Knowledge (XXG)

PIN diode

Source 📝

909:
resistance at RF frequencies, which would give rise to harmonics and intermodulation products. If the signal is large, then when the PIN diode starts to rectify the signal, the forward current charges the drift region and the device RF impedance is inversely proportional to the signal amplitude. That signal amplitude varying resistance can be used to terminate some predetermined portion of the signal in a resistive network dissipating the energy or to create an impedance mismatch that reflects the incident signal back toward the source. The latter may be combined with an isolator, a device containing a circulator which uses a permanent magnetic field to break reciprocity and a resistive load to separate and terminate the backward traveling wave. When used as a shunt limiter the PIN diode impedance is low over the entire RF cycle, unlike paired rectifier diodes that would swing from a high resistance to a low resistance during each RF cycle clamping the waveform and not reflecting it as completely. The ionization recovery time of gas molecules that permits the creation of the higher power spark gap input protection device ultimately relies on similar physics in a gas.
36: 284:
time, with no effect on the minimum time required to sweep the charge from the I region. Increasing the thickness of the intrinsic region increases the total stored charge, decreases the minimum RF frequency, and decreases the reverse-bias capacitance, but doesn't decrease the forward-bias RF resistance and increases the minimum time required to sweep the drift charge and transition from low to high RF resistance. Diodes are sold commercially in a variety of geometries for specific RF bands and uses.
863: 217:. In other words, the intrinsic "i" region is flooded with charge carriers from the "p" and "n" regions. Its function can be likened to filling up a water bucket with a hole on the side. Once the water reaches the hole's level it will begin to pour out. Similarly, the diode will conduct current once the flooded electrons and holes reach an equilibrium point, where the number of electrons is equal to the number of holes in the intrinsic region. 562: 313: 108: 145: 547: 900:
attenuated result is taken from the isolation port. The advantages of this approach over the bridged-T and pi approaches are (1) complementary PIN diode bias drives are not needed—the same bias is applied to both diodes—and (2) the loss in the attenuator equals the return loss of the terminations, which can be varied over a very wide range.
858:{\displaystyle {\begin{aligned}A&=20\log _{10}\left({\frac {Z_{\mathrm {load} }+Z_{\mathrm {source} }}{Z_{\mathrm {source} }+Z_{\mathrm {diode} }+Z_{\mathrm {load} }}}\right)\\&=20\log _{10}\left({\frac {50\,\Omega +50\,\Omega }{50\,\Omega +497\,\Omega +50\,\Omega }}\right)\\&={15.52}\,\mathrm {dB} \end{aligned}}} 283:
The diode design has some design trade-offs. Increasing the cross-section area of the intrinsic region increases its stored charge reducing its RF on-state resistance while also increasing reverse bias capacitance and increasing the drive current required to remove the charge during a fixed switching
275:
In a PIN diode the depletion region exists almost completely within the intrinsic region. This depletion region is much larger than in a PN diode and almost constant-size, independent of the reverse bias applied to the diode. This increases the volume where electron-hole pairs can be generated by an
960:
is better long-wavelength response of the former. In case of long wavelength irradiation, photons penetrate deep into the cell. But only those electron-hole pairs generated in and near the depletion region contribute to current generation. The depletion region of a PIN structure extends across the
899:
PIN diodes might be used, for example, as the bridge and shunt resistors in a bridged-T attenuator. Another common approach is to use PIN diodes as terminations connected to the 0 degree and -90 degree ports of a quadrature hybrid. The signal to be attenuated is applied to the input port, and the
868:
This attenuation may not be adequate. In applications where higher isolation is needed, both shunt and series elements may be used, with the shunt diodes biased in complementary fashion to the series elements. Adding shunt elements effectively reduces the source and load impedances, reducing the
908:
PIN diodes are sometimes designed for use as input protection devices for high-frequency test probes and other circuits. If the input signal is small, the PIN diode has negligible impact, presenting only a small parasitic capacitance. Unlike a rectifier diode, it does not present a nonlinear
1009:
In modern fiber-optical communications, the speed of optical transmitters and receivers is one of the most important parameters. Due to the small surface of the photodiode, its parasitic (unwanted) capacitance is reduced. The bandwidth of modern pin photodiodes is reaching the microwave and
228:, the electric field extends deeply (almost the entire length) into the region. This electric field helps in speeding up of the transport of charge carriers from the P to the N region, which results in faster operation of the diode, making it a suitable device for high-frequency operation. 241:. At a low-enough frequency, the stored charge can be fully swept and the diode turns off. At higher frequencies, there is not enough time to sweep the charge from the drift region, so the diode never turns off. The time required to sweep the stored charge from a diode junction is its 885: 371: 1218:
Attila Hilt, Gábor Járó, Attila Zólomy, Béatrice Cabon, Tibor Berceli, Tamás Marozsák: "Microwave Characterization of High-Speed pin Photodiodes", Proc. of the 9th Conference on Microwave Techniques COMITE’97, pp.21-24, Pardubice, Czech Republic, 16-17 Oct.
