Knowledge

Liquid crystal on silicon

Source 📝

520:
or lower-band-edge of a channel with better than 1 GHz resolution possible. This is advantageous from a manufacturability perspective, with different channel plans being able to be created from a single platform and even different operating bands (such as C and L) being able to use an identical switch matrix. Additionally, it is possible to take advantage of this ability to reconfigure channels while the device is operating. Products have been introduced allowing switching between 50 GHz channels and 100 GHz channels, or a mix of channels, without introducing any errors or "hits" to the existing traffic. More recently, this has been extended to support the whole concept of Flexible or Elastic networks under ITU G.654.2 through products such as Finisar's
508:, reflecting the light back to the imaging optics which directs each channel to a different portion of the LCoS. The path for each wavelength is then retraced upon reflection from the LCoS, with the beam-steering image applied on the LCOS directing the light to a particular port of the fibre array. As the wavelength channels are separated on the LCoS the switching of each wavelength is independent of all others and can be switched without interfering with the light on other channels. There are many different algorithms that can be implemented to achieve a given coupling between ports including less efficient "images" for attenuation or power splitting. 500:(WSS). LCoS-based WSS were initially developed by Australian company Engana, now part of Finisar. The LCoS can be employed to control the phase of light at each pixel to produce beam-steering where the large number of pixels allow a near continuous addressing capability. Typically, a large number of phase steps are used to create a highly efficient, low-insertion loss switch shown. This simple optical design incorporates polarisation diversity, control of mode size and a 4-f wavelength optical imaging in the dispersive axis of the LCoS providing integrated switching and optical power control. 542:
demonstrated at high repetition rates, but inclusion of an LCoS-based POP allowed the phase content of the spectrum to be changed to flip the pulse train of a passively mode-locked laser from bright to dark pulses. A similar approach uses spectral shaping of optical frequency combs to create multiple pulse trains. For example, a 10 GHz optical frequency comb was shaped by the POP to generate dark parabolic pulses and Gaussian pulses, at 1540 nm and 1560 nm, respectively.
338: 273:, each equivalent to the reflecting side of a single LCLV. These pixels on the LCoS device are driven directly by signals to modulate the intensity of reflected light, rather than a low intensity "writing light" source in the LCLV. For example, a chip with XGA resolution has an array of 1024×768 pixels, each with an independently addressable transistor. In the LCoS device, a 153: 262: 45: 318: 519:
LCoS-based WSS, however, permit dynamic control of channel centre frequency and bandwidth through on-the-fly modification of the pixel arrays via embedded software. The degree of control of channel parameters can be very fine-grained, with independent control of the centre frequency and either upper-
377:
The optical system is responsible for directing the light from the light source onto the LCos panel and projecting the resulting image onto a screen or other surface. The optical system consists of a number of lenses, mirrors, and other optical components that are carefully designed and calibrated to
541:
As an example, an LCoS-based Programmable Optical Processor (POP) has been used to broaden a mode-locked laser output into a 20 nm supercontinuum source whilst a second such device was used to compress the output to 400 fs, transform-limited pulses. Passive mode-locking of fiber lasers has been
373:
The light source is used to provide the necessary illumination for the LCos panel. The most common light source used in LCos display systems is a high-intensity lamp. This lamp emits a broad spectrum of light that is filtered through a color wheel or other optical components to provide the necessary
369:
The LCos panel is the heart of the display system. It consists of an array of pixels that are arranged in a grid pattern. Each pixel is made up of a liquid crystal layer, a reflective layer, and a silicon substrate. The liquid crystal layer controls the polarization of light that passes through it,
515:
and/or liquid crystal technologies allocate a single switching element (pixel) to each channel which means the bandwidth and centre frequency of each channel are fixed at the time of manufacture and cannot be changed in service. In addition, many designs of first-generation WSS (particularly those
503:
In operation, the light passes from a fibre array through the polarisation imaging optics which separates physically and aligns orthogonal polarisation states to be in the high efficiency s-polarisation state of the diffraction grating. The input light from a chosen fibre of the array is reflected
333:
Sony introduced its SXRD (Silicon X-tal Reflective Display) technology in 2004. SXRD was an evolution of LCoS technology that used even smaller pixels and a higher resolution, resulting in an even more accurate image. The SXRD technology was used in Sony's high-end home theater projectors, and it
325:
In 1997, engineers at JVC developed the D-ILA (Direct-Drive Image Light Amplifier) from the Hughes LCLV, which led to smaller and more affordable digital LCoS projectors, using three-chip D-ILA devices. Although these were not as bright and had less resolution than the cinema ILA projectors, they
1316:
Salsi, Massimiliano; Koebele, Clemens; Sperti, Donato; Tran, Patrice; Mardoyan, Haik; Brindel, Patrick; Bigo, Sébastien; Boutin, Aurélien; Verluise, Frédéric; Sillard, Pierre; Astruc, Marianne; Provost, Lionel; Charlet, Gabriel (2012). "Mode-Division Multiplexing of 2×100 Gb/s Channels Using an
537:
The ability of an LCoS-based WSS to independently control both the amplitude and phase of the transmitted signal leads to the more general ability to manipulate the amplitude and/or phase of an optical pulse through a process known as Fourier-domain pulse shaping. This process requires full
573:
One of the interesting applications of LCoS is the ability to transform between modes of few-moded optical fibers which have been proposed as the basis of higher capacity transmission systems in the future. Similarly LCoS has been used to steer light into selected cores of multicore fiber
329:
The early LCoS projectors had their challenges. They suffered from a phenomenon called "image sticking," where the image would remain on the screen after it was supposed to be gone. This was due to the mirrors sticking in their positions, which resulted in ghosting on the screen. However,
465:. These devices are made using ferroelectric liquid crystals (so the technology is named FLCoS) which are inherently faster than other types of liquid crystals to produce high quality images. Google's initial foray into wearable computing, Google glass, also uses a near-eye LCoS display. 365:
LCoS display technology is a type of microdisplay that has gained popularity due to its high image quality and ability to display high-resolution images. LCos display systems typically consist of three main components: the LCos panel, the light source, and the optical system.
