2169: 2165: 2156: 2154: 2150: 2131: 2126: 2125: 2121: 2117: 2074: 2067: 2060: 2019: 1993: 1983: 1974: 1970: 1957: 1936: 1926: 1911: 1900: 1899: 1894: 1887: 1880: 1872: 1840: 1827: 1826: 1811: 1798: 1793: 1792: 1788:is reduced to: 1787: 1748: 1735: 1734: 1728: 1715: 1697: 1692: 1691: 1686: 1675: 1668: 1633: 1620: 1598: 1585: 1531: 1518: 1517: 1502: 1497: 1496: 1487: 1480: 1444: 1425: 1412: 1393: 1392: 1381: 1362: 1349: 1330: 1329: 1323: 1304: 1299: 1298: 1289: 1279:) with periods 1278: 1249: 1230: 1217: 1201: 1182: 1169: 1153: 1134: 1121: 1116: 1115: 1110: 1103: 1096: 1088: 1059: 1046: 1045: 1034: 1015: 1002: 983: 982: 967: 956: 955: 932: 931: 915: 890: 877: 876: 861: 852: 851: 835: 810: 809: 794: 781: 775: 774: 766: 758: 751: 744: 737: 730: 723: 715: 711: 704: 697: 689: 685: 678: 671: 663: 659: 652: 645: 638: 613: 589: 582: 575: 566: 530: 517: 516: 506: 489: 479: 472: 471: 464: 430: 420: 403: 393: 386: 385: 380: 373: 366: 359: 349: 324: 317: 307: 271: 258: 257: 246: 233: 232: 217: 212: 211: 206: 199: 192: 185: 178: 171: 164: 157: 150: 143: 136: 129: 122: 115: 108: 101: 93: 83: 64: 57: 32: 22:is one type of 17: 12: 11: 5: 2422: 2420: 2412: 2411: 2406: 2401: 2396: 2386: 2385: 2382: 2381: 2371: 2365: 2357: 2356:External links 2354: 2352: 2351: 2332:(May): 54–63. 2316: 2268: 2232: 2211: 2190: 2163: 2118: 2116: 2113: 2072: 2065: 2058: 2043: 2042: 2031: 2026: 2022: 2018: 2015: 2012: 2008: 2000: 1996: 1990: 1986: 1980: 1977: 1973: 1969: 1964: 1960: 1956: 1953: 1950: 1943: 1939: 1933: 1929: 1923: 1918: 1914: 1910: 1907: 1892: 1885: 1878: 1871: 1868: 1867: 1866: 1853: 1847: 1843: 1839: 1834: 1830: 1823: 1818: 1814: 1810: 1805: 1801: 1785: 1782: 1781: 1766: 1761: 1755: 1751: 1747: 1742: 1738: 1731: 1727: 1724: 1721: 1718: 1714: 1709: 1704: 1700: 1684: 1673: 1666: 1660: 1659: 1645: 1640: 1636: 1632: 1627: 1623: 1619: 1616: 1613: 1610: 1605: 1601: 1597: 1592: 1588: 1584: 1581: 1578: 1573: 1568: 1564: 1560: 1555: 1550: 1546: 1538: 1534: 1530: 1525: 1521: 1514: 1509: 1505: 1485: 1478: 1472: 1471: 1459: 1451: 1447: 1443: 1440: 1437: 1432: 1428: 1424: 1419: 1415: 1411: 1408: 1405: 1400: 1396: 1388: 1384: 1380: 1377: 1374: 1369: 1365: 1361: 1356: 1352: 1348: 1345: 1342: 1337: 1333: 1326: 1322: 1319: 1316: 1311: 1307: 1287: 1276: 1270: 1269: 1256: 1252: 1248: 1245: 1242: 1237: 1233: 1229: 1224: 1220: 1213: 1208: 1204: 1200: 1197: 1194: 1189: 1185: 1181: 1176: 1172: 1165: 1160: 1156: 1152: 1149: 1146: 1141: 1137: 1133: 1128: 1124: 1108: 1101: 1094: 1087: 1084: 1083: 1082: 1066: 1062: 1058: 1053: 1049: 1041: 1037: 1033: 1030: 1027: 1022: 1018: 1014: 1009: 1005: 1001: 998: 995: 990: 986: 979: 974: 970: 966: 963: 949: 948: 935: 928: 922: 918: 914: 911: 908: 