869:
impedance ratio and increasing the off-state attenuation. However, in addition to the added complexity, the on-state attenuation is increased due to the series resistance of the on-state blocking element and the capacitance of the off-state shunt elements.
236:
The PIN diode obeys the standard diode equation for low-frequency signals. At higher frequencies, the diode looks like an almost perfect (very linear, even for large signals) resistor. The P-I-N diode has a relatively large stored charge adrift in a thick
895:
At high frequencies, the PIN diode appears as a resistor whose resistance is an inverse function of its forward current. Consequently, PIN diode can be used in some variable attenuator designs as amplitude modulators or output leveling circuits.
245:, and it is relatively long in a PIN diode. For a given semiconductor material, on-state impedance, and minimum usable RF frequency, the reverse recovery time is fixed. This property can be exploited; one variety of P-I-N diode, the 256:
The high-frequency resistance is inversely proportional to the DC bias current through the diode. A PIN diode, suitably biased, therefore acts as a variable resistor. This high-frequency resistance may vary over a wide range (from
994:
cells use NIP structure, a variation of the PIN structure. In a NIP structure, an intrinsic CdTe layer is sandwiched by n-doped CdS and p-doped ZnTe; the photons are incident on the n-doped layer, unlike in a PIN diode.
924:
PIN photodiodes are used in fibre optic network cards and switches. As a photodetector, the PIN diode is reverse-biased. Under reverse bias, the diode ordinarily does not conduct (save a small dark current or
542:{\displaystyle {\begin{aligned}Z_{\mathrm {diode} }&={\frac {1}{2\pi fC}}\\&={\frac {1}{2\pi (320\times 10^{6}\,\mathrm {Hz} )(1\times 10^{-12}\,\mathrm {F} )}}\\&=497\,\Omega \end{aligned}}} 976:. They feature fast response times (higher than their p-n counterparts), running into several tens of gigahertz, making them ideal for high speed optical telecommunication applications. Similarly, 567: 376: 224:, the injected carrier concentration is typically several orders of magnitude higher than the intrinsic carrier concentration. Due to this high level injection, which in turn is due to the 65: 1265: 198:(one typical function of a diode), but it makes it suitable for attenuators, fast switches, photodetectors, and high-voltage power electronics applications. 968:
Commercially available PIN photodiodes have quantum efficiencies above 80-90% in the telecom wavelength range (~1500 nm), and are typically made of
280:
devices, such as PIN photodiodes and phototransistors (in which the base-collector junction is a PIN diode), use a PIN junction in their construction.
2139: 961:
intrinsic region, deep into the device. This wider depletion width enables electron-hole pair generation deep within the device, which increases the
1780: 1115: 1697: 1082: 980:
p-i-n photodiodes have even higher quantum efficiencies, but can only detect wavelengths below the bandgap of silicon, i.e. ~1100 nm.
1478: 1258: 1461: 1357: 1158: 87: 346:), although at lower RF frequencies it isn't reasonable to expect switching times in the same order of magnitude as the RF period. 1601: 1328: 1195: 1649: 1448: 1251: 2308: 1133: 1018:
SFH203 and BPW34 are cheap general purpose PIN diodes in 5 mm clear plastic cases with bandwidths over 100 MHz.