277:(CMOS) chip controls the voltage on square reflective aluminium electrodes buried just below the chip surface, each controlling one pixel. Typical chips are approximately 1–3 cm (0.39–1.18 in) square and approximately 2 mm (0.079 in) thick, with 516:
based on MEMs technology) show pronounced dips in the transmission spectrum between each channel due to the limited spectral ‘fill factor’ inherent in these designs. This prevents the simple concatenation of adjacent channels to create a single broader channel.
488:(FoV). It combined a single-chip 1080p LCOS display and image sensor from OmniVision with ASTRI's optics and electronics. The headset is said to be smaller and lighter than others because of its single-chip design with integrated driver and memory buffer. 1247:
A. M. Clarke, D. G. Williams, M. A. F. Roelens, M. R. E. Lamont, and B. J. Eggleton, "Parabolic pulse shaping for enhanced continuum generation using an LCoS-based wavelength selective switch," in 14th OptoElectronics and Communications Conference (OECC)
310:(Hughes-JVC) was founded in 1992 to develop LCLV technology for commercial movie theaters under the branding ILA (Image Light Amplifer). One example was 72.5 in (1,840 mm) tall and weighed 1,670 lb (760 kg), using a 7 kW 345:
JVC introduced an updated D-ILA technology in 2006, which eliminated the need for a polarizing filter, resulting in a brighter and more vibrant image. The D-ILA technology has since become a popular choice for home theater enthusiasts.
430:. Citizen Finedevice (CFD) also continues to manufacturer single panel RGB displays using FLCoS technology (Ferroelectric Liquid Crystals). They manufacture displays in multiple resolutions and sizes that are currently used in 1106:
Baxter, G. et al. (2006) "Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on ," in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference.
370:
while the reflective layer reflects the light back towards the optical system. The silicon substrate is used to control the individual pixels and provides the necessary electronics to drive the LCos panel.
1187:
Marom, D. M. et al. (2002) "Wavelength-selective 1×4 switch for 128 WDM channels at 50 GHz spacing," in Proc. Optical Fiber Communications), Anaheim, CA, Postdeadline Paper FB7, pp. FB7-1–FB7-3
402:
Both Toshiba's and Intel's single-panel LCOS display program were discontinued in 2004 before any units reached final-stage prototype. There were single-panel LCoS displays in production: One by
473: 298:
working on an internal research and development project. General Electric demonstrated a low-resolution LCoS display in the late 1970s. LCLV projectors were used primarily for military
357:) support. LCoS projectors are now available at a range of price points, from affordable models for home theater use to high-end professional models used in commercial installations. 1724: 2017: 274: 63: 281:
as small as 2.79 μm (0.110 mils). A common voltage for all the pixels is supplied by a transparent conductive layer made of indium tin oxide on the cover glass.
386:
The white light is separated into three components (red, green and blue) and then combined back after modulation by the 3 LCoS devices. The light is additionally
1306:
Ng, T. T. et al. (2009) "Complete Temporal Optical Fourier Transformations Using Dark Parabolic Pulses," in 35th European Conference on Optical Communication.
1196:
Kondis, J. et al. (2001) "Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers," pp. 292–293 in Proc. LEOS 2001, Piscataway, NJ.
160:
The Hughes liquid crystal light valve (LCLV) was designed to modulate a high-intensity light beam using a weaker light source, conceptually similar to how an
1460: 258:
layer etched to align the liquid crystal material. Later development of the LCLV used similar semiconductor materials arranged in the same basic structures.
