Knowledge (XXG)

Papoulis-Marks-Cheung Approach

Source 📝

892: 695: 560: 397: 384:"Marks and Cheung focused on images with a given spectral support region and an initial base sampling lattice such that the induced spectral replicas of this support region do not overlap. They then showed that cosets of some sublattice could be removed from the base lattice until the sampling density was minimal … or approached minimal ... allows the sampling rate to be reduced until it equals or approaches … minimum." In this context, the limit is the area of the support of the spectrum." 899:
The corresponding reduction in sampling density is shown in Figure 4 where the red dots are locations where samples need not be taken. A single cell containing one red dot is shown shaded. The area of the cell is The corresponding reduction in sampling density is shown in Figure 4 where the red dots
956:
In the previous example, the squares in Figure 3 can be made arbitrarily small and increased in number so that, asymptotically, all of the area equal to zero can be covered. Thus, the sampling density can be reduced to the support of the spectrum, i.e., to the area where the spectrum is not
241: 603: domain results in spectrum replication in the Fourier domain. If the uniform sampling density were lower, the replications would overlap and an attempt at reconstruction of the original function would result in image 88: 19:
The Papoulis-Marks-Cheung approach is a theorem in multidimensional Shannon sampling theory that shows that the sampling density of a two-dimensional bandlimited function can be reduced to the
960:
The Papoulis-Marks-Cheung approach can straightforwardly be generalized to higher dimensions. Also, replication geometry need not be rectangular but can be any shape that will tile the entire
788:
different two-dimensional signals. All of the samples for the signals corresponding to the light green areas are zero and do not have to be considered. The area of the two green squares is
1444:
Cheung, Kwang F. (Dec 6, 2012). "A Multidimensional Extension of Papoulis' Generalized Sampling Expansion with Application in Minimum Sampling Density". In Marks, Robert J. II (ed.).
556:
To the right in Figure 1 is pictured a rectangular replication of the half circle which occurs when the two-dimensional function is sampled at spatial locations shown in Figure 2.
748:
identical squares. Note that two of these squares lie totally in an area where the spectral replication is identically zero. These squares are shaded light green. Think of each of
834: 886: 611:
to achieve this is equal to the area of the rectangular lattice cell of the spectrum replication. The corresponding area of the rectangle used in the replication is equal to
459: 493: 726: 689: 551: 531: 83: 990: 601: 295: 268: 946: 995:
A more detailed mathematical description of the Papoulis-Marks-Cheung approach is available in the original paper by Marks and Cheung and their derivative work.
918: 786: 766: 746: 854: 669: 649: 629: 375: 355: 335: 315: 461:, is zero outside the half circle. Inside the circle, the spectrum' is arbitrary but is well behaved. The half-circle, with unit radius, has an area of   412:
The Papoulis-Marks-Cheung approach is best explained by example. Consider from Figure 1 the half circle shown on the right half plane. A signal's spectrum,
651:
samples per unit area. The Papoulis-Marks-Cheung approach says that this sampling density can be reduced to the area of the half circle, namely from
836:. Since the samples corresponding to these squares do not have to be considered (they are all zero), the overall sampling density is reduced from 1303:
Herley, Cormac; Wong, Ping Wah; Member, Senior (1999). "Minimum rate sampling and reconstruction of signals with arbitrary frequency support".
1475: 1453: 1387: 631:(cycles per unit length) squared. As confirmed by Figure 2, the sampling density required to achieve the spectral replication is therefore 236:{\displaystyle F(u_{x},y_{y})=\iint \limits _{x,y}f(x,y){\rm {e}}^{-i2\pi (xu_{x}+yu_{y})}\operatorname {d} \!x\operatorname {d} \!y} 1420: 1349: 1279: 1234: 900:
are locations where samples need not be taken. A single cell containing one red dot is shown shaded. The area of the cell is
920:
units. The sampling density is therefore, as also seen from the areas of two green squares in Figure 3, reduced by
44: 568: 891: 694: 559: 396: 1312: 1219:[Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing 48: 401: 20: 791: 35:
and Kwang Fai Cheung. The approach has been called "elegant," "remarkably" closed, and "interesting."
1179: 1129: 859: 895:
Figure 4: Reduction in sampling density: The red dots are locations where samples need not be taken.
415: 1317: 464: 28: 1285: 1240: 1056: 1028: 563:
Figure 2: This sampling geometry gives rise to the spectral replication on the right in Figure 1.
32: 705: 388:
In deriving their result, Marks and Cheung relied on Papoulis' generalized sampling expansion.
1449: 1426: 1416: 1393: 1383: 1355: 1345: 1275: 1230: 1195: 1145: 1117: 1098: 1048: 24: 1167: 1322: 1267: 1222: 1187: 1137: 1090: 1038: 674: 536: 501: 53: 963: 574: 273: 246: 923: 1183: 1133: 903: 771: 751: 731: 839: 654: 634: 614: 404:. Outside of the half circle, the spectrum is identically zero. (Right) Nonoverlapping 360: 340: 320: 300: 1469: 1244: 1289: 498:
According to the Papoulis-Marks-Cheung approach, the sampling density for the image
1060: 608: 1260:"Spectrum-blind minimum-rate sampling and reconstruction of 2-D multiband signals" 553:
samples per unit area. The Papoulis-Marks-Cheung approach informs how to do this.
1226: 1078: 1259: 1214: 1397: 1271: 1199: 1149: 1102: 1094: 1052: 1043: 1016: 1359: 27:
of the function. Applying a multidimensional generalization of a theorem by
1430: 1191: 1141: 380:
Prelee and Neuhoff describe the Papoulis-Marks-Cheung approach as follows.
604: 405: 1215:"FIR filtering of images on a lattice with periodically deleted samples" 571:
that shows that the sampling of a two-dimensional signal in the spatial
1326: 1264:
Proceedings of 3rd IEEE International Conference on Image Processing
377:
are lengths, spatial frequency has units of cycles per unit length.
1033: 698:
Figure 3: The half-circle spectrum support divided into 32 squares.
408:
rectangular replication of the support of the spectrum on the left.
890: 693: 558: 395: 1118:"Multidimensional-signal sample dependency at Nyquist densities" 702:
To see how this reduction happens, consider Figure 3 where the
1415:. Russell M. Mersereau. Englewood Cliffs, NJ: Prentice-Hall. 1168:"Imaging sampling below the Nyquist density without aliasing" 1446:
Advanced Topics in Shannon Sampling and Interpolation Theory