249:, exploits the abrupt impedance change at the end of the reverse recovery to create a narrow impulse waveform useful for 2323: 1680: 1432: 48: 1484: 1421: 58: 52: 44: 1237: 2318: 2144: 1691: 1047: 1898: 1612: 1455: 1340: 1765: 69: 1907: 1617: 1473: 872:
PIN diode switches are used not only for signal selection, but also component selection. For example, some low-
297: 1181: 2328: 2313: 1918: 1638: 1437: 1032: 973: 238: 187: 164: 2087: 1654: 1519: 1495: 1003: 176: 941:. The reverse-bias field sweeps the carriers out of the region, creating current. Some detectors can use 328:. Under a forward bias of 1 mA (the "on" state), a typical PIN diode will have an RF resistance of about 2156: 2108: 1929: 1745: 1660: 1591: 1427: 1037: 1102: 892:
By changing the bias current through a PIN diode, it is possible to quickly change its RF resistance.
2230: 1974: 1869: 1643: 1536: 1390: 1351: 1282: 1274: 1042: 987: 942: 250: 172: 168: 1950: 1858: 1750: 1586: 1563: 1052: 246: 1150:
Electronic Inventions and Discoveries: Electronics from Its Earliest Beginnings to the Present Day
2255: 2115: 1823: 1790: 1606: 1490: 1468: 1073: 999: 962: 938: 918: 202: 2250: 2171: 2062: 2014: 1843: 1770: 1732: 1154: 1148: 1127: 1027: 984: 884: 136: 957: 1966: 1913: 1775: 1740: 1379: 934: 225: 338:
Although RF relays can be used as switches, they switch relatively slowly (on the order of
2303: 2243: 2176: 2029: 1760: 1670: 1514: 335:, making it a good conductor of RF. Consequently, the PIN diode makes a good RF switch. 2218: 1999: 1989: 1755: 1558: 1232: 956:. In this case, the advantage of using a PIN structure over conventional semiconductor 269: 221: 191: 2297: 2280: 2103: 2019: 1838: 1665: 1633: 301: 277: 180: 121: 2161: 2149: 2037: 2004: 1833: 1818: 1401: 1385: 2203: 1945: 1894: 1800: 1785: 1568: 1530: 873: 321: 268:
The wide intrinsic region also means the diode will have a low capacitance when
312: 17: 2275: 2265: 2198: 2072: 2042: 2009: 1984: 1979: 1956: 1828: 1808: 1686: 1548: 1525: 1411: 1313: 1308: 1303: 953: 2238: 2082: 2077: 2067: 1994: 1874: 1708: 1703: 1628: 969: 325: 293: 195: 349:
For example, the capacitance of an "off"-state discrete PIN diode might be
2260: 2208: 2188: 2166: 2052: 2047: 1935: 1924: 1853: 1623: 1243: 2120: 2057: 1879: 1864: 1718: 1675: 1323: 977: 107: 2193: 1884: 1848: 1813: 1373: 1345: 1318: 1293: 1098: 930: 320:
Under zero- or reverse-bias (the "off" state), a PIN diode has a low
144: 1103:
http://www.alternatewars.com/WW3/WW3_Documents/ABM_Bell/ABM_Ch8.htm
2270: 2181: 1940: 1713: 1506: 1368: 1363: 883: 311: 242: 160: 2213: 1596: 1542: 1443: 1396: 1334: 991: 1247: 331: 29: 194:. The wide intrinsic region makes the PIN diode an inferior 175:
region. The p-type and n-type regions are typically heavily
1182:"Discovery semiconductor 40G InGaAs photodetector modules" 342:). A PIN diode switch can switch much more quickly (e.g., 205:
and his colleagues in 1950. It is a semiconductor device.
1081:, Watertown, MA: Microsemi Corp., MicroNote Series 701, 149:
The diode may be denoted by "PIN" letters on the diagram
565: 374: 265:
in some cases; the useful range is smaller, though).