1671: 194:
light-blocking layer prevents the low-intensity writing light from shining through the device; the photosensor and light-blocking layer together form a
1081: 426:
resolutions which today is used for high resolution near-eye applications such as Training & Simulation, structured light pattern projection for
1644: 1172: 802: 1943: 1718: 106: 1792: 1991: 744: 1706: 1665: 81: 2062: 2028: 1711: 1453: 1730: 1700: 1527: 497: 122: 214:
based on the polarization within the liquid crystal being controlled by the photosensor. The dielectric mirror is formed by
2001: 1996: 1986: 1874: 582:
LCoS has been used as a filtering technique, and hence a tuning mechanism, for both semiconductor diode and fiber lasers.
210:
liquid crystal. On the reflecting side, a high-intensity, polarized projection light source reflects selectively from the
1207: 1603: 562: 427: 295: 2052: 1446: 423: 419: 415: 1786: 1516: 1510: 294:
The history of LCoS projectors dates back to June 1972, when LCLV technology was first developed by scientists at
1922: 921:. Photonics West / Electronic Imaging. San Jose, California: Society of Photo-Optical Instrumentation Engineers. 469: 450:
Whilst initially developed for large-screen projectors, LCoS displays have found a consumer niche in the area of
31: 989: 330:
manufacturers continued to refine the technology, and today's LCoS projectors have largely overcome this issue.
1824: 1627: 591: 407: 307: 141: 1361: 1830: 477: 126: 114: 1927: 1677: 1592: 1814: 1808: 1026:
Collings, N. (2011). "The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices".
458: 454:, where their small size and low power consumption are well-matched to the constraints of such devices. 435: 118: 1427: 1819: 1693: 1373: 1326: 1271: 1222: 1137: 1035: 623: 462: 439: 387: 203: 695:
Efron, U.; Wiener-Avnear, E.; Grinberg, J.; Braatz, P.O.; Little, M.J.; Schwartz, R.N. (July 1982).
2047: 1965: 1869: 1776: 1659: 1620: 1547: 451: 431: 269:
The LCLV principle is carried forward in a digital LCoS display device, which features an array of
2007: 1881: 1803: 1798: 1761: 1432: 1342: 1051: 354: 303: 1082:"This AR Headset Surpasses the Field of View of HoloLens, but You Still Won't Wear It in Public" 718: 1960: 1756: 1688: 1391: 1289: 1168: 798: 558: 211: 190: 164:
increases the amplitude of an electrical signal; LCLV was named after the common name for the
2057: 2012: 1751: 1553: 1499: 1381: 1334: 1279: 1230: 1145: 1043: 945: 922: 631: 550: 481: 411: 299: 220: 185: 172: 1412: 867: 1917: 1907: 1854: 1615: 1128:
Johnson, K. M. (1993). "Smart spatial light modulators using liquid crystals on silicon".
963: 748: 554: 234: 207: 177: 614:
Beard, T.D.; Bleha, W.P.; Wong, S-Y (February 1, 1973). "AC Liquid-Crystal Light Valve".
378:
provide the necessary magnification, focus, and color correction for the display system.
17: 1377: 1330: 1275: 1226: 1141: 1039: 627: 140:, allowing light to pass through the light processing unit (s). LCoS is more similar to 1521: 1477: 1469: 505: 349:
LCoS projectors have continued to evolve, with manufacturers introducing features like
311: 199: 110: 2041: 1417: 504:
from the imaging mirror and then angularly dispersed by the grating which is at near
485: 391: 350: 133: 1346: 1055: 1771: 944:. AeroSense. Orlando, Florida: Society of Photo-Optical Instrumentation Engineers. 472:
2018, Hong Kong Applied Science and Technology Research Institute Company Limited (
337: 892: 188:
electrode, driven by an alternating current source at approximately 10 mV. A
202:
layer, transferring the image to the reflecting side by changing the rotation of
1886: 1849: 1570: 819: 771: 696: 673: 650: 278: 181: 168: 1864: 1859: 1841: 1781: 215: 1423: 1338: 1260:"Dark and Bright Pulse Passive Mode-locked Laser with In-cavity Pulse-shaper" 1115: 1047: 1981: 1955: 1912: 1902: 1608: 1505: 569:
Modal switching in space division multiplexed optical communications systems
195: 161: 1395: 1293: 697:
Development of a Silicon Liquid-Crystal Light Valve for Multimode Operation
538:
characterisation of the input pulse in both the time and spectral domains.
917:
Nakano, Atsushi; Honma, Akira; Nakagaki, Shintaro; Doi, Keiichiro (1998).
1683: 1654: 1494: 1386: 1284: 1259: 844: 152: 1948: 1598: 1563: 403: 1234: 1068: 949: 926: 635: 574:
transmission systems, again as a type of Space Division Multiplexing.