905: 902: 897: 893: 889: 884: 880: 873: 868: 864: 860: 857: 854: 853: 848: 842: 838: 834: 831: 828: 825: 822: 817: 813: 806: 801: 797: 793: 790: 787: 786: 784: 764: 756: 749: 742: 735: 728: 721: 709: 702: 695: 683: 676: 669: 657: 650: 643: 636: 612: 609: 587: 580: 573: 565: 562: 557: 556: 545: 537: 533: 529: 524: 520: 513: 509: 503: 496: 492: 486: 482: 469: 462: 456: 455: 444: 437: 433: 427: 423: 417: 410: 406: 400: 396: 378: 371: 364: 357: 347: 323: 320: 315: 305: 298: 297: 286: 278: 274: 270: 265: 261: 253: 249: 245: 240: 236: 229: 224: 220: 204: 197: 190: 183: 176: 169: 162: 155: 148: 141: 134: 127: 120: 113: 106: 99: 91: 62: 55: 51:base layer as 31: 28: 15: 13: 10: 9: 6: 4: 3: 2: 2421: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2391: 2389: 2380: 2376: 2372: 2369: 2366: 2363: 2360: 2359: 2355: 2347: 2343: 2339: 2335: 2331: 2327: 2320: 2317: 2306:on 2007-10-13 2302: 2298: 2294: 2290: 2286: 2279: 2272: 2269: 2258:on 2007-10-08 2254: 2250: 2243: 2236: 2233: 2227: 2222: 2215: 2212: 2201:on 2007-10-13 2197: 2193: 2191:0-7923-5950-X 2187: 2183: 2176: 2175: 2167: 2164: 2153:on 2007-12-11 2149: 2145: 2141: 2137: 2130: 2123: 2120: 2114: 2112: 2104: 2096: 2092: 2084: 2080: 2076: 2071: 2064: 2057: 2047: 2029: 2024: 2020: 2016: 2013: 2010: 2006: 1998: 1994: 1988: 1984: 1978: 1975: 1971: 1967: 1962: 1958: 1954: 1951: 1948: 1941: 1937: 1931: 1927: 1921: 1916: 1912: 1908: 1905: 1898: 1897: 1896: 1891: 1884: 1877: 1869: 1851: 1845: 1841: 1837: 1832: 1828: 1821: 1816: 1812: 1808: 1803: 1799: 1791: 1790: 1789: 1764: 1759: 1753: 1749: 1745: 1740: 1736: 1729: 1725: 1722: 1719: 1716: 1712: 1707: 1702: 1698: 1690: 1689: 1688: 1683: 1679: 1672: 1665: 1638: 1634: 1630: 1625: 1621: 1614: 1611: 1608: 1603: 1599: 1595: 1590: 1586: 1582: 1579: 1576: 1571: 1566: 1562: 1558: 1553: 1548: 1544: 1536: 1532: 1528: 1523: 1519: 1512: 1507: 1503: 1495: 1494: 1493: 1491: 1490:moiré pattern 1484: 1477: 1457: 1449: 1445: 1441: 1438: 1435: 1430: 1426: 1422: 1417: 1413: 1409: 1406: 1403: 1398: 1394: 1386: 1382: 1378: 1375: 1372: 1367: 1363: 1359: 1354: 1350: 1346: 1343: 1340: 1335: 1331: 1324: 1320: 1317: 1314: 1309: 1305: 1297: 1296: 1295: 1293: 1290:with periods 1286: 1282: 1275: 1254: 1250: 1246: 1243: 1240: 1235: 1231: 1227: 1222: 1218: 1211: 1206: 1202: 1198: 1195: 1192: 1187: 1183: 1179: 1174: 1170: 1163: 1158: 1154: 1150: 1147: 1144: 1139: 1135: 1131: 1126: 1122: 1114: 1113: 1112: 1107: 1100: 1093: 1085: 1064: 1060: 1056: 1051: 1047: 1039: 1035: 1031: 1028: 1025: 1020: 1016: 1012: 1007: 1003: 999: 996: 993: 988: 984: 977: 972: 968: 964: 961: 954: 953: 952: 926: 920: 916: 912: 909: 906: 903: 900: 895: 891: 887: 882: 878: 871: 866: 862: 858: 855: 846: 840: 836: 