948:
The same mechanism applies to the PIN structure, or
2229: 2129: 2096: 2028: 1965: 1893: 1799: 1731: 1577: 1505: 1410: 1292: 1281: 135: 127: 117: 857: 541: 876:oscillators use them to range-switch inductors. 57:but its sources remain unclear because it lacks 324:. The low capacitance will not pass much of an 1259: 8: 213:A PIN diode operates under what is known as 100: 27:Optical diode invented by Jun-Ichi Nishizawa 1122:. Archived from the original on 2013-10-30. 1289: 1266: 1252: 1244: 106: 1238:PIN Limiter Diodes in Receiver Protectors 843: 842: 837: 816: 806: 796: 787: 777: 771: 758: 718: 717: 691: 690: 661: 660: 632: 631: 608: 607: 600: 587: 566: 564: 531: 507: 506: 497: 473: 472: 466: 441: 410: 384: 383: 375: 373: 88:Learn how and when to remove this message 1116:"Microwave Switches: Application Notes" 1064: 990:use PIN structures. On the other hand, 1196:"Si photodiodes | Hamamatsu Photonics" 1125: 556:system, the off-state attenuation is: 99: 880:RF and microwave variable attenuators 7: 1698:Three-dimensional integrated circuit 1147:Dummer, G. W. A. (22 October 2013). 888:An RF microwave PIN diode attenuator 1479:Programmable unijunction transistor 917:The PIN photodiode was invented by 913:Photodetector and photovoltaic cell 201:The PIN photodiode was invented by 1380:Multi-gate field-effect transistor 1099:https://srmsc.org/pdf/004430p0.pdf 1075:MicroNotes: PIN Diode Fundamentals 847: 844: 817: 807: 797: 788: 778: 728: 725: 722: 719: 704: 701: 698: 695: 692: 677: 674: 671: 668: 665: 662: 648: 645: 642: 639: 636: 633: 618: 615: 612: 609: 532: 508: 477: 474: 397: 394: 391: 388: 385: 25: 1358:Insulated-gate bipolar transistor 1233:The PIN Diode Designers' Handbook 998:A PIN photodiode can also detect 1602:Heterostructure barrier varactor 1329:Chemical field-effect transistor 933:of sufficient energy enters the 143: 34: 1650:Mixed-signal integrated circuit 1088:from the original on 2022-10-09 316:A PIN diode RF microwave switch 512: 484: 481: 453: 357:, the capacitive reactance of 190:is in contrast to an ordinary 1: 1681:Silicon controlled rectifier 1543:Organic light-emitting diode 1433:Diffused junction transistor 937:of the diode, it creates an 921:and his colleagues in 1950. 1485:Static induction transistor 1422:Bipolar junction transistor 1374:MOS field-effect transistor 1346:Fin field-effect transistor 1240:, Skyworks application note 2345: 1692:Static induction thyristor 1048:Parallel optical interface 179:because they are used for 1861:(Hexode, Heptode, Octode) 1613:Hybrid integrated circuit 1456:Light-emitting transistor 1170:– via Google Books. 1132:: CS1 maint: unfit URL ( 552:As a series element in a 308:RF and microwave switches 292:PIN diodes are useful as 142: 105: 1908:Backward-wave oscillator 1618:Light emitting capacitor 1474:Point-contact transistor 1444:Junction Gate FET (JFET) 1120:Herley General Microwave 1010:millimeter waves range. 1002:in case it is used as a 943:avalanche multiplication 251:frequency multiplication 43:This article includes a 1919:Crossed-field amplifier 1438:Field-effect transistor 1033:Interconnect bottleneck 1014:Example PIN photodiodes 165:intrinsic semiconductor 72:more precise citations. 2088:Voltage-regulator tube 1655:MOS integrated circuit 1520:Constant-current diode 1496:Unijunction transistor 1004:semiconductor detector 889: 859: 543: 317: 304:, and phase shifters. 