484:
for a wireless augmented reality headset that could achieve 60 degree
261: 1582: 1438: 1149: 845:"JVC consolidates projector operations with absorption of Hughes-JVC" 165: 414:
LCoS display technology (known as Time Domain Imaging) available in
1558: 336: 316: 270: 260: 151: 334:
quickly gained a reputation for its exceptional picture quality.
1576: 512: 1442: 651:
Image Processing Applications of the Liquid Crystal Light Valve
317: 674:
Development of a Color Symbology AC Liquid Crystal Light Valve
496:
LCoS is particularly attractive as a switching mechanism in a
137: 38: 1014: 171:. A high-resolution, low-intensity light source (typically a 457:
LCoS devices are also used in near-eye applications such as
30:"LCOS" redirects here. For the energy economics metric, see 772:
Development of a Reflective Mode Liquid Crystal Light Valve
302:
due to their large and bulky size. A joint venture between
113:
layer on top of a silicon backplane. It is also known as a
1208:"Femtosecond pulse shaping using spatial light modulators" 820:
Display Characteristics of Example Light-Valve Projectors
326:
were more portable, starting at 33 lb (15 kg).
942:
D-ILA technology for high-resolution projection displays
793:
Armitage, David; Underwood, Ian; Wu, Shin-Tson (2006).
596:
Pages displaying short descriptions of redirect targets
59: 1415:(January 9, 2004 – No longer planned for development) 1015:
Homepage for MDCA a subsidiary of Citizen Finedevice
847:(Press release). JVC Professional. December 16, 1999 1974: 1936: 1895: 1840: 1744: 1725:
Thick-film dielectric electroluminescent technology
1643: 1538: 1485: 1476: 446:
Pico projectors, near-eye and head-mounted displays
54:
may be too technical for most readers to understand
868:"Electronic Cinema Using ILA Projector Technology" 2018:Comparison of CRT, LCD, plasma, and OLED displays 1424:Everything You Need to Know About TV Technologies 1362:"Opto-VLSI-based Tunable Single-mode Fiber Laser" 822:(Report). University of Dayton Research Institute 653:(Report). Technology Laboratory, Redstone Arsenal 198:junction, producing a DC voltage bias across the 719:"D-ILA: The Technology for images of perfection" 940:Bleha, William P.; Sterling, Rodney D. (2003). 129:, near-eye displays and optical pulse shaping. 553:using a fast ferroelectric LCoS is used in 3D- 1454: 8: 839: 837: 1672:Surface-conduction electron-emitter display 184:layer, which is energized by a transparent 1583:Active-Matrix Organic light-emitting diode 1482: 1461: 1447: 1439: 672:Jacobson, A.D.; Bleha, W.P. (April 1977). 1385: 1283: 121:, but has since found additional uses in 82:Learn how and when to remove this message 66:, without removing the technical details. 1163:Kaminov, Li and Wilner (ed.). "Ch. 16". 990:"Update: Intel Cancels LCOS Chip Plans" 606: 461:for digital cameras, film cameras, and 321:Conceptual diagram of an LCoS projector 275:complementary metal–oxide–semiconductor 1413:'Intel inside' comes to flat panel TVs 175:) was used to "write" an image in the 406:and one by Microdisplay Corporation. 64:make it understandable to non-experts 7: 1719:Ferroelectric liquid crystal display 1165:Optical Fiber Telecommunications VIA 374:color gamut for the display system. 136:technologies which use transmissive 107:active-matrix liquid-crystal display 1793:Light-emitting electrochemical cell 919:Reflective active-matrix LCD: D-ILA 873:. Hughes-JVC Technology Corporation 117:. LCoS initially was developed for 1992:Large-screen television technology 1116:ROADMs & Wavelength Management 1028:IEEE Journal of Display Technology 438:for high end digital cameras, and 25: 1666:Organic light-emitting transistor 969:. JVC Professional. November 1999 2029:Comparison of display technology 818:Howard, Celeste M. (June 1989). 