832: 829: 826: 823: 820: 815: 811: 804: 799: 795: 791: 788: 782: 773: 772: 771: 768: 763: 755: 748: 741: 734: 727: 720: 713: 708: 701: 694: 687: 682: 675: 668: 661: 656: 649: 642: 635: 631: 627: 617: 610: 608: 606: 602: 598: 594: 586: 579: 572: 563: 561: 543: 535: 531: 527: 522: 518: 511: 507: 501: 494: 490: 484: 480: 470: 468: 467: 466: 461: 458:By replacing 442: 435: 431: 425: 421: 415: 408: 404: 398: 394: 384: 383: 382: 377: 370: 363: 356: 351: 346: 341: 340:GIF animation 332: 328: 321: 319: 314: 309: 304: 284: 276: 272: 268: 263: 259: 251: 247: 243: 238: 234: 227: 222: 218: 210: 209: 208: 203: 196: 189: 182: 175: 168: 161: 154: 147: 140: 133: 126: 119: 112: 105: 98: 90: 85: 81: 73: 69: 66: 61: 54: 49: 44: 36: 29: 27: 25: 24:moiré pattern 21: 2399:Interference 2329: 2325: 2319: 2308:. Retrieved 2301:the original 2288: 2284: 2271: 2260:. Retrieved 2253:the original 2248: 2235: 2214: 2203:. Retrieved 2196:the original 2173: 2166: 2155:. Retrieved 2148:the original 2135: 2122: 2109: 2089: 2077: 2069: 2062: 2055: 2052: 1889: 1882: 1875: 1873: 1783: 1681: 1677: 1670: 1663: 1661: 1482: 1475: 1473: 1291: 1284: 1280: 1273: 1271: 1105: 1098: 1091: 1089: 950: 769: 761: 753: 746: 739: 732: 725: 718: 714: 706: 699: 692: 688: 680: 673: 666: 662: 654: 647: 640: 633: 629: 625: 622: 604: 600: 596: 592: 584: 577: 570: 567: 558: 459: 457: 375: 368: 361: 354: 352: 344: 337: 325: 312: 310: 302: 299: 201: 194: 187: 180: 173: 166: 159: 152: 145: 138: 131: 124: 117: 110: 103: 96: 88: 86: 82: 78: 67: 59: 52: 45: 41: 19: 18: 2379:Switzerland 87:The period 2388:Categories 2310:2007-03-19 2291:(1): 1–5. 2262:2007-03-19 2205:2007-03-19 2157:2007-03-19 2115:References 48:base layer 20:Line moiré 2021:α 2017:⁡ 2011:⋅ 1979:− 1959:α 1955:⁡ 1949:⋅ 1913:α 1909:⁡ 1842:α 1829:α 1817:∘ 1800:α 1750:α 1746:− 1737:α 1726:⁡ 1720:⋅ 1635:α 1631:− 1622:α 1615:⁡ 1609:⋅ 1596:⋅ 1583:⋅ 1577:− 1529:⋅ 1446:α 1442:⁡ 1436:⋅ 1423:− 1414:α 1410:⁡ 1404:⋅ 1383:α 1379:⁡ 1373:⋅ 1360:− 1351:α 1347:⁡ 1341:⋅ 1321:⁡ 1306:α 1251:α 1247:⁡ 1241:⋅ 1203:α 1199:⁡ 1193:⋅ 1155:α 1151:⁡ 1145:⋅ 1057:− 1036:α 1032:⁡ 1026:⋅ 1013:− 1004:α 1000:⁡ 994:⋅ 969:α 965:⁡ 917:α 913:⁡ 907:⋅ 888:− 863:α 859:⁡ 837:α 833:⁡ 827:⋅ 796:α 792:⁡ 528:− 269:− 244:⋅ 2409:Printing 2404:Patterns 2394:Geometry 2334:Bibcode 2188:  2182:Kluwer 1318:arctan 1215:  1167:  1104:, and 583:, and 2304:(PDF) 2281:(PDF) 2256:(PDF) 2245:(PDF) 2221:arXiv 2199:(PDF) 2178:(PDF) 2151:(PDF) 2132:(PDF) 2186:ISBN 2068:and 752:and 698:and 672:and 338:The 102:< 2375:USA 2342:doi 2330:208 2293:doi 2140:doi 2014:tan 1952:tan 1906:tan 1723:sin 1612:cos 1488:of 1439:cos 1407:cos 1376:sin 1344:sin 1244:cos 1196:cos 1148:cos 1029:tan 997:tan 962:tan 910:tan 856:tan 830:tan 789:tan 576:, 2390:: 2377:, 2340:. 