276:incident photon. Some 2157:Electrolytic detector 1930:Inductive output tube 1746:Low-dropout regulator 1661:Organic semiconductor 1592:Printed circuit board 1428:Darlington transistor 1275:Electronic components 1101:(transcript version: 1038:Optical communication 887: 860: 544: 315: 253:with high multiples. 243:reverse recovery time 163:with a wide, undoped 112:Layers of a PIN diode 2309:Microwave technology 1975:Beam deflection tube 1644:Metal oxide varistor 1537:Light-emitting diode 1391:Thin-film transistor 1352:Floating-gate MOSFET 1043:Optical interconnect 563: 372: 340:tens of milliseconds 215:high-level injection 173:n-type semiconductor 169:p-type semiconductor 2324:Japanese inventions 1951:Traveling-wave tube 1751:Switching regulator 1587:Printed electronics 1564:Step recovery diode 1341:Depletion-load NMOS 1053:Step recovery diode 247:step recovery diode 102: 2256:Crystal oscillator 2116:Variable capacitor 1791:Switched capacitor 1733:Voltage regulators 1607:Integrated circuit 1491:Tetrode transistor 1469:Pentode transistor 1462:Organic LET (OLET) 1449:Organic FET (OFET) 1000:ionizing radiation 963:quantum efficiency 939:electron-hole pair 919:Jun-ichi Nishizawa 890: 855: 853: 539: 537: 318: 220:When the diode is 203:Jun-Ichi Nishizawa 45:list of references 2319:Power electronics 2291: 2290: 2251:Ceramic resonator 2063:Mercury-arc valve 2015:Video camera tube 1967:Cathode-ray tubes 1727: 1726: 1335:Complementary MOS 1028:Fiber-optic cable 985:amorphous silicon 929:leakage). When a 821: 735: 516: 429: 226:depletion process 167:region between a 153: 152: 137:Electronic symbol 98: 97: 90: 16:(Redirected from 2336: 2145:electrical power 2030:Gas-filled tubes 1914:Cavity magnetron 1741:Linear regulator 1290: 1268: 1261: 1254: 1245: 1220: 1216: 1210: 1209: 1207: 1206: 1192: 1186: 1185: 1178: 1172: 1171: 1169: 1167: 1144: 1138: 1137: 1131: 1123: 1112: 1106: 1096: 1090: 1089: 1087: 1080: 1069: 935:depletion region 864: 862: 861: 856: 854: 850: 841: 830: 826: 822: 820: 791: 772: 763: 762: 744: 740: 736: 734: 733: 732: 731: 709: 708: 707: 682: 681: 680: 654: 653: 652: 651: 623: 622: 621: 601: 592: 591: 555: 548: 546: 545: 540: 538: 521: 517: 515: 511: 505: 504: 480: 471: 470: 442: 434: 430: 428: 411: 402: 401: 400: 364: 360: 356: 352: 345: 341: 334: 264: 260: 239:intrinsic region 188:intrinsic region 147: 110: 103: 93: 86: 82: 79: 73: 68:this article by 59:inline citations 38: 37: 30: 21: 2344: 2343: 2339: 2338: 2337: 2335: 2334: 2333: 2294: 2293: 2292: 2287: 2225: 2140:audio and video 2125: 2092: 2024: 1961: 1889: 1870:Photomultiplier 1795: 1723: 1671:Quantum circuit 1579: 1573: 1515:Avalanche diode 1501: 1413: 1406: 1295: 1284: 1277: 1272: 1229: 1224: 1223: 1217: 1213: 1204: 1202: 1194: 1193: 1189: 1180: 1179: 1175: 1165: 1163: 1161: 1146: 1145: 1141: 1124: 1114: 1113: 1109: 1097: 1093: 1085: 1078: 1072:Doherty, Bill, 1071: 1070: 1066: 1061: 1024: 1016: 988:thin-film cells 928: 915: 906: 882: 852: 851: 828: 827: 792: 773: 767: 754: 742: 741: 713: 686: 656: 655: 627: 603: 602: 596: 583: 573: 561: 560: 553: 536: 535: 519: 518: 493: 462: 446: 432: 431: 415: 403: 379: 370: 369: 362: 358: 354: 350: 343: 339: 329: 310: 290: 262: 258: 234: 232:Characteristics 211: 148: 113: 94: 83: 77: 74: 63: 49:related reading 39: 35: 28: 23: 22: 18:P-i-n and n-i-p 15: 12: 11: 5: 2342: 2340: 2332: 2331: 2329:Photodetectors 