649:Smith, J. Lynn (June 12, 1978). 43: 1660:Electroluminescent Quantum Dots 1319:Journal of Lightwave Technology 1317:LCOS-Based Spatial Modulator". 105:) is a miniaturized reflective 1731:Laser-powered phosphor display 774:(Report). Hughes Research Labs 699:(Report). Hughes Research Labs 676:(Report). Hughes Research Labs 123:wavelength selective switching 1: 1997:Optimum HDTV viewing distance 1987:History of display technology 1875:Computer-generated holography 1258:Schroeder, Jochen B. (2010). 795:Introduction to Microdisplays 745:"Products Compound Photonics" 557:microscopy techniques and in 492:Wavelength-selective switches 1577:Organic light-emitting diode 1571:Light-emitting diode display 866:Sterling, R.D.; Bleha, W.P. 563:automated optical inspection 463:head-mounted displays (HMDs) 361:Display system architectures 296:Hughes Research Laboratories 132:LCoS is distinct from other 770:Jacobson, A.D. (May 1975). 498:wavelength-selective switch 2079: 1787:Vacuum fluorescent display 1511:Electroluminescent display 964:"D-ILA Projector: DLA-G11" 341:JVC projector "D-ILA" LCoS 265:Hughes-JVC D-ILA schematic 109:or "microdisplay" using a 29: 27:Type of display technology 2026: 1634:Liquid crystal on silicon 95:Liquid crystal on silicon 32:levelized cost of storage 18:Liquid Crystal on Silicon 1825:Fourteen-segment display 1628:Digital Light Processing 1339:10.1109/JLT.2011.2178394 1130:IEEE J. Quantum Electron 1048:10.1109/JDT.2010.2049337 592:Digital Light Processing 408:Forth Dimension Displays 2063:Liquid crystal displays 1831:Sixteen-segment display 1517:Rear-projection display 616:Applied Physics Letters 594: – Set of chipsets 528:Other LCoS applications 144:micro-mirror displays. 127:structured illumination 115:spatial light modulator 1678:Field-emission display 1593:Liquid-crystal display 459:electronic viewfinders 436:electronic viewfinders 342: 322: 266: 218:alternating layers of 157: 119:projection televisions 1815:Eight-segment display 1809:Seven-segment display 1206:Weiner, A.M. (2000). 533:Optical pulse shaping 440:head-mounted displays 410:continues to offer a 340: 320: 264: 156:Hughes LCLV schematic 155: 1937:Display capabilities 1820:Nine-segment display 1522:Plasma display panel 1387:10.1364/OE.17.018676 1285:10.1364/OE.18.022715 743:Compound Photonics. 1966:See-through display 1870:Holographic display 1548:Quantum dot display 1378:2009OExpr..1718676X 1372:(21): 18676–18680. 1360:Xiao, Feng (2009). 1331:2012JLwT...30..618S 1276:2010OExpr..1822715S 1270:(22): 22715–22721. 1227:2000RScI...71.1929W 1142:1993IJQE...29..699J 1040:2011JDisT...7..112C 893:"ILA-12K Projector" 751:on October 18, 2014 628:1973ApPhL..22...90B 382:Three-panel designs 2053:Display technology 2008:Color Light Output 2002:High Dynamic Range 1804:Dot-matrix display 1799:Lightguide display 1470:Display technology 1435:at Projectors Pick 1167:. Academic Press. 1088:. January 11, 2018 355:High Dynamic Range 343: 323: 304:Hughes Electronics 267: 158: 2035: 2034: 1961:Always-on display 1752:Electromechanical 1740: 1739: 1411:Biever, Celeste. 1235:10.1063/1.1150614 1215:Rev. Sci. Instrum 1174:978-0-12-396958-3 950:10.1117/12.497532 927:10.1117/12.305518 804:978-0-470-85281-1 636:10.1063/1.1654574 559:fringe projection 546:Light structuring 506:Littrow incidence 398:One-panel designs 300:flight simulators 246:, with the final 212:dielectric mirror 92: 91: 84: 16:(Redirected from 2070: 2013:Flexible display 1975:Related articles 1855:Autostereoscopic 1554:Electronic paper 1500:Cathode-ray tube 1483: 1463: 1456: 1449: 1440: 1428:Hardware Secrets 1400: 1399: 1389: 1357: 1351: 1350: 1313: 1307: 1304: 1298: 1297: 1287: 1255: 1249: 1245: 1239: 1238: 1221:(5): 1929–1960. 