2328:. 2289:54 2287:. 2283:. 2247:. 2184:. 2180:. 2134:. 1895:: 1813:90 1294:: 1097:, 653:, 639:, 186:= 65:. 2348:. 2344:: 2336:: 2313:. 2295:: 2265:. 2229:. 2223:: 2208:. 2160:. 2142:: 2073:m 2070:α 2066:b 2063:α 2059:r 2056:α 2030:. 2025:m 2007:) 1999:b 1995:p 1989:r 1985:p 1976:1 1972:( 1968:+ 1963:b 1942:b 1938:p 1932:r 1928:p 1922:= 1917:r 1893:m 1890:α 1886:b 1883:α 1879:r 1876:α 1852:2 1846:b 1838:+ 1833:r 1822:+ 1809:= 1804:m 1786:m 1765:) 1760:2 1754:b 1741:r 1730:( 1717:2 1713:T 1708:= 1703:m 1699:T 1685:m 1682:T 1678:T 1676:= 1674:r 1671:T 1669:= 1667:b 1664:T 1644:) 1639:b 1626:r 1618:( 1604:r 1600:T 1591:b 1587:T 1580:2 1572:2 1567:r 1563:T 1559:+ 1554:2 1549:b 1545:T 1537:r 1533:T 1524:b 1520:T 1513:= 1508:m 1504:T 1486:m 1483:T 1479:m 1476:p 1458:) 1450:b 1431:r 1427:T 1418:r 1399:b 1395:T 1387:b 1368:r 1364:T 1355:r 1336:b 1332:T 1325:( 1315:= 1310:m 1292:T 1288:m 1285:α 1281:p 1277:m 1274:α 1255:m 1236:m 1232:p 1228:= 1223:m 1219:T 1212:, 1207:r 1188:r 1184:p 1180:= 1175:r 1171:T 1164:, 1159:b 1140:b 1136:p 1132:= 1127:b 1123:T 1109:m 1106:T 1102:r 1099:T 1095:b 1092:T 1065:r 1061:p 1052:b 1048:p 1040:b 1021:r 1017:p 1008:r 989:b 985:p 978:= 973:m 927:l 921:b 904:l 901:+ 896:r 892:p 883:b 879:p 872:= 867:r 847:l 841:b 824:l 821:+ 816:b 812:p 805:= 800:m 783:{ 765:m 762:α 757:r 754:T 750:b 747:T 743:r 740:p 736:b 733:p 729:r 726:α 722:b 719:α 710:m 707:p 703:r 700:p 696:b 693:p 684:m 681:p 677:r 674:p 670:b 667:p 658:r 655:T 651:b 648:T 644:r 641:p 637:b 634:p 630:T 626:p 605:T 601:p 597:T 593:p 591:( 588:m 585:p 581:b 578:p 574:r 571:p 544:. 536:r 532:p 523:b 519:p 512:b 508:p 502:= 495:r 491:v 485:m 481:v 463:m 460:p 443:. 436:r 432:p 426:m 422:p 416:= 409:r 405:v 399:m 395:v 379:b 376:v 372:r 369:p 365:m 362:p 358:r 355:p 348:r 345:p 316:m 313:p 306:m 303:p 285:. 277:r 273:p 264:b 260:p 252:r 248:p 239:b 235:p 228:= 223:m 219:p 205:m 202:p 198:b 195:p 193:/ 191:m 188:p 184:r 181:p 179:/ 177:m 174:p 170:r 167:p 165:/ 163:m 160:p 156:b 153:p 151:/ 149:m 146:p 142:m 139:p 135:r 132:p 128:m 125:p 121:r 118:p 114:m 111:p 107:b 104:p 100:r 97:p 92:m 89:p 63:r 60:p 56:b 53:p

Index

moiré pattern

base layer


GIF animation

moiré pattern




"Moiré fringes as a means of analyzing strains"
doi
10.1061/TACEAT.0008466
the original
The Theory of the Moiré Phenomenon
Kluwer
ISBN
0-7923-5950-X
the original
arXiv
physics/0703098
"Geometry of moiré fringes in strain analysis"
the original
"Moiré patterns: their application to refractive index and refractive index gradient measurements"
doi
10.1364/JOSA.54.000001
the original
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.