1017:"Multidimensional Manhattan Sampling and Reconstruction" 966: 926: 906: 862: 842: 794: 774: 754: 734: 708: 677: 657: 637: 617: 577: 539: 504: 467: 418: 363: 343: 323: 303: 276: 249: 91: 56: 1380:
Handbook of Fourier analysis & its applications
297: are the spatial frequencies corresponding to 1015:Prelee, Matthew A.; Neuhoff, David L. (May 2016). 984: 940: 912: 880: 848: 828: 780: 760: 740: 720: 683: 663: 643: 623: 595: 545: 525: 487: 453: 369: 349: 329: 309: 289: 262: 235: 77: 992: plane such as parallelograms and hexagons. 229: 222: 1166:Cheung, Kwan F.; Marks, Robert J. (1990-01-01). 382: 8: 1344:. Englewood Cliffs, N.J: Prentice Hall PTR. 1413:Multidimensional digital signal processing 1448:. Springer Science & Business Media. 1316: 1083:IEEE Transactions on Circuits and Systems 1042: 1032: 965: 930: 925: 905: 861: 841: 812: 798: 793: 773: 753: 733: 728:rectangular lattice cell is divided into 707: 676: 656: 636: 616: 576: 567:This replication is a consequence of the 538: 503: 471: 466: 442: 429: 417: 362: 342: 322: 302: 281: 275: 254: 248: 208: 192: 169: 163: 162: 131: 115: 102: 90: 55: 1266:. Vol. 1. pp. 701–704 vol.1. 1021:IEEE Transactions on Information Theory 1004: 1213:Gardos, T.R.; Mersereau, R.M. (1991). 400:Figure 1: (Left) Half circle spectral 31:, the approach was first proposed by 7: 1373: 1371: 1369: 1161: 1159: 1072: 1070: 1010: 1008: 1382:. Oxford: Oxford University Press. 495:(cycles per unit length) squared. 226: 219: 164: 14: 569:multidimensional sampling theorem 45:two-dimensional Fourier transform 1258:Bresler, Y.; Feng, Ping (1996). 1079:"Generalized sampling expansion" 829:{\displaystyle 2/32=1/16=0.0625} 1116:Marks, Robert J. (1986-02-01). 881:{\displaystyle 2-0.0625=1.9375} 1077:Papoulis, A. (November 1977). 979: 967: 590: 578: 520: 508: 454:{\displaystyle F(u_{x},u_{y})} 448: 422: 214: 182: 158: 146: 121: 95: 72: 60: 47:, or frequency spectrum, of a 1: 488:{\displaystyle \pi /2=1.5708} 1476:Theorems in Fourier analysis 1378:Marks, Robert J. II (2009). 1221:. pp. 2873–2876 vol.4. 1492: 1305:IEEE Trans. Inform. Theory 1227:10.1109/ICASSP.1991.151002 16:Theorem in sampling theory 856:samples per unit area to 721:{\displaystyle 1\times 2} 1411:Dudgeon, Dan E. (1984). 1272:10.1109/ICIP.1996.559595 1095:10.1109/TCS.1977.1084284 1044:10.1109/TIT.2016.2542081 888:samples per unit area. 691:samples per unit area. 533: can be reduced to 1342:Time-frequency analysis 948:samples per unit area. 1192:10.1364/JOSAA.7.000092 1142:10.1364/JOSAA.3.000268 986: 942: 914: 896: 882: 850: 830: 782: 768:squares as spectra of 762: 742: 722: 699: 685: 684:{\displaystyle 1.5708} 665: 645: 625: 597: 564: 547: 546:{\displaystyle 1.5708} 527: 526:{\displaystyle f(x,y)} 489: 455: 409: 386: 371: 351: 331: 311: 291: 264: 237: 79: 78:{\displaystyle f(x,y)} 987: 985:{\displaystyle (x,y)} 943: 915: 894: 883: 851: 831: 783: 763: 743: 723: 697: 686: 666: 646: 626: 598: 596:{\displaystyle (x,y)} 562: 548: 528: 490: 456: 399: 372: 352: 332: 312: 292: 290:{\displaystyle u_{x}} 265: 263:{\displaystyle u_{x}} 238: 80: 1340:Cohen, Leon (1995). 