1212: 1203: 1197: 1194: 1188: 1185: 1179: 1178: 1160: 1154: 1153: 1150:10.1109/3.199323 1125: 1119: 1113: 1107: 1104: 1098: 1097: 1095: 1093: 1078: 1072: 1066: 1060: 1059: 1023: 1017: 1012: 1006: 1005: 1003: 1001: 985: 979: 978: 976: 974: 968: 960: 954: 953: 937: 931: 930: 914: 908: 907: 905: 903: 897:JVC Professional 889: 883: 882: 880: 878: 872: 863: 857: 856: 854: 852: 841: 832: 831: 829: 827: 815: 809: 808: 790: 784: 783: 781: 779: 767: 761: 760: 758: 756: 747:. Archived from 740: 734: 733: 731: 729: 724:. JVC. June 2000 723: 715: 709: 708: 706: 704: 692: 686: 685: 683: 681: 669: 663: 662: 660: 658: 646: 640: 639: 611: 597: 551:Structured light 482:reference design 257: 256: 255: 245: 243: 242: 231: 229: 228: 193: 186:indium tin oxide 180: 87: 80: 76: 73: 67: 47: 46: 39: 21: 2078: 2077: 2073: 2072: 2071: 2069: 2068: 2067: 2038: 2037: 2036: 2031: 2022: 1970: 1932: 1918:Slide projector 1908:Movie projector 1891: 1836: 1736: 1646: 1639: 1540: 1534: 1487: 1472: 1467: 1433:LCoS projectors 1408: 1403: 1359: 1358: 1354: 1315: 1314: 1310: 1305: 1301: 1257: 1256: 1252: 1246: 1242: 1210: 1205: 1204: 1200: 1195: 1191: 1186: 1182: 1175: 1162: 1161: 1157: 1127: 1126: 1122: 1114: 1110: 1105: 1101: 1091: 1089: 1080: 1079: 1075: 1067: 1063: 1025: 1024: 1020: 1013: 1009: 999: 997: 988:Hachman, Mark. 987: 986: 982: 972: 970: 966: 962: 961: 957: 939: 938: 934: 916: 915: 911: 901: 899: 891: 890: 886: 876: 874: 870: 865: 864: 860: 850: 848: 843: 842: 835: 825: 823: 817: 816: 812: 805: 792: 791: 787: 777: 775: 769: 768: 764: 754: 752: 742: 741: 737: 727: 725: 721: 717: 716: 712: 702: 700: 694: 693: 689: 679: 677: 671: 670: 666: 656: 654: 648: 647: 643: 613: 612: 608: 604: 595: 588: 580: 571: 555:superresolution 548: 535: 530: 494: 452:pico-projectors 448: 432:pico-projectors 400: 384: 363: 292: 287: 254: 251: 250: 249: 247: 241: 238: 237: 236: 233: 227: 224: 223: 222: 219: 208:twisted nematic 189: 176: 150: 88: 77: 71: 68: 60:help improve it 57: 48: 44: 35: 28: 23: 22: 15: 12: 11: 5: 2076: 2074: 2066: 2065: 2060: 2055: 2050: 2040: 2039: 2033: 2032: 2027: 2024: 2023: 2021: 2020: 2015: 2010: 2005: 1999: 1994: 1989: 1984: 1978: 1976: 1972: 1971: 1969: 1968: 1963: 1958: 1953: 1952: 1951: 1940: 1938: 1934: 1933: 1931: 1930: 1925: 1920: 1915: 1910: 1905: 1899: 1897: 1893: 1892: 1890: 1889: 1884: 1879: 1878: 1877: 1872: 1862: 1857: 1852: 1846: 1844: 1838: 1837: 1835: 1834: 1828: 1822: 1817: 1812: 1806: 1801: 1796: 1790: 1784: 1779: 1774: 1769: 1768: 1767: 1764: 1759: 1748: 1746: 1742: 1741: 1738: 1737: 1735: 1734: 1728: 1722: 1716: 1715: 1714: 1709: 1698: 1697: 1696: 1694:Liquid crystal 1691: 1681: 1675: 1669: 1663: 1657: 1651: 1649: 1641: 1640: 1638: 1637: 1631: 1625: 1624: 1623: 1618: 1613: 1612: 1611: 1606: 1590: 1589: 1588: 1587: 1586: 1568: 1567: 1566: 1561: 1551: 1544: 1542: 1536: 1535: 1533: 1532: 1531: 1530: 1519: 1514: 1508: 1503: 1497: 1491: 1489: 1480: 1478:Video displays 1474: 1473: 1468: 1466: 1465: 1458: 1451: 1443: 1437: 1436: 1430: 1421: 1407: 1406:External links 1404: 1402: 1401: 1366:Optics Express 1352: 1308: 1299: 1264:Optics Express 1250: 1240: 1198: 1189: 1180: 1173: 1155: 1136:(2): 699–714. 1120: 1108: 1099: 1073: 1061: 1034:(3): 112–119. 