2326: 2321: 2316: 2314:Optical diodes 2311: 2306: 2296: 2295: 2289: 2288: 2286: 2285: 2284: 2283: 2278: 2268: 2263: 2258: 2253: 2248: 2247: 2246: 2235: 2233: 2227: 2226: 2224: 2223: 2222: 2221: 2219:Wollaston wire 2211: 2206: 2201: 2196: 2191: 2186: 2185: 2184: 2179: 2169: 2164: 2159: 2154: 2153: 2152: 2147: 2142: 2133: 2131: 2127: 2126: 2124: 2123: 2118: 2113: 2112: 2111: 2100: 2098: 2094: 2093: 2091: 2090: 2085: 2080: 2075: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2034: 2032: 2026: 2025: 2023: 2022: 2017: 2012: 2007: 2002: 2000:Selectron tube 1997: 1992: 1990:Magic eye tube 1987: 1982: 1977: 1971: 1969: 1963: 1962: 1960: 1959: 1954: 1948: 1943: 1938: 1933: 1927: 1922: 1916: 1911: 1904: 1902: 1891: 1890: 1888: 1887: 1882: 1877: 1872: 1867: 1862: 1856: 1851: 1846: 1841: 1836: 1831: 1826: 1821: 1816: 1811: 1805: 1803: 1797: 1796: 1794: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1753: 1748: 1743: 1737: 1735: 1729: 1728: 1725: 1724: 1722: 1721: 1716: 1711: 1706: 1701: 1695: 1689: 1684: 1678: 1673: 1668: 1663: 1658: 1652: 1647: 1641: 1636: 1631: 1626: 1621: 1615: 1610: 1604: 1599: 1594: 1589: 1583: 1581: 1575: 1574: 1572: 1571: 1566: 1561: 1559:Schottky diode 1556: 1551: 1546: 1540: 1534: 1528: 1523: 1517: 1511: 1509: 1503: 1502: 1500: 1499: 1493: 1488: 1482: 1476: 1471: 1466: 1465: 1464: 1453: 1452: 1451: 1446: 1435: 1430: 1425: 1418: 1416: 1408: 1407: 1405: 1404: 1399: 1394: 1388: 1383: 1377: 1371: 1366: 1361: 1355: 1349: 1343: 1338: 1332: 1326: 1321: 1316: 1311: 1306: 1300: 1298: 1287: 1279: 1278: 1273: 1271: 1270: 1263: 1256: 1248: 1242: 1241: 1235: 1228: 1227:External links 1225: 1222: 1221: 1211: 1187: 1173: 1159: 1139: 1107: 1091: 1063: 1062: 1060: 1057: 1056: 1055: 1050: 1045: 1040: 1035: 1030: 1023: 1020: 1015: 1012: 950:p-i-n junction 926: 914: 911: 905: 902: 881: 878: 866: 865: 849: 846: 840: 836: 833: 831: 829: 825: 819: 815: 812: 809: 805: 802: 799: 795: 790: 786: 783: 780: 776: 770: 766: 761: 757: 753: 750: 747: 745: 743: 739: 730: 727: 724: 721: 716: 712: 706: 703: 700: 697: 694: 689: 685: 679: 676: 673: 670: 667: 664: 659: 650: 647: 644: 641: 638: 635: 630: 626: 620: 617: 614: 611: 606: 599: 595: 590: 586: 582: 579: 576: 574: 572: 569: 568: 550: 549: 534: 530: 527: 524: 522: 520: 514: 510: 503: 500: 496: 492: 489: 486: 483: 479: 476: 469: 465: 461: 458: 455: 452: 449: 445: 440: 437: 435: 433: 427: 424: 421: 418: 414: 409: 406: 404: 399: 396: 393: 390: 387: 382: 378: 377: 309: 306: 302:photodetectors 289: 286: 270:reverse-biased 233: 230: 222:forward biased 210: 207: 181:ohmic contacts 151: 150: 140: 139: 133: 132: 129: 125: 124: 119: 115: 114: 111: 96: 95: 53:external links 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2341: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2301: 2299: 2282: 2281:mercury relay 2279: 2277: 2274: 2273: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2245: 2242: 2241: 2240: 2237: 2236: 2234: 2232: 2228: 2220: 2217: 2216: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2183: 2180: 2178: 2175: 2174: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2151: 2148: 2146: 2143: 2141: 2138: 2137: 2135: 2134: 2132: 2128: 2122: 2119: 2117: 2114: 2110: 2107: 2106: 2105: 2104:Potentiometer 2102: 2101: 2099: 2095: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2035: 2033: 2031: 2027: 2021: 2020:Williams tube 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1972: 