964: 941:{\displaystyle 1/16} 924: 904: 860: 840: 792: 772: 752: 732: 706: 675: 655: 635: 615: 575: 537: 502: 465: 416: 361: 341: 321: 301: 274: 247: 89: 54: 1184:1990JOSAA...7...92C 1134:1986JOSAA...3..268M 29:Athanasios Papoulis 982: 957:identically zero. 938: 913:{\displaystyle 16} 910: 897: 878: 846: 826: 781:{\displaystyle 32} 778: 761:{\displaystyle 32} 758: 741:{\displaystyle 32} 738: 718: 700: 681: 661: 641: 621: 593: 565: 543: 523: 485: 451: 410: 367: 347: 327: 307: 287: 260: 233: 142: 75: 33:Robert J. Marks II 1455:978-1-4613-9757-1 1389:978-0-19-533592-7 1327:10.1109/18.771158 849:{\displaystyle 2} 664:{\displaystyle 2} 644:{\displaystyle 2} 624:{\displaystyle 2} 370:{\displaystyle y} 350:{\displaystyle x} 330:{\displaystyle y} 310:{\displaystyle x} 127: 25:Fourier transform 1483: 1460: 1459: 1441: 1435: 1434: 1408: 1402: 1401: 1375: 1364: 1363: 1337: 1331: 1330: 1320: 1311:(5): 1555–1564. 1300: 1294: 1293: 1255: 1249: 1248: 1210: 1204: 1203: 1163: 1154: 1153: 1113: 1107: 1106: 1074: 1065: 1064: 1046: 1036: 1027:(5): 2772–2787. 1012: 991: 989: 988: 983: 947: 945: 944: 939: 934: 919: 917: 916: 911: 887: 885: 884: 879: 855: 853: 852: 847: 835: 833: 832: 827: 816: 802: 787: 785: 784: 779: 767: 765: 764: 759: 747: 745: 744: 739: 727: 725: 724: 719: 690: 688: 687: 682: 670: 668: 667: 662: 650: 648: 647: 642: 630: 628: 627: 622: 609:sampling density 602: 600: 599: 594: 552: 550: 549: 544: 532: 530: 529: 524: 494: 492: 491: 486: 475: 460: 458: 457: 452: 447: 446: 434: 433: 376: 374: 373: 368: 356: 354: 353: 348: 336: 334: 333: 328: 316: 314: 313: 308: 296: 294: 293: 288: 286: 285: 269: 267: 266: 261: 259: 258: 242: 240: 239: 234: 218: 217: 213: 212: 197: 196: 168: 167: 141: 120: 119: 107: 106: 84: 82: 81: 76: 1491: 1490: 1486: 1485: 1484: 1482: 1481: 1480: 1466: 1465: 1464: 1463: 1456: 1443: 1442: 1438: 1423: 1410: 1409: 1405: 1390: 1377: 1376: 1367: 1352: 1339: 1338: 1334: 1302: 1301: 1297: 1282: 1257: 1256: 1252: 1237: 1212: 1211: 1207: 1165: 1164: 1157: 1115: 1114: 1110: 1089:(11): 652–654. 1076: 1075: 1068: 1014: 1013: 1006: 1001: 962: 961: 954: 922: 921: 902: 901: 858: 857: 838: 837: 790: 789: 770: 769: 750: 749: 730: 729: 704: 703: 673: 672: 653: 652: 633: 632: 613: 612: 573: 572: 535: 534: 500: 499: 463: 462: 438: 425: 414: 413: 394: 359: 358: 339: 338: 319: 318: 299: 298: 277: 272: 271: 250: 245: 244: 204: 188: 161: 111: 98: 87: 86: 52: 51: 41: 17: 12: 11: 5: 1489: 1487: 1479: 1478: 1468: 1467: 1462: 1461: 1454: 1436: 1421: 1403: 1388: 1365: 1350: 1332: 1318:10.1.1.83.8638 1295: 1280: 1250: 1235: 1205: 1155: 1128:(2): 268–273. 1108: 1066: 1003: 1002: 1000: 997: 981: 978: 975: 972: 969: 953: 950: 937: 933: 929: 909: 877: 874: 871: 868: 865: 845: 825: 822: 819: 815: 811: 808: 805: 801: 797: 777: 757: 737: 717: 714: 711: 680: 660: 640: 620: 592: 589: 586: 583: 580: 542: 522: 519: 516: 513: 510: 507: 484: 481: 478: 474: 470: 450: 445: 441: 437: 432: 428: 424: 421: 393: 390: 366: 346: 326: 306: 284: 280: 257: 253: 232: 228: 225: 221: 216: 211: 207: 203: 200: 195: 191: 187: 184: 181: 178: 175: 172: 166: 160: 157: 154: 151: 148: 145: 140: 137: 134: 130: 126: 123: 118: 114: 110: 105: 101: 97: 94: 74: 71: 68: 65: 62: 59: 40: 37: 15: 13: 10: 9: 6: 4: 3: 2: 1488: 1477: 1474: 1473: 1471: 1457: 1451: 1447: 1440: 1437: 1432: 1428: 1424: 1422:0-13-604959-1 1418: 1414: 1407: 1404: 1399: 1395: 1391: 1385: 1381: 1374: 1372: 1370: 1366: 1361: 1357: 1353: 1351:0-13-594532-1 1347: 1343: 1336: 1333: 1328: 1324: 1319: 1314: 1310: 1306: 1299: 1296: 1291: 1287: 1283: 1281:0-7803-3259-8 1277: 1273: 1269: 1265: 1261: 1254: 1251: 1246: 1242: 1238: 1236:0-7803-0003-3 1232: 1228: 1224: 1220: 1216: 1209: 1206: 1201: 1197: 1193: 1189: 1185: 1181: 1178:(1): 92–105. 