1018: 1007: 996:. Extreme Tech 980: 955: 932: 909: 884: 858: 833: 810: 803: 785: 762: 735: 710: 687: 664: 641: 605: 603: 600: 599: 598: 587: 584: 579: 578:Tunable lasers 576: 570: 567: 547: 544: 534: 531: 529: 526: 493: 490: 447: 444: 399: 396: 392:beam splitters 383: 380: 362: 359: 312:Xenon arc lamp 291: 288: 286: 283: 252: 239: 225: 200:liquid crystal 149: 146: 111:liquid crystal 90: 89: 51: 49: 42: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2075: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2045: 2043: 2030: 2025: 2019: 2016: 2014: 2011: 2009: 2006: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1979: 1977: 1973: 1967: 1964: 1962: 1959: 1957: 1954: 1950: 1947: 1946: 1945: 1942: 1941: 1939: 1935: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1900: 1898: 1894: 1888: 1885: 1883: 1880: 1876: 1873: 1871: 1868: 1867: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1847: 1845: 1843: 1839: 1832: 1829: 1826: 1823: 1821: 1818: 1816: 1813: 1810: 1807: 1805: 1802: 1800: 1797: 1794: 1791: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1765: 1763: 1760: 1758: 1755: 1754: 1753: 1750: 1749: 1747: 1743: 1732: 1729: 1726: 1723: 1720: 1717: 1713: 1710: 1708: 1705: 1704: 1702: 1699: 1695: 1692: 1690: 1687: 1686: 1685: 1682: 1679: 1676: 1673: 1670: 1667: 1664: 1662:(ELQD/QD-LED) 1661: 1658: 1656: 1653: 1652: 1650: 1648: 1642: 1635: 1632: 1629: 1626: 1622: 1619: 1617: 1614: 1610: 1607: 1605: 1602: 1601: 1600: 1597: 1596: 1594: 1591: 1584: 1581: 1580: 1578: 1575: 1574: 1572: 1569: 1565: 1562: 1560: 1557: 1556: 1555: 1552: 1549: 1546: 1545: 1543: 1537: 1529: 1526: 1525: 1523: 1520: 1518: 1515: 1512: 1509: 1507: 1504: 1501: 1498: 1496: 1493: 1492: 1490: 1484: 1481: 1479: 1475: 1471: 1464: 1459: 1457: 1452: 1450: 1445: 1444: 1441: 1434: 1431: 1429: 1425: 1422: 1420: 1419: 1418:New Scientist 1414: 1410: 1409: 1405: 1397: 1393: 1388: 1383: 1379: 1375: 1371: 1367: 1363: 1356: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1312: 1309: 1303: 1300: 1295: 1291: 1286: 1281: 1277: 1273: 1269: 1265: 1261: 1254: 1251: 1244: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1202: 1199: 1193: 1190: 1184: 1181: 1176: 1170: 1166: 1159: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1121: 1118:. finisar.com 1117: 1112: 1109: 1103: 1100: 1087: 1083: 1077: 1074: 1070: 1065: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1019: 1016: 1011: 1008: 995: 991: 984: 981: 965: 959: 956: 951: 947: 943: 936: 933: 928: 924: 920: 913: 910: 898: 894: 888: 885: 869: 862: 859: 846: 840: 838: 834: 821: 814: 811: 806: 800: 796: 789: 786: 773: 766: 763: 750: 746: 739: 736: 720: 714: 711: 698: 691: 688: 675: 668: 665: 652: 645: 642: 637: 633: 629: 625: 621: 617: 610: 607: 601: 593: 590: 589: 585: 583: 577: 575: 568: 566: 564: 560: 556: 552: 545: 543: 539: 532: 527: 525: 523: 517: 514: 511:WSS based on 509: 507: 501: 499: 491: 489: 487: 486:field of view 483: 479: 475: 471: 466: 464: 460: 455: 453: 445: 443: 441: 437: 433: 429: 425: 421: 417: 413: 412:Ferroelectric 409: 405: 397: 395: 393: 389: 381: 379: 375: 371: 367: 360: 358: 356: 352: 351:4K resolution 347: 339: 335: 331: 327: 319: 315: 313: 309: 305: 301: 297: 289: 284: 282: 280: 276: 272: 263: 259: 244: 230: 217: 213: 209: 205: 201: 197: 192: 187: 183: 179: 174: 170: 167: 163: 154: 147: 145: 143: 139: 135: 134:LCD projector 130: 128: 124: 120: 116: 112: 108: 104: 100: 96: 86: 83: 75: 72:December 2022 65: 61: 55: 52:This article 50: 41: 40: 37: 33: 19: 1923:Transparency 1896:Static media 1850:Stereoscopic 1633: 1416: 1369: 1365: 1355: 1322: 1318: 1311: 1302: 1267: 1263: 1253: 1243: 1218: 1214: 1201: 1192: 1183: 1164: 1158: 1133: 1129: 1123: 1111: 1102: 1090:. Retrieved 1086:Next Reality 1085: 1076: 1071:. google.com 1069:Google glass 1064: 1031: 1027: 1021: 1010: 998:. Retrieved 994:415.992.5910 993: 983: 971:. Retrieved 958: 941: 935: 918: 912: 900:. Retrieved 896: 887: 875:. Retrieved 861: 849:. Retrieved 824:. Retrieved 813: 794: 788: 776:. Retrieved 765: 753:. Retrieved 749:the original 738: 726:. Retrieved 713: 701:. Retrieved 690: 678:. Retrieved 667: 655:. Retrieved 644: 622:(3): 90–92. 