1970: 1968: 1964: 1958: 1955: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1931: 1928: 1926: 1923: 1920: 1917: 1915: 1912: 1909: 1906: 1905: 1903: 1900: 1896: 1892: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1839:Fleming valve 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1806: 1804: 1802: 1798: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1738: 1736: 1734: 1730: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1699: 1696: 1693: 1690: 1688: 1685: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1666:Photodetector 1664: 1662: 1659: 1656: 1653: 1651: 1648: 1645: 1642: 1640: 1637: 1635: 1634:Memtransistor 1632: 1630: 1627: 1625: 1622: 1619: 1616: 1614: 1611: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1584: 1582: 1576: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1527: 1524: 1521: 1518: 1516: 1513: 1512: 1510: 1508: 1504: 1497: 1494: 1492: 1489: 1486: 1483: 1480: 1477: 1475: 1472: 1470: 1467: 1463: 1460: 1459: 1457: 1454: 1450: 1447: 1445: 1442: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1423: 1420: 1419: 1417: 1415: 1409: 1403: 1400: 1398: 1395: 1392: 1389: 1387: 1384: 1381: 1378: 1375: 1372: 1370: 1367: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1342: 1339: 1336: 1333: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1301: 1299: 1297: 1291: 1288: 1286: 1283:Semiconductor 1280: 1276: 1269: 1264: 1262: 1257: 1255: 1250: 1249: 1246: 1239: 1236: 1234: 1231: 1230: 1226: 1215: 1212: 1201: 1200:hamamatsu.com 1197: 1191: 1188: 1183: 1177: 1174: 1162: 1160:9781483145211 1156: 1152: 1151: 1143: 1140: 1135: 1129: 1121: 1117: 1111: 1108: 1104: 1100: 1095: 1092: 1084: 1077: 1076: 1068: 1065: 1058: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1025: 1021: 1019: 1013: 1011: 1007: 1005: 1001: 996: 993: 989: 986: 981: 979: 975: 971: 966: 965:of the cell. 964: 959: 955: 951: 946: 944: 940: 936: 932: 922: 920: 912: 910: 903: 901: 897: 893: 886: 879: 877: 875: 870: 838: 834: 832: 823: 813: 810: 803: 800: 793: 784: 781: 774: 768: 764: 759: 755: 751: 748: 746: 737: 714: 710: 687: 683: 657: 628: 624: 604: 597: 593: 588: 584: 580: 577: 575: 570: 559: 558: 557: 528: 525: 523: 501: 498: 494: 490: 487: 467: 463: 459: 456: 450: 447: 443: 438: 436: 425: 422: 419: 416: 412: 407: 405: 380: 368: 367: 366: 347: 344:1 microsecond 336: 333: 327: 323: 314: 307: 305: 303: 299: 295: 287: 285: 281: 279: 278:photodetector 273: 271: 266: 254: 252: 248: 244: 240: 231: 229: 227: 223: 218: 216: 208: 206: 204: 199: 197: 193: 189: 184: 182: 178: 174: 170: 166: 162: 158: 146: 141: 138: 134: 130: 126: 123: 122:Semiconductor 120: 116: 109: 104: 92: 89: 81: 71: 67: 61: 60: 54: 50: 46: 41: 32: 31: 19: 2038:Cold cathode 2005:Storage tube 1895:Vacuum tubes 1844:Neutron tube 1819:Beam tetrode 1801:Vacuum tubes 1553: 1386:Power MOSFET 1214: 1203:. Retrieved 1199: 1190: 1176: 1164:. Retrieved 1153:. Elsevier. 