1177: 1173: 1169: 1162: 1160: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1073: 1071: 1067: 1062: 1058: 1054: 1050: 1045: 1040: 1035: 1030: 1026: 1022: 1018: 1011: 1009: 1005: 998: 996: 993: 976: 973: 970: 958: 951: 949: 935: 931: 927: 907: 893: 889: 875: 872: 869: 866: 863: 843: 823: 820: 817: 813: 809: 806: 803: 799: 795: 775: 755: 735: 715: 712: 709: 696: 692: 678: 658: 638: 618: 610: 606: 587: 584: 581: 570: 561: 557: 554: 540: 517: 514: 511: 505: 496: 482: 479: 476: 472: 468: 443: 439: 435: 430: 426: 419: 407: 403: 398: 391: 389: 385: 381: 378: 364: 344: 324: 304: 282: 278: 255: 251: 230: 223: 209: 205: 201: 198: 193: 189: 185: 179: 176: 173: 170: 155: 152: 149: 143: 138: 135: 132: 128: 124: 116: 112: 108: 103: 99: 92: 69: 66: 63: 57: 50: 46: 38: 36: 34: 30: 26: 22: 1445: 1439: 1412: 1406: 1379: 1341: 1335: 1308: 1304: 1298: 1263: 1253: 1218: 1208: 1175: 1171: 1125: 1121: 1111: 1086: 1082: 1024: 1020: 994: 959: 955: 898: 701: 566: 555: 497: 411: 387: 383: 379: 42: 18: 392:Explanation 39:The Theorem 1034:1502.01694 999:References 406:nonaliased 357: and 317: and 270: and 1398:227191901 1313:CiteSeerX 1245:121408946 1200:1520-8532 1150:1520-8532 1103:0098-4094 1053:0018-9448 952:Extension 867:− 713:× 469:π 180:π 171:− 129:∬ 85: is 1470:Category 1360:31516509 1290:44441155 605:aliasing 49:function 1431:9282699 1180:Bibcode 1130:Bibcode 1061:3199882 402:support 337:. When 23:of the 21:support 1452:  1429:  1419:  1396:  1386:  1358:  1348:  1315:  1288:  1278:  1243:  1233:  1198:  1172:JOSA A 1148:  1122:JOSA A 1101:  1059:  1051:  876:1.9375 870:0.0625 824:0.0625 679:1.5708 607:. The 541:1.5708 483:1.5708 243:where 1286:S2CID 1241:S2CID 1057:S2CID 1029:arXiv 1450:ISBN 1427:OCLC 1417:ISBN 1394:OCLC 1384:ISBN 1356:OCLC 1346:ISBN 1276:ISBN 1231:ISBN 1196:ISSN 1146:ISSN 1099:ISSN 1049:ISSN 43:The 1323:doi 1268:doi 1223:doi 1188:doi 1138:doi 1091:doi 1039:doi 671:to 1472:: 1425:. 1392:. 1368:^ 1354:. 1321:. 1309:45 1307:. 1284:. 1274:. 1262:. 1239:. 1229:. 1217:. 1194:. 1186:. 1174:. 1170:. 1158:^ 1144:. 1136:. 1124:. 1120:. 1097:. 1087:24 1085:. 1081:. 1069:^ 1055:. 1047:. 1037:. 1025:62 1023:. 1019:. 1007:^ 936:16 908:16 818:16 804:32 776:32 756:32 736:32 1458:. 1433:. 1400:. 1362:. 1329:. 1325:: 1292:. 1270:: 1247:. 1225:: 1202:. 1190:: 1182:: 1176:7 1152:. 1140:: 1132:: 1126:3 1105:. 1093:: 1063:. 1041:: 1031:: 980:) 977:y 974:, 971:x 968:( 932:/ 928:1 873:= 864:2 844:2 821:= 814:/ 810:1 807:= 800:/ 796:2 716:2 710:1 659:2 639:2 619:2 591:) 588:y 585:, 582:x 579:( 521:) 518:y 515:, 512:x 509:( 506:f 480:= 477:2 473:/ 449:) 444:y 440:u 436:, 431:x 427:u 423:( 420:F 365:y 345:x 325:y 305:x 283:x 279:u 256:x 252:u 231:y 227:d 224:x 220:d 215:) 210:y 206:u 202:y 199:+ 194:x 190:u 186:x 183:( 177:2 174:i 165:e 159:) 156:y 153:, 150:x 147:( 144:f 139:y 136:, 133:x 125:= 122:) 117:y 113:y 109:, 104:x 100:u 96:( 93:F 73:) 70:y 67:, 64:x 61:( 58:f

Index

support
Fourier transform
Athanasios Papoulis
Robert J. Marks II
two-dimensional Fourier transform
function

support
nonaliased

multidimensional sampling theorem
aliasing
sampling density




"Multidimensional Manhattan Sampling and Reconstruction"
arXiv
1502.01694
doi
10.1109/TIT.2016.2542081
ISSN
0018-9448
S2CID
3199882


"Generalized sampling expansion"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.