619: 615: 609: 581: 572: 549: 540: 536: 521: 518: 510: 502: 495: 480:showcased a 467: 456: 449: 401: 385: 376: 372: 368: 364: 348: 344: 332: 328: 324: 293: 268: 204:polarization 159: 131: 102: 98: 94: 93: 78: 69: 53: 36: 1887:Fog display 1860:Multiscopic 1777:Fiber-optic 1689:Quantum dot 973:January 16, 902:January 16, 877:January 16, 851:January 16, 826:January 17, 778:January 16, 755:October 13, 728:January 16, 703:January 16, 680:January 16, 657:January 16, 279:pixel pitch 182:photosensor 169:vacuum tube 2048:Projectors 2042:Categories 1928:Laser beam 1882:Volumetric 1842:3D display 1782:Nixie tube 1762:Split-flap 1647:generation 1621:Blue Phase 1541:generation 1488:generation 1325:(4): 618. 602:References 478:OmniVision 216:sputtering 196:rectifying 148:Technology 1982:Scan line 1956:DisplayID 1913:Neon sign 1903:Monoscope 1745:Non-video 1506:Jumbotron 797:. Wiley. 522:Flexgrid™ 388:polarized 353:and HDR ( 162:amplifier 1865:Hologram 1772:Eggcrate 1757:Flip-dot 1703:display 1684:Laser TV 1655:microLED 1585:(AMOLED) 1539:Current 1495:Eidophor 1396:20372600 1347:38004325 1294:21164610 1092:June 23, 1056:34118772 1000:June 17, 586:See also 285:Displays 2058:Silicon 1949:CEA-861 1579:(OLED) 1564:Gyricon 1374:Bibcode 1327:Bibcode 1272:Bibcode 1223:Bibcode 1138:Bibcode 1036:Bibcode 624:Bibcode 561:for 3D- 404:Philips 290:History 206:in the 58:Please 1833:(SISD) 1727:(TDEL) 1721:(FLCD) 1668:(OLET) 1636:(LCoS) 1595:(LCD) 1573:(LED) 1550:(QLED) 1524:(PDP) 1394:  1345:  1292:  1171:  1054:  801:  476:) and 271:pixels 166:triode 2004:(HDR) 1827:(FSD) 1811:(SSD) 1795:(LEC) 1789:(VFD) 1733:(LPD) 1680:(FED) 1674:(SED) 1645:Next 1630:(DLP) 1559:E Ink 1513:(ELD) 1502:(CRT) 1426:from 1343:S2CID 1248:2009. 1211:(PDF) 1052:S2CID 967:(PDF) 871:(PDF) 722:(PDF) 524:WSS. 474:ASTRI 1944:EDID 1766:Vane 1712:TMOS 1707:IMoD 1701:MEMS 1528:ALiS 1486:Past 1392:PMID 1290:PMID 1169:ISBN 1094:2020 1002:2011 975:2024 904:2024 879:2024 853:2024 828:2024 799:ISBN 780:2024 757:2014 730:2024 705:2024 682:2024 659:2024 513:MEMS 424:WXGA 422:and 420:SXGA 416:QXGA 306:and 232:and 191:CdTe 103:LCOS 99:LCoS 1616:LED 1609:IPS 1599:TFT 1382:doi 1335:doi 1280:doi 1231:doi 1146:doi 1044:doi 946:doi 923:doi 632:doi 470:CES 468:At 428:AOI 390:by 308:JVC 248:SiO 235:SiO 221:TiO 178:CdS 173:CRT 142:DLP 138:LCD 101:or 62:to 2044:: 1604:TN 1390:. 1380:. 1370:17 1368:. 1364:. 1341:. 1333:. 1323:30 1321:. 1288:. 1278:. 1268:18 1266:. 1262:. 1229:. 1219:71 1217:. 1213:. 1144:. 1134:29 1132:. 1084:. 1050:. 1042:. 1030:. 992:. 895:. 836:^ 630:. 620:22 618:. 565:. 442:. 434:, 418:, 394:. 314:. 125:, 1462:e 1455:t 1448:v 1398:. 1384:: 1376:: 1349:. 1337:: 1329:: 1296:. 1282:: 1274:: 1237:. 1233:: 1225:: 1177:. 1152:. 1148:: 1140:: 1096:. 1058:. 1046:: 1038:: 1032:7 1004:. 977:. 952:. 948:: 929:. 925:: 906:. 881:. 855:. 830:. 807:. 782:. 759:. 732:. 707:. 684:. 661:. 638:. 634:: 626:: 253:2 240:2 226:2 97:( 85:) 79:( 74:) 70:( 56:. 34:. 20:)

Index

Liquid Crystal on Silicon
levelized cost of storage
help improve it
make it understandable to non-experts
Learn how and when to remove this message
active-matrix liquid-crystal display
liquid crystal
spatial light modulator
projection televisions
wavelength selective switching
structured illumination
LCD projector
LCD
DLP

amplifier
triode
vacuum tube
CRT
CdS
photosensor
indium tin oxide
CdTe
rectifying
liquid crystal
polarization
twisted nematic
dielectric mirror
sputtering
TiO
2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.