1149: 1142: 1119: 1110: 1094: 1074: 1067: 1017: 1008: 997: 982: 967: 958:p–n junction 949: 947: 923: 916: 907: 898: 894: 891: 871: 867: 551: 348: 337: 319: 291: 288:Applications 282: 274: 267: 255: 235: 219: 214: 212: 200: 185: 156: 154: 84: 75: 64:Please help 56: 2204:Transformer 1946:Sutton tube 1786:Charge pump 1639:Memory cell 1569:Zener diode 1531:Laser diode 1414:transistors 1296:transistors 983:Typically, 874:phase-noise 322:capacitance 298:attenuators 294:RF switches 70:introducing 2298:Categories 2276:reed relay 2266:Parametron 2199:Thermistor 2177:resettable 2136:Connector 2097:Adjustable 2073:Nixie tube 2043:Crossatron 2010:Trochotron 1985:Iconoscope 1980:Charactron 1957:X-ray tube 1829:Compactron 1809:Acorn tube 1766:Buck–boost 1687:Solaristor 1549:Photodiode 1526:Gunn diode 1522:(CLD, CRD) 1304:Transistor 1205:2021-03-26 1059:References 954:solar cell 2239:Capacitor 2083:Trigatron 2078:Thyratron 2068:Neon lamp 1995:Monoscope 1875:Phototube 1859:Pentagrid 1824:Barretter 1709:Trancitor 1704:Thyristor 1629:Memristor 1554:PIN diode 1331:(ChemFET) 970:germanium 818:Ω 808:Ω 798:Ω 789:Ω 779:Ω 765:⁡ 594:⁡ 533:Ω 499:− 491:× 460:× 451:π 420:π 326:RF signal 209:Operation 196:rectifier 192:p–n diode 186:The wide 157:PIN diode 101:PIN diode 78:July 2022 2261:Inductor 2231:Reactive 2209:Varistor 2189:Resistor 2167:Antifuse 2053:Ignitron 2048:Dekatron 1936:Klystron 1925:Gyrotron 1854:Nuvistor 1771:Split-pi 1657:(MOS IC) 1624:Memistor 1382:(MuGFET) 1376:(MOSFET) 1348:(FinFET) 1166:14 April 1128:cite web 1083:archived 1022:See also 904:Limiters 363:497 ohms 128:Invented 2162:Ferrite 2130:Passive 2121:Varicap 2109:digital 2058:Krytron 1880:Tetrode 1865:Pentode 1719:Varicap 1700:(3D IC) 1676:RF CMOS 1580:devices 1354:(FGMOS) 1285:devices 978:silicon 952:, of a 355:320 MHz 171:and an 66:improve 2304:Diodes 2194:Switch 1885:Triode 1849:Nonode 1814:Audion 1694:(SITh) 1578:Other 1545:(OLED) 1507:Diodes 1458:(LET) 1440:(FET) 1412:Other 1360:(IGBT) 1337:(CMOS) 1324:BioFET 1319:BiCMOS 1157:  974:InGaAs 931:photon 554:50 ohm 2271:Relay 2244:types 2182:eFUSE 1953:(TWT) 1941:Maser 1932:(IOT) 1921:(CFA) 1910:(BWO) 1834:Diode 1781:SEPIC 1761:Boost 1714:TRIAC 1683:(SCR) 1646:(MOV) 1620:(LEC) 1539:(LED) 1498:(UJT) 1487:(SIT) 1481:(PUT) 1424:(BJT) 1393:(TFT) 1369:LDMOS 1364:ISFET 1219:1997. 1086:(PDF) 1079:(PDF) 839:15.52 353:. At 263:10 kΩ 259:0.1 Ω 177:doped 161:diode 159:is a 51:, or 2214:Wire 2172:Fuse 1756:Buck 1609:(IC) 1597:DIAC 1533:(LD) 1402:UMOS 1397:VMOS 1314:PMOS 1309:NMOS 1294:MOS 1168:2018 1155:ISBN 1134:link 992:CdTe 359:1 pF 351:1 pF 131:1950 118:Type 1776:Ćuk 972:or 804:497 756:log 585:log 529:497 457:320 361:is 332:ohm 261:to 2300:: 2150:RF 1899:RF 1198:. 1130:}} 1126:{{ 1118:. 1006:. 945:. 814:50 794:50 785:50 775:50 760:10 752:20 589:10 581:20 502:12 495:10 464:10 365:: 330:1 300:, 296:, 272:. 183:. 155:A 55:, 47:, 1901:) 1897:( 1267:e 1260:t 1253:v 1208:. 1184:. 1136:) 1105:) 927:s 925:I 848:B 845:d 835:= 824:) 811:+ 801:+ 782:+ 769:( 749:= 738:) 729:d 726:a 723:o 720:l 715:Z 711:+ 705:e 702:d 699:o 696:i 693:d 688:Z 684:+ 678:e 675:c 672:r 669:u 666:o 663:s 658:Z 649:e 646:c 643:r 640:u 637:o 634:s 629:Z 625:+ 619:d 616:a 613:o 610:l 605:Z 598:( 578:= 571:A 526:= 513:) 509:F 488:1 485:( 482:) 478:z 475:H 468:6 454:( 448:2 444:1 439:= 426:C 423:f 417:2 413:1 408:= 398:e 395:d 392:o 389:i 386:d 381:Z 91:) 85:( 80:) 76:( 62:. 20:)

Index

P-i-n and n-i-p
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message

Semiconductor
Electronic symbol

diode
intrinsic semiconductor
p-type semiconductor
n-type semiconductor
doped
ohmic contacts
intrinsic region
p–n diode
rectifier
Jun-Ichi Nishizawa
forward biased
depletion process
intrinsic region
reverse recovery time
step recovery diode
frequency multiplication
reverse-biased
photodetector

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.